
Atmos. Chem. Phys., 7, 1961–1971, 2007
www.atmos-chem-phys.net/7/1961/2007/
© Author(s) 2007. This work is licensed
under a Creative Commons License.

Atmospheric
Chemistry

and Physics

A single parameter representation of hygroscopic growth and cloud
condensation nucleus activity

M. D. Petters and S. M. Kreidenweis

Department of Atmospheric Science, Colorado State University, USA

Received: 16 August 2006 – Published in Atmos. Chem. Phys. Discuss.: 5 September 2006
Revised: 20 February 2007 – Accepted: 2 April 2007 – Published: 18 April 2007

Abstract. We present a method to describe the relationship
between particle dry diameter and cloud condensation nu-
clei (CCN) activity using a single hygroscopicity parameter
κ. Values of the hygroscopicity parameter are between 0.5
and 1.4 for highly-CCN-active salts such as sodium chlo-
ride, between 0.01 and 0.5 for slightly to very hygroscopic
organic species, and 0 for nonhygroscopic components. Ob-
servations indicate that atmospheric particulate matter is typ-
ically characterized by 0.1<κ<0.9. If compositional data are
available and if the hygroscopicity parameter of each com-
ponent is known, a multicomponent hygroscopicity parame-
ter can be computed by weighting component hygroscopic-
ity parameters by their volume fractions in the mixture. In
the absence of information on chemical composition, exper-
imental data for complex, multicomponent particles can be
fitted to obtain the hygroscopicity parameter. The hygroscop-
icity parameter can thus also be used to conveniently model
the CCN activity of atmospheric particles, including those
containing insoluble components. We confirm the applica-
bility of the hygroscopicity parameter and its mixing rule by
applying it to published hygroscopic diameter growth fac-
tor and CCN-activation data for single- and multi-component
particles containing varying amounts of inorganic, organic
and surface active compounds. We suggest thatκ may be fit
to CCN data assumingσ s/a=0.072 J m−2 and present a table
of κ derived for this value and T=298.15 K. The predicted
hygroscopicities for mixtures that contain the surfactant ful-
vic acid agree within uncertainties with the measured values.
It thus appears that this approach is adequate for predict-
ing CCN activity of mixed particles containing surface ac-
tive materials, but the generality of this assumption requires
further verification.

Correspondence to:M. D. Petters
(petters@atmos.colostate.edu)

1 Introduction

Simple and accurate descriptions of cloud condensation nu-
cleus (CCN) activity of complex atmospheric aerosols are
needed to better constrain cloud resolving models, chemi-
cal transport models and global climate simulations (Koch,
2001; Chung and Seinfeld, 2002; Liu et al., 2005). Köhler
theory (Köhler, 1936) predicts CCN activity based on the
aerosol physicochemical properties, i.e. solute mass, molec-
ular weight, bulk density, dissociable ions, and activity co-
efficient. Inorganic compounds, which are generally effec-
tively modeled by the parameters and assumptions used in
Köhler theory, are ubiquitous in atmospheric particulate mat-
ter, but it was recognized some time ago that less- and non-
hygroscopic organic compounds can contribute substantially
to, and sometimes even dominate, atmospheric aerosol mass
concentrations (Kanakidou et al., 2005). Particularly for
aerosols that are not sampled close to emissions, it has been
found that most particles do not consist of a single compo-
nent, but rather that organic and inorganic constituents are
usually found in the same particles (Murphy et al., 1998).

Early descriptions of internally-mixed particles concep-
tually decomposed the particle into an insoluble and non-
hygroscopic core immersed in an aqueous-ionic solution
of some assumed composition, usually sodium chloride or
ammonium sulfate (Junge and McLaren, 1971; Fitzgerald,
1973). Although this description sometimes improves com-
parisons between measured and modeled CCN activity, it
cannot explicitly treat the variations in hygroscopic growth
attributable to water soluble organic carbon, including con-
stituents originating from biomass burning and secondary or-
ganic aerosol formation. This gap was filled by extensions of
Köhler theory (Shulman et al., 1996; Kulmala et al., 1997;
Laaksonen et al., 1998). However, application of the ex-
tended theories requires that the properties of all participat-
ing compounds are known. Although this approach has been
applied successfully to laboratory data for single-component
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and some multicomponent particles (Raymond and Pandis,
2002, 2003; Bilde and Svenningsson, 2004; Huff-Hartz et
al., 2006; Svenningsson et al., 2006), insufficient data (i.e.
molecular weights, dry particle densities, dissociable ions,
and water activity coefficients) are available to initialize
calculations for ambient aerosols containing a multitude of
generally unspeciated organic compounds. Further, results
of experiments studying the hygroscopicity or CCN activ-
ity of lab-generated or atmospheric particles are often pre-
sented in terms of either the critical diameter for activation
at a specified water vapor supersaturation (relative humid-
ity, RH>100%), or the diameter hygroscopic growth factor
(RH<100%). Although variations in these parameters quali-
tatively express the relative hygroscopicity of the tested par-
ticles, critical diameters and growth factors themselves are
not readily applied quantitatively in modeling studies.

Here we build on previously used simple representations
of solute hygroscopicity in K̈ohler theory. We fit observa-
tions to a one-parameter model, where the hygroscopicity pa-
rameter,κ, represents a quantitative measure of aerosol wa-
ter uptake characteristics and CCN activity. Values ofκ for
specific compounds, or for arbitrary mixtures, can be deter-
mined experimentally by fitting CCN activity or hygroscopic
growth factor data. In the following sections we present
our proposed model and show how this treatment relates
to previously-used parameterizations of hygroscopic growth
and CCN activity. We also demonstrate how fitted values ofκ

for individual components may be combined to represent the
hygroscopic behavior of multicomponent aerosols of known
composition.

2 Model description

2.1 κ-Köhler theory

The saturation ratio,S, over an aqueous solution droplet can
be calculated from

S = aw exp

(
4σs/aMw

RTρwD

)
, (1)

whereaw is the activity of water in solution,ρw is the den-
sity of water,Mw is the molecular weight of water,σ s/a is the
surface tension of the solution/air interface,R is the universal
gas constant,T is temperature, andD is the diameter of the
droplet. In our proposed parameterization, the hygroscop-
icity parameterκ is defined through its effect on the water
activity of the solution:

1

aw

= 1 + κ
Vs

Vw

, (2)

whereVs is the volume of the dry particulate matter andVw

is the volume of the water.
For a multicomponent system (multiple solutes + water)

at equilibrium, for which the Zdanovskii, Stokes, and Robin-
son (ZSR) assumption applies, the total volume of the water

is the sum of the water contents due to the individual com-
ponents, i.e.Vw=

∑
Vwi , and the individualVwi are obtained

for awi=aw. Applying the ZSR assumption and rearranging
Eq. (2) forVw gives:

Vw =
aw

1 − aw

∑
i

κiVsi (3)

The total volume of the system (water + solute) is

VT =

∑
i

Vsi +

∑
i

Vwi = Vs + Vw. (4)

Defining the individual (dry) component volume fractions
asεi=Vsi/Vs and recognizing thatVw=VT −Vs Eq. (3) be-
comes

VT − Vs =
aw

1 − aw

Vs

∑
i

εiκi . (5)

The volumes can be converted to their volume equivalent
diameters,D3

d=6Vs/π , whereDd is the dry diameter, and
D3

=6VT /π , respectively. Solving Eq. (5) foraw and com-
bining the result with Eq. (1) yields the equation defining
“κ-Köhler theory”:

S(D) =
D3

− D3
d

D3 − D3
d(1 − κ)

exp

(
4σs/aMw

RTρwD

)
, (6)

where the overall value forκ is given by the simple mixing
rule

κ =

∑
i

εiκi . (7)

Equation (6) applies over the entire range of relative humid-
ity and solution hygroscopicity. It can thus be used to pre-
dict particle water content in the subsaturated (S<1) regime,
as well as to predict the conditions for cloud droplet acti-
vation. The critical supersaturation (sc, wheresc=Sc–1 and
is usually expressed as a percentage) for a selected dry di-
ameter of a particle having hygroscopicityκ is computed
from the maximum of theκ-Köhler curve (Eq. 6). Figure 1
shows the relationship between dry diameter and critical su-
persaturation for a range of constantκ values, computed for
σ s/a=0.072 J m−2 andT =298.15 K. As will be shown in the
next section,κ∼1.4 is an upper limit for the most hygro-
scopic species typically found in the atmospheric aerosol
(e.g. sodium chloride). Lower values ofκ then indicate
less-hygroscopic, or less CCN-active, behavior, with approx-
imately three orders of magnitude spanning thesc−Dd space
relevant to the atmosphere. The curves follow the expected
Köhler slope of∼–3/2 (Seinfeld and Pandis, 1998) when
log(Dd) is plotted on the abscissa and log(sc) on the ordi-
nate, forκ>0.2. Asκ approaches zero, the particle becomes
nonhygroscopic and the slope approaches that expected for
an insoluble but wettable particle as predicted by the Kelvin
equation, i.e. –1. This can also be seen mathematically from
Eq. (6): forκ=0, the water activityaw=1, representing wet-
ting of the dry particle by a pure water film, and Eq. (6)
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reduces to the so-called Kelvin equation. In the intermedi-
ate range 0<κ<0.2 lines of constantκ are slightly curved,
and have the asymptotic slope of –3/2 only for large parti-
cles. This curvature arises from the non-negligible contribu-
tion of the initial dry aerosol volume to the total volume of
the droplet when the equilibrium water content is relatively
small.

2.2 Relationship to previous parameterizations of hygro-
scopicity

Calculations of water activity used in Eq. (1) have generally
been based on Raoult’s law, which states that water activity
equals the mole fraction of water in solution. Since the disso-
ciating electrolytes sodium chloride and ammonium sulfate
were recognized long ago to be major components of the at-
mospheric aerosol, K̈ohler (1936) modified Raoult’s Law us-
ing a constant dissociation factor to compute the total number
of moles of solute in solution. Later McDonald (1953) and
Low (1969) introduced more general extensions of Raoult’s
law that use the van’t Hoff factor,i, or the molal osmotic
coefficient,8:

a−1
w = 1 + i

Mwms

Msmw

≈ 1 + ν8
ns

nw

, (8)

whereMs is the molecular weight of the solute,ms (ns)

and mw (nw) are the masses (moles) of solute and water,
respectively, andν is the total number of ions per dissoci-
ating molecule (see Ḧanel, 1976; Kreidenweis et al., 2005;
Svenningsson et al., 2006, for more discussion of these and
related approximations). In some studies, bothi and8 were
allowed to vary with water content such that model predic-
tions and independent observations of water activity were in
exact agreement. Junge (1950) introduced the soluble frac-
tion, ε, separating the contributions of soluble and insoluble
species to the water activity and total droplet volume. The
mass or volume fraction of soluble matter is thus an addi-
tional parameter that must be specified for the application of
Eq. (8) to atmospheric particles using this conceptual frame-
work.

When this framework was applied to the calculation of the
CCN activity of atmospheric particles, eitheri or the prod-
uct ν8 was often assumed constant at the dilute conditions
present at activation, and together with molecular weight and
density were set equal to values corresponding to observed
ionic composition or to a “typical salt”. The value of the sol-
uble fraction was adjusted to give agreement with observed
data (Junge and McLaren, 1971; Fitzgerald, 1973). This
single parameter representation of water activity, withε as
the adjustable parameter, has also been applied to calcula-
tions in the subsaturated regime (Svenningsson et al., 1992,
1994, 1997; Pitchford and McMurry, 1994; Swietlicki et al.,
1999; Ḧameri et al., 2001; Lehmann et al., 2005; Massling
et al., 2005; Mertes et al., 2005). In those studies,ε is de-
fined conceptually as the volume fraction of a model salt in
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Fig. 1. Calculated critical supersaturation for 0≤κ≤1 computed
for σ s/a=0.072 J m−2 andT =298.15 K. The gray lines are linearly
spaced intermediates.

a dry particle consisting of the model salt and an insoluble
core, and having the same hygroscopic growth as the ac-
tual particle. Applying Eq. (7) to a two-component system
of a model salt (κm) and an insoluble species (κ=0) gives
κ=ε×κm. Thus, fittingε or fitting κ are equivalent single-
parameter approaches. They fail to be equivalent, however,
if 1-ε is interpreted as the actual insoluble fraction in the mix-
ture, since the derivedε is tied to the choice of the assumed
model salt (Rissler et al., 2006).

Equation (2) is equivalent to the mole-fraction-based water
activity expressions in Eq. (8), which can be seen by convert-
ing moles to volume and gathering all of the composition-
dependent variables into the single parameterκ, here as-
sumed not to vary with particle water content. However, no
distinction is made between the soluble and insoluble por-
tions of the dry particle. It is not necessary to do so, as can be
seen from the mixing rule discussed in the prior section: the
contributions of insoluble species (κ=0) can be folded into
the averageκ derived for a particular particle composition.
Kappa can then be understood as expressing the volume (or
mass or moles, with appropriate unit conversions) of water
that is associated with a unit volume of dry particle. This in-
terpretation ofκ was first pointed out by Rissler et al. (2006),
who used a variant of Eq. (2) in their data fitting. Coinciden-
tally, they also denoted their parameter asκ, although the
numerical values are different because of a different choice
of units (i.e. theirκ is defined as the number of soluble moles
of ions or non-dissociating molecules per unit volume of dry
particle).

A single-parameter fit has also been used to obtain hygro-
scopicity fromsc−Dd data (Fitzgerald and Hoppel, 1982;
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ammonium nitrate (0.67)
3:7 organic:inorganic (0.62)
levoglucosan (0.21)
1:2:2 levoglucosan:succinic:fulvic (0.13)
fulvic acid (0.067)
fractionated fulvic acid (10-30 kDa) (0.033)
oxidized dihexylethyl sebacate (0.002)
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Fig. 2. sc−Dd data for pure compounds, organic mixtures and
organic-inorganic mixtures. Data are taken from Svenningsson et
al. (2006), Dinar et al. (2006), and Petters et al. (2006b). The 3:7 or-
ganic:inorganic mixture is the “polluted” mixture from Svennings-
son et al. (2006). Dashed lines indicate best-fitκ values for each
particle type, as shown in the legend. Shaded area indicates reported
range of values for ammonium sulfate (Table 1). Kappa values were
computed forσ s/a=0.072 J m−2 andT =298.15 K.

Hudson and Da, 1996). The model used was

s = 1 +
A

D
− B

D3
d

D3
, (9)

whereA is essentially a constant at constant temperature (see
Eq. 10), andB contains terms relating to solute properties,
including the soluble fraction, and serves as the fit param-
eter. Equation (9) is an approximation to the full equation
(Eq. 1 or Eq. 6) that is valid only forκ>0.2 andsc<1%.
For those conditions,κ andB are equivalent parameteriza-
tions of CCN activity. Atmospheric particulate matter is typ-
ically characterized byκ>0.2, with lower values sometimes
observed for particular locations and periods (Fitzgerald and
Hoppel, 1982; Hudson and Da, 1996; Dusek et al., 2006),
thereby permitting the use ofB in most cases. However, the
model represented by Eq. (9) leads to a –3/2 slope in log(sc)-
log(Dd) for all choices ofB>0.

3 Derivation of κ values for atmospherically-relevant
species and particle types

In Fig. 2 we show experimentally-determined critical super-
saturations as a function of dry particle diameter for sev-
eral single- and multi-component particle types, as reported
by Svenningsson et al. (2006), Dinar et al. (2006) and Pet-
ters et al. (2006b). The data follow, to a good approxi-
mation, the slopes of the constant-κ lines, and have rela-
tive κ values as expected:κ values for hygroscopic inor-
ganic species (ammonium nitrate) and mixtures containing

appreciable amounts of inorganics are close to theκ=1 line,
whereas moderately hygroscopic organic species have CCN
activities corresponding to 0.01<κ<0.5. Some chemically
aged particles and insoluble particles with trace amounts of
hygroscopic inorganic species have CCN activities corre-
sponding to 0<κ<0.01 (Petters et al., 2006b). Fitzgerald and
Hoppel (1982) found ambient values of 0.10<B<0.51 (com-
puted following Eq. 9, withB∼=κ) for urban, coastal, and
marine air masses along the northeastern shore of the United
States. Hudson and Da (1996) found 0.1<B<0.94 for mea-
surements taken at several urban and remote continental sites
in the Western United States. The observations of Dusek et
al. (2006) for four air masses arriving at Kleiner Feldberg
Observatory, and originating over the Atlantic, France, the
Ruhr region, and Northern Germany, correspond to values of
0.15<κ<0.30 whereκ values were calculated from the ob-
served 50% cutoff diameters reported in their Table 1.

The dashed lines in Fig. 2 indicate best-fit values ofκ,
which can be determined by fitting observed values ofsc to
the maxima of Eq. (6) for the corresponding dry diameter.
If κ>0.2, thenκ alternatively can be calculated from paired
sc−Dd values from the following approximate expression:

κ =
4A3

27D3
d ln2 Sc

.

A =
4σs/aMw

RTρw

(10)

Table 1 lists the values ofκ determined from the data com-
puted for σ s/a=0.072 J m−2 and T =298.15 K, along with
best-fit values for several inorganic species. For the inorganic
species, except ammonium nitrate, we do not fitκ to experi-
mental CCN values, as these compounds are commonly used
for the calibration of CCN instruments and thus the “exper-
imental” values simply reflect the choice of water activity
expression used in the calibration. Instead, a best-fitκ is de-
termined fromsc−Dd relationships computed from Eq. (1),
whereaw as a function of composition for the aqueous solu-
tions is obtained from the Aerosol Inorganic Model (Clegg
et al., 1998). Table 1 also shows the range ofκ reported for
typical experimental uncertainties, for the calibration salts as
well as for the other particle types where available.

For a multicomponent particle of known composition,
Eq. (7) suggests that theκ value expressing its CCN activ-
ity can be estimated from theκ values for each constituent.
Some limited data on the CCN activity of mixed particles
that can be used to test the validity of this mixing rule
are available in the literature (Raymond and Pandis, 2003;
Broekhuizen et al., 2004; Svenningsson et al., 2006). In Ta-
ble 1 we list derivedκ values for individual components, and
compare predicted and measuredκ values in Fig. 3. Mass
fractions were converted to volume fractions using bulk den-
sity values. Uncertainties in individual componentκ values
were propagated to the prediction in quadrature. An exam-
ple calculation for a mixed particle is shown in Table 2. In
general, the critical supersaturations predicted from Eqs. (6)
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Table 1. Growth factor derived and CCN derivedκ. Values in the subsaturated domain were derived from growth factors at the highest
measured water activity, typicallyaw∼0.9. Values in the supersaturated domain were derived from CCN measurements between 0.3%
<sc<1%, and were computed forσ s/a=0.072 J m−2 andT =298.15 K. Uncertainty calculation varied from study to study and is described
in the footnotes. N/A denotes not available.

Compound
Growth factor derivedκ CCN derivedκ

κ low κmean κup κ low κmean κup

(NH4)2SO4 0.33(6) 0.53 0.72(6) N/A 0.61(13) N/A

NH4NO3 N/A N/A N/A 0.577 0.67(10) 0.753

NaCl 0.91(6) 1.12(13) 1.33(6) N/A 1.28(13) N/A

H2SO4 N/A 1.19(13) N/A N/A 0.90(13) N/A

NaNO3 N/A 0.80(13) N/A N/A 0.88(13) N/A

NaHSO4 N/A 1.01(13) N/A N/A 0.91(13) N/A

Na2SO4 N/A 0.68(13) N/A N/A 0.80(13) N/A

(NH4)3H(SO4)2 N/A 0.51(13) N/A N/A 0.65(13) N/A

malonic acid 0.28 0.44(6) 0.6 0.199 0.227(11) 0.255

glutaric acid 0.12 0.2(6) 0.28 0.054
0.113

0.088(5)

0.195(8)
0.016
0.376

glutamic acid N/A 0.154(5) N/A 0.113
0.158

0.182(5)

0.248(9)
0.319
0.418

succinic acid N/A <0.006(12) N/A 0.166 0.231(4) 0.295

adipic acid N/A < 0.006(14) N/A N/A 0.096(1) N/A

levoglucosan 0.15 0.165(6) 0.18 0.193 0.208(10) 0.223

phthalic acid N/A 0.059(5) N/A 0.022 0.051(5) 0.147

homophthalic acid N/A 0.081(5) N/A 0.048 0.094(5) 0.212

leucine N/A N/A N/A 0.001 0.002(9) 0.003

pinic acid N/A N/A N/A 0.158 0.248(9) 0.418

pinonic acid N/A <0.006(12) N/A 0.063 0.106(9) 0.196

norpinic acid N/A N/A N/A 0.113 0.182(9) 0.318

poly(acrylic acid) N/A 0.060(2) N/A 0.040 0.051(7) 0.068

Suwanee River fulvic acid N/A 0.056(2)

0.044(12)
N/A 0.057

0.050
0.029

0.067(10)

0.056(3a)

0.033(3b)

0.077
0.063
0.037

α−pinene/O3/dark secondary organic aerosol N/A 0.022(15)

0.070(18)

0.037(19)

N/A 0.014(16)

0.028(17)
0.1±0.04(15) 0.091(16)

0.229(17)

β−pinene/O3/dark secondary organic aerosol N/A 0.022(15)

0.009(19)
N/A 0.033(16)

0.033(17)
0.1±0.04(15) 0.178(16)

0.106(17)

Oxidized diethylhexyl sebacate N/A < 0.006(20) N/A N/A 0.002(20) N/A

1Broekhuizen et al. (2004), uncertainty not available;κ was calculated for the pure metastable adipic acid data point
2Brooks et al. (2004), uncertainty not available
3Dinar et al. (2006), uncertainty evaluated from±Dc ; a: untreated; b: fractionated 10–30 kDa
4Hori et al. (2003), uncertainty denotes± one standard deviation calculated from spread in the data
5Huff Hartz et al. (2006), uncertainty evaluated from±Dc ; mass growth factor were converted to size growth factors
6Koehler et al. (2006), range ofκ from Table 3
7Petters et al. (2006a), uncertainty evaluated from±sc
8Raymond and Pandis (2002), uncertainty evaluated from±Dc
9Raymond and Pandis (2003), uncertainty evaluated from±Dc
10Svenningsson et al. (2006), uncertainty denotes± one standard deviation calculated from spread in the data
11Kumar et al. (2003), uncertainty denotes± one standard deviation calculated from spread in the data
12Chan and Chan (2003),κ estimated from mass growth factors,gf’s for succinic and pinonic acid were below the detection limit
13Clegg and Wexler (1998),gf’s andsc′ s calculated from the aerosol inorganic model
14Prenni et al. (2003),gf’s for adipic acid were below the detection limit
15Prenni et al. (2007), uncertainty is 95% confidence interval with data fromα-pinene,β-pinene,13-carene, and toluene precursor lumped into the confidence interval estimate
16VanReken et al. (2005), uncertainty denotes minimum and maximum hygroscopicity observed over a five hour experiment. The CCN data did not follow lines of constantκ.
17Huff-Hartz et al. (2005) uncertainty denotes minimum and maximum hygroscopicity observed. The CCN data did not follow lines of constantκ.
18Saathof et al. (2003), data point corresponds toaw = 0.83 observed 6 h after introduction ofα-pinene
19Varutbangkul et al. (2006), 180 nm growth factor data evaluated from fitted parameters ataw=0.9 in their Table 5; the hygroscopicity of the ammonium sulfate seed particle was
subtracted according to the reported organic volume fraction and using the mixing rule of Eq. (7).
20Petters et al. (2006b), allgf’s for were below the detection limit
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Fig. 4. Calculated critical supersaturations for different val-
ues of volume soluble fractionεv2 using insoluble core theory
(Snider et al., 2003, open symbols) andκ-Köhler theory (Eqs. 6
and 7, solid lines). Assumed values areDd=0.1µm, κ1=0,
κ2=0.615,corresponding to a nonhygroscopic organic and ammo-
nium sulfate, respectively.

and (7) are within experimental uncertainties, confirming the
applicability of the underlying assumptions.

For a multicomponent particle with at least one component
havingκ= 0, the critical supersaturations predicted by com-

bining Eqs. (6) and (7) should be identical to those predicted
by a version of K̈ohler theory that treats insoluble cores im-
mersed in an aqueous ionic solution (e.g. Snider et al., 2003).
In Fig. 4 we demonstrate that the supersaturations calculated
from Eqs. (6) and (7) for a 0.1µm particle are identical to
those predicted by the Snider et al. (2003) formulation.

It must be pointed out that the determination of a value for
κ from observational data using either Eq. (6) or (10) requires
the assumption of a solution surface tension and temperature.
In all cases shown here, we have assumedσ s/a=0.072 J m−2

andT =298.15 K. It is now well known that some constituents
of the atmospheric aerosol are surface active and can sup-
press surface tension, sometimes to a significant extent (Fac-
chini et al., 1999; Svenningsson et al., 2006). Use of a lower
value of surface tension would result in a decrease in the de-
rived value ofκ. However, this lowerκ must then be applied
in Eq. (6) along with the lower surface tension to correctly
predict sc. Either approach, as long asκ andσ s/a are ap-
plied self-consistently, should yield estimates ofsc that re-
produce the data used for the fitting. For example, Fig. 2
suggests that the CCN activity of fulvic acid, which is known
to strongly reduce surface tension in bulk samples (Sven-
ningsson et al., 2006) is parameterized accurately assuming
σ s/a=0.072 J m−2 and κ=0.067. In Table 1 we propose a
set ofκ ’s that are self-consistent with theσ s/a=0.072 J m−2

assumption.
Our initial calculations indicate that this approach may

also be adequate, that is, within experimental uncertainties,
for estimatingsc for mixed particles containing a surface ac-
tive compound. For example, as discussed earlier, the de-
rived value ofκ for fulvic acid is biased large since we as-
sumedσ s/a=0.072 J m−2. In calculations ofκ for a mixture
containing fulvic acid, the largerκ value for this component
partially compensates for the lowered surface tension of the
mixture. Although this approach is not thermodynamically
rigorous, it appears to predict mixed particle hygroscopicity
within current measurement uncertainties for mixtures that
contain surface active and surface inactive compounds, as is
shown in Fig. 3. Furthermore, it is not straightforward to ap-
ply measurements of surface tension from bulk solutions to
small droplets, where partitioning between the bulk and the
surface leads to complicated thermodynamics (Sorjamaa et
al., 2004). Also, surface tensions of multicomponent mix-
tures are not readily predictable, even in bulk solutions (Top-
ping et al., 2005). For these reasons, we believe the use of
σ s/a = 0.072 J m−2 to fit all data represents a reasonable ap-
proach to describe hygroscopic behavior of both single com-
ponents and mixtures, but further testing of this assumption
is needed.

Atmos. Chem. Phys., 7, 1961–1971, 2007 www.atmos-chem-phys.net/7/1961/2007/



M. D. Petters and S. M. Kreidenweis: Single parameter representation for aerosol-water interactions 1967

Table 2. Example mixture calculation for the mixture “MIXORG” in Svenningsson et al. (2006). Measured hygroscopicity was
κ=0.125±0.016 computed forσ s/a=0.072 J m−2 andT =298.15 K. Uncertainty in the prediction was calculated in quadrature. N/A denotes
not available. Densities for the pure substances are taken from Svenningsson et al. (2006).

Compound κ±σκ weight fraction density (kg m−3) volume fraction

levoglucosan 0.208±0.015 0.2 1600 0.207
succinic acid 0.231±0.064 0.4 1570 0.405
fulvic acid 0.067±0.010 0.4 1500 0.388

κ=
∑

κiεv 0.163±0.042 1 N/A 1

4 Links between hygroscopic growth factor and critical
supersaturation

Equation (6) can be used to approximate the size of a particle,
characterized by a constant value ofκ, in equilibrium with
a specified water vapor saturation for both sub- and super-
saturated conditions. In general, however, experimental data
for water activities over the full range of solution concen-
trations cannot be well-fit with Eq. (2) using a constantκ.
For example, Kreidenweis et al. (2005) used a polynomial to
model variations inκ for aw<0.95, and then extrapolated that
polynomial to dilute conditions (aw approaching 1) to esti-
mate the critical supersaturation. In that study, water activity
data for RH<100% were obtained using a humidified tandem
differential mobility analyzer (HTDMA, Brechtel and Krei-
denweis, 2000). Extrapolatedsc’s using this or similar meth-
ods (e.g. Svenningsson et al., 2006) are in good agreement
with measuredsc’s for many, but not all, particle types stud-
ied thus far (Kreidenweis et al., 2005; Koehler et al., 2006;
Petters et al., 2006a; Svenningsson et al., 2006). It has been
recognized, however, that hygroscopicity is subordinate to
particle size with respect to cloud droplet activation proper-
ties (Junge and McLaren, 1971; Fitzgerald, 1973; Dusek et
al., 2006). Small, and in some cases, moderate variations in
κ have little to no effect on the fraction of activated droplets,
when the activation of a population of particles in a parcel
experiencing changing supersaturations is simulated (Ervens
et al., 2005; Koehler et al., 2006). Thus, we hypothesize that
a constantκ is likely sufficient to adequately treat aerosol-
water interactions in both the sub- and supersaturated do-
mains, as was done by Svenningsson et al. (1992), who used
values ofε fit to sub-saturated hygroscopicity data to esti-
mate cloud and fog droplet activation. To examine the appli-
cability of the single parameter approach over both the sub-
and super-saturated domains, we deriveκ either by fitting
CCN activity data, as described above, or from HTDMA-
determined values of the hygroscopic diameter growth fac-
tor, gf, as a function of relative humidity, RH, that have been
fit to a rearranged version of Eq. (6):

RH

exp
(

A
Ddgf

) =
gf 3

− 1

gf 3 − (1 − κ)
, (11)

where RH has been expressed as a fraction. The utility of
Eq. (2) over Eq. (8) is seen here because wet and dry vol-
ume are native variables of the HTDMA method, as opposed
to mass or moles which must be computed from volume
using assumed or measured molecular weights and densi-
ties. In Fig. 5 we compareκ values derived from HTDMA
data with those derived from CCN activity measurements,
for a variety of particle compositions for which both types
of data appeared in the literature (see Table 1 for sources).
The agreement is within 30% for most compounds, indicat-
ing that the change inκ from aw∼0.9 to aw at CCN acti-
vation is small. Furthermore, this difference inκ, although
undoubtedly present, appears to not be effectively resolved
using current measurement techniques, as can be seen by the
sometimes substantial uncertainties in the inferredκ.

For some of the compounds shown in Table 1, e.g. adipic
or succinic acid, no water uptake is observed in the subsat-
urated domain. The current detection limit for the diameter
growth factor measurement is∼1.02, translating to a lower
limit of κ ∼0.006 that can be observed in an HTDMA, with
a similar limit for the electrodynamic balance. A quick com-
parison between growth factor derived and CCN derivedκ

values for these compounds shows, however, thatκ<0.006
does not match the much larger values inferred from their
CCN activity. While the CCN derived hygroscopicity of suc-
cinic and adipic acid is fairly large (κ>0.1, cf. Table 1), their
solubility in water, i.e. the mass of solute that can be dis-
solved in a given amount of water, is small. Accordingly,
the water activity of the saturated solution is large, thereby
raising the deliquescence relative humidity, for small parti-
cles sometimes exceeding values of 100%. The equilibrium
water content of a succinic acid particle ataw∼0.9 corre-
sponds to a metastable state where the concentration of so-
lute exceeds the solubility limit. Thus, for an initially dry
succinic acid particle no water uptake can be observed. In the
case of adipic acid the solubility limit is so low that the wa-
ter activity of the saturated solution exceedsaw>0.97. Then
CCN activation will be controlled by the solubility limit in-
stead of its intrinsic hygroscopicity andsc−Dd data for these
compounds do not observe the –3/2 rule shown in Fig. 1
(Kreidenweis et al., 2006). Laboratory studies have shown
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Fig. 5. Values ofκ for indicated particle types, estimated fromgf
data and Eq. (11) (abscissa) and estimated from CCN activity mea-
surements (ordinate). Allκ values were fit usingσ s/a=0.072 J m−2

andT =298.15 K. Data sources are summarized in Table 1. Verti-
cal and horizontal bars show an estimate of the uncertainty inκ.
Dashed lines indicate±30% deviation from the 1:1 line.

that it is quite difficult to obtain pure, dry compounds for
which activation is controlled by the solubility limit, since
trace amounts of water or soluble compounds readily lead
to metastable solution droplets and hygroscopicity controlled
activation (Hori et al., 2003; Bilde and Svenningsson, 2004;
Broekhuizen et al., 2004; Huff-Hartz et al., 2006). Although
the phase state of aerosols in the atmosphere is not precisely
known, it seems reasonable to assume that metastable states
dominate, especially because most particles exist as internal
mixtures in the atmosphere (Murphy et al., 1998).

5 Summary and conclusions

We propose the use of a hygroscopicity parameter,κ, for pur-
poses of characterizing the relative hygroscopicities of indi-
vidual aerosol constituents, known mixtures, and complex
atmospheric aerosols. The hygroscopicity parameter is used
to model the composition-dependence of the solution water
activity, and when combined with the Kelvin term into “κ-
Köhler theory”, determines the equilibrium water vapor sat-
uration ratio,S, over an aqueous droplet. As with traditional
Köhler theory, the maximum inS(D) computed for a spec-
ified initial dry particle size and composition (expressed by
κ) determines the particle’s critical supersaturation (sc) for
activation to a cloud droplet.

Fits to theoreticalsc–Dd relationships are used to show
that 0.5<κ<1.4 for hygroscopic inorganic species, computed
from known solution thermodynamic properties. In contrast,
experimentalsc–Dd data for organic species and their mix-
tures span a wider range of hygroscopicities and are best fit
to lower values ofκ, 0.01<κ<0.5. Atmospheric particu-

late matter is typically characterized by 0.1<κ<0.9 (Fitzger-
ald and Hoppel, 1982; Hudson and Da, 1996; Dusek et al.,
2006). We use published data to show that theκ values de-
scribing the hygroscopic behavior of multicomponent parti-
cles can be derived by volume-weighting the best-fitκ values
for the individual constituents. This mixing rule holds even
when one or more components are nonhygroscopic (κ=0),
namely, the equations presented here predict the same crit-
ical supersaturations as do extensions of Köhler theory that
treat insoluble cores.

We suggest thatκ may be fit to CCN data assuming
σ s/a=0.072 J m−2. Using this convention, the predicted hy-
groscopicities for mixtures that contain the surfactant fulvic
acid agree within uncertainties with the measured values. It
thus appears that this approach is adequate for predicting
CCN activity of mixed particles containing surface active
materials, but the generality of this assumption requires fur-
ther verification.

In contrast to traditional formulations of K̈ohler theory,
use of the hygroscopicity parameter to computesc obviates
the need to determine, or assume, aerosol properties such as
dry particle density, molecular weight, and dissociation con-
stants. That is, data for thesc–Dd relationships observed for
model or actual atmospheric aerosols can be conveniently
fit by a single parameter. We suggest thatκ may be use-
ful in streamlining aerosol compositional models, including
those that link to drop activation schemes, as well as enable
such models to handle the hygroscopic properties of complex
aerosol types that were heretofore difficult to fit to traditional
Köhler parameters. Representative values ofκ may be as-
signed to an aerosol source, e.g. “open flame shrub burning”
or “biogenic secondary organic aerosol”, or may be com-
puted from concentrations determined from chemical speci-
ation techniques, e.g. functional groups from FTIR (Maria
et al., 2003), HOA and OOA from the AMS (Zhang et al.,
2005), or various categories from WSOC-NMR (Fuzzi et al.,
2001). It must be stressed though, that predictions based on
chemical speciation techniques are not experimentally veri-
fied to date.

It is also possible to derive values ofκ from other types of
data, such as hygroscopic growth factor data obtained from
an HTDMA. We show that values ofκ derived from pub-
lished HTDMA data are consistent with those derived by fit-
ting published CCN activity data, for particles that do not
remain dry at the upper limit RH achievable in the HTDMA.
The level of agreement for the limited available data is gener-
ally within experimental errors and probably within the range
of δκ for which minimal effects on activated drop fractions
are observed. However, the resolution inκ that is required to
address outstanding problems in aerosol indirect effects on
climate is not yet well-established, and further research on
quantifying acceptable uncertainties inκ is needed.
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