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Abstract

Background: The small ruminant lentiviruses (SRLVs) are a heterogeneous group of viruses that includes caprine

arthritis encephalitis virus (CAEV) and Maedi-Visna virus (MVV). SRLVs affect the production and welfare of sheep

and goats worldwide. There is currently no effective treatment. Their high mutation rate precludes vaccine

development, making innovative control measures necessary.

A variant of the chemokine (C-C motif ) receptor 5 (CCR5) gene is reportedly involved in resistance to human

immunodeficiency (HIV) infection in humans and to SRLV in sheep. The aim of this study was to analyse the

genetic structure and variability of the CCR5 gene in goats and to carry out a cross-sectional study to investigate

the role of CCR5 genetic variants in controlling susceptibility/resistance to CAEV.

Results: The variant g.1059 T located in the promoter region revealed an interesting association with high proviral

loads (a 2.8-fold increased risk). A possible explanation could be an alteration of the transcriptional level.

Overexpression of the CCR5 receptor on the cell surface may increase virus internalization and proviral load as a

consequence.

Conclusions: Our findings could be advantageously used to reduce the susceptibility of goat herds to CAEV by

negatively selecting animals carrying the g.1059 T mutation. Eliminating animals predisposed to high proviral loads

could also limit the development of clinical signs and the spread of the virus, since these animals are also highly

efficient in shedding the virus.
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Background
The small ruminant lentiviruses (SRLVs) are a heteroge-

neous group of viruses that includes caprine arthritis en-

cephalitis virus (CAEV) and Maedi-Visna virus (MVV).

They are enveloped RNA viruses belonging to the lenti-

virus genus of the Retroviridae family, which also includes

the human immunodeficiency virus (HIV). SRLVs infect

monocytes and macrophages and cause persistent infec-

tions and chronic debilitating diseases in sheep and goats

[1]: 20–30% of infected goats exhibit clinical manifesta-

tions characterized by emaciation, progressive arthritis,

and mastitis [2].

SRLV affects the production and welfare of sheep and

goats worldwide; the estimated seroprevalence is 80–90%

in dairy goats [3, 4] and 60–82% in Italy [5, 6]. There is no

effective treatment for SRLV infection; the virus’s high

mutation rate precludes vaccine development. Herd man-

agement is commonly used to prevent viral transmission

mainly by culling infected animals based on serology.

However, variation in serological response within a single

animal and at the flock level hampers serological diagnosis

[7]. In herds with high seroprevalence, an alternative
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approach is the selection of negative, artificially fed pro-

geny [8]. But because this is both expensive and time con-

suming, innovative control measures are urgently needed.

A variant in the chemokine (C-C motif ) receptor 5

(CCR5) gene has been reportedly involved in resistance

to HIV infection in humans and to SRLV in sheep [9,

10]. Together with CD4, he human chemokine recep-

tor CCR5 serves as the principal co-receptor for

macrophage-trophic (R5) HIV strains. Numerous gen-

etic variants in the coding or the promoter region

have been identified in various ethnic groups. Cauca-

sians with the coding deletion delta-32 have no func-

tional CCR5 protein on the cell surface and are

highly resistant to HIV infection [9]. Similarly in

sheep, a common 4-base deletion in the promoter re-

gion of CCR5 has been reported to reduce the pro-

viral level, with a 3.9-fold differential transcription in

heterozygous animals [10].

The aim of this study was to analyse the genetic struc-

ture and variability of the CCR5 gene in goats and to

carry out a cross-sectional study to investigate the role

of the genetic variants in controlling susceptibility/resist-

ance to caprine arthritis encephalitis virus for future use

in marker-assisted selection breeding schemes.

Results

The caprine CCR5 sequence showed two exons with

the entire open reading frame (ORF) located on exon

II, as described for the ovine CCR5 gene. The CDS en-

codes a 352 amino-acid protein with 98% of similarity

compared with the ovine sequence. Promoter region

and complete CDS of the caprine CCR5 gene was de-

posited in GenBank (Accession number HQ650162).

Table 1 presents the variants and relative frequen-

cies found in the survey. All the variants respected

Hardy-Weinberg assumption; no 4-base deletion at

the promoter level was found as is instead described

for sheep.

Twenty-two cases (5 wild type, 17 mutated) and 68

non-cases (39 wild type and 29 mutated) were analysed.

SNP g.1059 T was missing in one goat and the sample

was removed from the association study. The chi-square

test demonstrated the presence of eight SNPs statistically

associated with high proviral load (Table 2). Subsequent

correction for multiple testing resulted in a loss of

statistical significance for each SNP, as Bonferroni and

Sidak corrections assume each SNP to be independent

of each other and fail to take linkage disequilibrium into

account. Hence, many SNPs were in close linkage

disequilibrium to one another and a correlation between

SNP alleles was detected. A permutation test was per-

formed and empirical p-values were determined through

10,000 permutations. The results showed that the

g.1059 T mutation was significantly associated with high

proviral load, also after correction for multiple testing,

with a higher proviral load in the individuals carrying

the g.1059 T mutation. Various alternatives of setting the

cut-off led to similar results, pointing to an association

between SNP 1059 and high proviral load values. The

g.1059 T mutation was entered as an independent vari-

able into a univariate analysis based on the mixed-effects

Poisson regression model: the prevalence ratio (PR) con-

sidering the crude effect of the SNP was 3.25 (95% confi-

dence interval [CI] 1.2–8.81, p = 0.020) in the goats

carrying the g.1059 T mutation.

After adjusting for animal age, a 2.8-fold increase in risk

was still evident for the animals carrying the g.1059 muta-

tion (C/T and T/T) versus wild type (PR 2.81; 95% CI

1.01–7.837; p = 0.047) (Table 3). No significant association

was found with increasing age (p = 0.081) or with any

interaction terms. Haplotypes analysis identified 27

Table 1 CCR5 variants found in the survey, position and

frequencies (Caprine Reference Sequence HQ650162.1)

Variation Region of interest Frequency % (MAF)

g.186_188InsTC Promoter 0.17

g.226 G > A Promoter 0.17

g.551 C > G Promoter 0.14

g.925 C > A Promoter 0.17

g.1059 C > T Promoter 0.19

g.1394 C > T Promoter 0.17

g.2170 T > C Intron 0.17

g.2573 A > C Intron 0.03

g.2791 C > T Intron 0.14

g.3023 T > C Intron 0.03

g.3167 T > C Intron 0.03

g.3203 T > C Intron 0.17

g.3876 T > C Exon 2 CDS 0.14

g.4553 C > T Exon 2 3′-UTR 0.17

g.4918 C > T Downstream 3′- UTR 0.14

g.5089 G > C Downstream 3′- UTR 0.03

g.5110 G > C Downstream 3′- UTR 0.03

Table 2 CCR5 variants associated with the proviral load

Variation CHISQ P-value

g.1059 C > T 6.092 0.01358

g.4353 C > T 5.558 0.01839

g.925 C > A 5.077 0.02425

g.2170 T > C 4.623 0.03154

g.3203 T > C 4.623 0.03154

g.226 G > A 4.62 0.03161

g. 186_188InsTC 4.175 0.04102

g.1394 C > T 3.907 0.04809

Chi square test results (CHISQ) and P value < 0.05 (P)
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haplotypes and none of them was associated to pro-

viral load (Chi-square test). Moreover a permutation

test was performed and a non significant result was

obtained (p = 0.25).

The bioinformatic analysis did not predict with high

probability any transcription factor binding site

related to the SNP g.1059. Nevertheless, EMSA was

carried out to experimentally assess the presence of

binding sites using synthetic oligos carrying the two

SNP g.1059 alleles and the nuclear extract from the

caprine buffy coat. An unspecific shift was visualized,

not silenced by the corresponding unlabelled ds oligo,

as competitor (See Additional file 1). The EMSA ex-

periments indicated that no binding site for transcrip-

tion factor from buffy coat is present at the SNP

g.1059 locus.

Discussion

Caprine CCR5 gene structure and variability is de-

scribed here for the first time. The variant g.1059 T,

located in the promoter region, revealed an interest-

ing association with high proviral loads (a 2.8-fold

increased risk). A possible explanation for this is al-

teration of the transcriptional level, specifically, over-

expression of the CCR5 receptor on the cell surface.

This could increase virus internalization and proviral

load as a consequence. A further explanation would

be that the variant g.1059 T might not be directly as-

sociated with the high proviral load, but rather that it

is in linkage with another unknown functional variant

outside the present dataset.

We found no interaction between the nuclear extract

from the goat buffy coat and the DNA region where

the SNP is located; this suggests that the SNP did not

alter the transcription factor (TF)F sites. Studies using

transient cell-based promoter assays have shown, how-

ever, that one-third of SNPs located within the 500 bp

region upstream from the transcriptional start site

(TSS), like g.1059 T, may affect transcription levels by

50% or more; sequence − 300 to − 50 bp from the TSS

are known to positively contribute to core promoter

activity [11].

Conclusions
Our findings could be advantageously used to reduce

the susceptibility of goat herds to CAEV by negatively

selecting animals carrying the g.1059 T mutation. Elim-

inating animals predisposed to high proviral loads

could also limit the development of clinical signs and

the spread of the virus, since these animals are also

highly efficient in shedding the virus [7]. The imple-

mentation of marker-assisted selection schemes could

offer a complementary, innovative strategy to control

CAEV infection, especially in herds with high sero-

prevalence levels.

Methods
Study of the CCR5 structure in goats

DNA was extracted using the kit Pure Link™ Genomic

DNA Mini Kit (Invitrogen) from the blood of four

Chamois coloured goats. PCRs were carried out to

cover the putative promoter region, Exon I, Intron 1,

Exon II, and the 3′-UTR region of the CCR5 gene ac-

cording to the protocol and the primers described by

White et al. [10]. PCRs were carried out in a total vol-

ume of 50 μl using Platinum® qPCR Supermix-UDG

(2X) (Invitrogen) and containing 50–100 ng of genomic

DNA and 300 nM of each primer. Amplicon dimen-

sions were visualized on 2% agarose gel under UV light

(Gel Doc 2000, Bio-Rad). Products were labelled using

BigDye® v3.1 chemistries (Applied Biosystems, Thermo

Fisher Scientific). Sequencing primers were reported by

White et al. [10]. Capillary electrophoresis was done on

an ABI3130 genetic analyser (Applied Biosystems,

Thermo Fisher Scientific).

MegAlign™ software (DNASTAR) was used to align

the CCR5 ovine reference sequence (GenBank accession

number FJ008056) and the caprine sequences obtained

and not previously reported. The CCR5 caprine se-

quence was first gathered by homology with the ovine

one and then experimentally verified through c-DNA

amplification. The free on-line software Primer3 was

used for designing the two primers: EXIF 5′-CCAA

CTCAGAAGAAACTGCAT-3′ (1427–1447 ovine refer-

ence sequence) and EXIIR 5′-AAGCAAACACAGCAT-

GAACG-3′ (3692–3673 ovine reference sequence). PCR

was carried out in a total volume of 25 μl. Table 4 lists

the reagents and relative volumes. PCR conditions were:

95 °C for 10 min, followed by 35 cycles at 94 °C for 30 s,

54 °C for 30 s, 72 °C for 60 s, and a final extension at

72 °C for 7 min. Amplicon length (533 bp) was visualized

on 2% agarose gel under UV light (Gel Doc 2000, Bio-

Table 3 Results of a Poisson mixed-effects regression model

Mixed-effects Poisson regression model Genotype PR p-value [95% CI]

g.1059 T C/T 2.82 0.047 1.01–7.83

Age in months 1.03 0.081 1.00–1.06

_cons 0.03 0.000 0.00–0.22

Genotype and age (aa a continuous variable in months) were entered in the model as covariates to evaluate the potential association with proviral load

Colussi et al. BMC Veterinary Research          (2019) 15:230 Page 3 of 6



Rad). Products were labelled using BigDye® 3.1 chemis-

tries (Applied Biosystems, Thermo Fisher Scientific).

PCR primers were also used for full amplicon sequen-

cing. Capillary electrophoresis was done on an ABI3130

genetic analyser (Applied Biosystems, Thermo Fisher

Scientific).

Survey of chamois goats and functional analysis of the

SNPs

A genetic survey of the CCR5 gene was carried out on

20 Chamois coloured, geographically unrelated goats

(sex-ratio 1:1). The methodology was reported above in

“Study of the CCR5 structure in goats”. Lasergene Seq-

Man software (DNAStar) was used for sequence align-

ment. Sequences derived from goats sampled for the

case-control study were aligned using the caprine refer-

ence sequence deposited by our group in GenBank (Ac-

cession number HQ650162).For all SNPs found in the

survey, freely available on-line software was used to

predict the role of each SNP allele in creating/disrupt-

ing putative TFBS in regulatory regions. In particular,

each SNP was analysed in parallel with TFBIND,

ALGGEN-PROMO, MATCH and JASPAR software in

order to evaluate agreement of predictions by different

algorithms and to minimize false positives.

Cross-sectional study

Ninety one Chamois coloured goats were recruited from

two herds. A cross-sectional study was carried out in

order to identify polymorphisms and mutations in the

goat herds where the CAEV was circulating and to in-

vestigate its role in determining susceptibility and/or re-

sistance to the disease

Real-time PCRs were used to quantify the proviral load

for each animal in the study. Peripheral blood mono-

nuclear cells (PBMCs) were isolated by Ficoll gradient

centrifugation (1.077) from EDTA-treated blood. DNA

was extracted from PBMCs using a DNA Blood Mini Kit

(Qiagen). Proviral load was estimated by quantitative

real time PCR as previously described [7]. Ten-fold serial

dilutions ranging from 106 to 1 copies of a plasmid

(pDRIVE, Qiagen) containing the gag region were used

to generate a standard curve and compared to each sam-

ple. The results are expressed as provirus copy number/

50 ng extracted DNA.

Because all the animals were potentially infected

though asymptomatic, the level of infection within

the herd (proviral load) was modelled as a dependent

variable (infection prevalence) in the cross-sectional

study and used to define cases and controls. Actually,

proviral load has been reported to be essential in

early diagnosis of the infection, also in absence of

clinical signs [8]. Moreover SRLV was easily isolated

from high proviral load animals whereas low proviral

load animals did not shed virus [7]. Proviral load was

categorized based on different percentile values: the

25th percentile, 50th percentile, the parametric

method on log-normal distribution and on quartile.

Hence, case definition was based on the individual

proviral load: animals with a proviral load greater

than or equal to the 75th percentile of the data distri-

bution (456.43 copy number/50 ng DNA) were classi-

fied as cases and the others as non-cases.

Data quality control and statistical analysis were per-

formed in accordance with Anderson [12]: removal of

individuals with missing genotyping or SNPs not geno-

typed, evaluation of Hardy-Weinberg equilibrium, and

minor allelic frequency (MAF). SNPs genotyped in less

than 95% of samples, SNPs with MAF < 0.1%, and sam-

ples that did not respect the assumption of Hardy-

Weinberg equilibrium were removed.

The first step in the genetic association study was to

assess the association between allelic variants and pro-

viral load for each SNP according to Pearson’s chi-

squared and Fisher’s exact test. Among the SNPs associ-

ated with a high proviral load, the presence of linkage

disequilibrium was studied and adjusted by permutation

correction for multiple testing and collinearity. SNPs sig-

nificantly associated with the disease (P < 0.05) based on

the chi-square test were used as candidates for further

analysis. A mixed-effects Poisson regression model was

fitted with individual SNPs entered as an independent

variable, age (in months) as a potential confounder, and

the herd as random effect to take into account the

grouping structure of the data. Age was included in the

model as it was statistically associated with proviral load

at univariate analysis; the potential for statistical inter-

action between age and polymorphisms was also tested.

Data quality control and association tests were per-

formed using PLINK software (v 1.07) [13]; data analysis

and model fitting were carried out using Stata Statistical

Software, release 14.0 (Stata Corp.) [14]. Haplotype ana-

lysis and permutation test were carried out, using Phase

software v.2.1.1. [15].

Table 4 Reagents used for PCR for defining Caprine CCR5

structure

Buffer 10X 2.5 μl

Mg 2+ (2.5 mM) 2.5 μl

DNPTs (0.2 mM) 1.0 μl

Primer ExIF (300 nM) 0.5 μl

Primer ExIIR (300 nM) 0.5 μl

GC solution 5 μl

Taq Roche(1.5 U) 0.2 μl

Water 11.8 μl

c-DNA (dil. 1/5) 1 μl
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Electrophoresis mobility shift assay (EMSA)

NE-PER Nuclear and Cytoplasmic Extraction Reagents

(Thermo Scientific) with Halt Protease Inhibitor Single-

use Cocktail EDTA-free (Thermo Scientific) were used

to extract the nuclear fraction from the buffy-coat (leu-

cocytes) of anticoagulated goat blood; nuclear extracts

were quantified by fluorometric quantification. The re-

gions of the CCR5 gene, including the SNPs of interest,

were used as a template to design double-strand (ds)

DNA oligos for the EMSA (Table 5). 3′ biotinylated and

non-biotinylated DNA ds oligos were synthesised for

both SNP alleles as a single strand. Annealing was per-

formed as previously described by Holden and Tacon

(2011) [16]. EMSA was performed following the manu-

facturer’s instructions for the LightShift® Chemilumines-

cent EMSA Kit (Thermo Scientific), using DNA

retardation gels 6% (Thermo Scientific) and Biodyne B

pre-cut membranes. The Chemiluminescent Nucleic

Acid Detection Module (Thermo Scientific) was used to

detect chemiluminescent signals on X-ray film.

Additional file

Additional file 1: EMSA gel using double-strand oligo with SNP g.1059

(B) and nuclear extract (NE) from goat buffy coat. (DOC 394 kb)
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