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Abstract: At present, the small resistance to ground system (SRGS) is mainly protected by fixed-time
zero-sequence overcurrent protection, but its ability to detect transition resistance is only about
100 Ω, which is unable to detect single-phase high resistance grounding fault (SPHIF). This paper
analyzes the zero-sequence characteristics of SPHIF for SRGS and proposes a SPHIF feeder detection
method that uses the current–voltage phase difference. The proposed method is as follows: first, the
zero-sequence current phase of each feeder is calculated. Second, the phase voltage root mean square
(RMS) value is used to determine the fault phase and obtain its initial phase as the reference value.
The introduction of the initial phase of the fault phase voltage can highlight the fault characteristics
and improve the sensitivity and reliability of feeder detection, and then CVPD is the difference
between each feeder ZSC phase and the reference value. Finally, the magnitude of CVPD is judged.
If the CVPD of a particular feeder meets the condition, the feeder is detected as the faulted feeder.
Combining the theoretical and practical constraints, the specific adjustment principle and feeder
detection logic are given. A large number of simulations show that the proposed method can be
successfully detected under the conditions of 5000 Ω transition resistance, –1 dB noise interference,
and 40% data missing. Compared with existing methods, the proposed method uses phase voltages
that are easy to measure to construct SPHIF feeder detection criteria, without adding additional
measurement and communication devices, and can quickly achieve local isolation of SPHIF with
better sensitivity, reliability, and immunity to interference.

Keywords: small resistance to ground systems (SRGS); single-phase high-impedance ground fault
(SPHIF); zero-sequence current (ZSC); fault phase voltage; phase difference

1. Introduction
1.1. Motivation

With the increasing cable rate in urban distribution networks, the capacitive current
in urban distribution networks is increasing, gradually exceeding the compensation limit
of existing arc extinguishing coils and posing many public safety risks. Compared with a
neutral point resonant grounded system, the small resistance to the ground system (SRGS)
has the advantages of simple operation and maintenance, fast fault removal, and allows
the use of cables with low insulation level, etc. Large cities such as Beijing, Shanghai,
Guangzhou, and Shenzhen [1] have started to adopt SRGS.

At present, the engineering uses fixed-time zero-sequence overcurrent protection as
the main protection, only can detect the transition resistance of about 100 Ω ground fault,
when the occurrence of the wire through the asphalt, trees, human body, and other short-
circuited single-phase high-impedance ground fault (SPHIF) [2], the fault zero-sequence
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current (ZSC) amplitude is small, easy to cause protection rejection of accidents. More than
80% of the faults in the distribution network are single-phase ground faults, of which about
15% are SPHIF [3,4], so it is necessary to develop a wire detection method for SPHIF.

1.2. Literature Review

For SRGS in SPHIF protection rejection problem, scholars have conducted a lot of re-
search and proposed a lot of methods, in general, which can be divided into two categories.

(1) Method based on steady-state component information
Using the faulty feeder ZSC and the healthy feeder ZSC ratio greater than 10, Xue et al.

improved the traditional three-stage zero-sequence overcurrent protection to a multi-stage
type, but it is difficult to take into account the rapidity of protection when there are too many
segments, the protection is complicated to adjust, and it is difficult to take into account
the rapidity of protection [5]. Wang et al. proposed inverse-time overcurrent protection
for distribution networks with high sensitivity but complex protection calibration [6,7];
Ren et al. used longitudinal differential protection commonly used for transmission lines
for distribution networks [8,9], but the method is only applicable to distribution networks
with a high degree of automation; and Lin et al. proposed centralized protection that
integrates the amplitude and phase characteristics of each feeder’s ZSC [10,11]. Using
the healthy feeder ZSC and neutral ZSC phase difference of about 90◦, the faulty feeder
ZSC, and neutral ZSC is approximately opposite, Sheng et al. used the projection of the
feeder ZSC on the neutral ZSC and the difference of the neutral ZSC for faulty feeder
detection [12]; Yang et al. constructed the protection action criterion by comparing the
projection of the feeder ZSC on the neutral ZSC with the neutral ZSC to obtain the projection
factor [13]; Wang et al. proposed to calculate the integrated inner product of feeder ZSC
and neutral ZSC, after that, the sign and magnitude of the integrated inner product of
each feeder are compared to detect the faulty feeder [14]; however, all three methods
mentioned above require additional equipment to measure or transmit the neutral ZSC.
Using the characteristics that the bus zero-sequence voltage (ZSV) amplitude is inversely
proportional to the fault transition resistance value and positively proportional to the
feeder ZSC amplitude, Li et al. proposed a method based on ZSV amplitude correction [15];
Xue et al. proposed a method for ZSV ratio braking [16]; Long et al. used the amount of
change in zero-sequence power before and after the feeder fault to highlight the feeder fault
characteristics [17]; however, the ZSV required by the above protection methods is difficult
to measure under SPHIF. Li et al. proposed to determine the fault partition first and then
select the appropriate method for protection, but it did not essentially solve the problem of
difficult detection of SPHIF [18]. In order to solve the above problems, Yu et al. divided the
various operating conditions data recorded by the Feeder Terminal Unit (FTU) with the
help of C-mean clustering algorithm and constructed a multi-level judging index system
for fault routing [19]; Nikolaos et al. proposed a deep neural network for the detection
and location of SPHIF [20]; Cui et al. constructed a SPHIF feature pool, combined with
expert experience, and proposed a new SPHIF detector from a practical point of view [21];
however, these methods need a large amount of real and valid data support.

(2) Method based on transient component information (waveform nonlinear characteristics)
When a SPHIF occurs, the ZSC waveform will be distorted due to the arc discharge

and the presence of nonlinear transition resistance. Taking advantage of the different wave-
form distortion characteristics of sound feeder zero-sequence current and faulty feeder
zero-sequence current, Wei et al. used least-squares linear fitting to characterize the nonlin-
ear characteristics of the waveform, combined with the Grubbs criterion for optimization,
which has higher sensitivity and the ability to distinguish normal disturbances [22]; Geng
et al. used waveform concavity to characterize the ZSC “zero rest” phenomenon, with clear
physical meaning and high sensitivity and reliability, but misclassification occurs when the
signal to noise ratio (SRN) is less than 10 dB [23]; Wang et al. use volt-ampere characteristics
to characterize the nonlinear characteristics of voltage and current after SPHIF occurrence,
and reduce the effect of the randomness of noise by low-pass filtering and least-squares



Sensors 2022, 22, 4646 3 of 20

linear fitting [24]; Chen et al. use zero-sequence power factor to effectively to identify
SPHIF [25]. To distinguish SPHIF from capacitor dropout, load dropout, operation mode
conversion and distributed generator dropout, Wang et al. used variational modal de-
composition (VMD) combined with maximum cliff theory to extract the eigencomponents
from the ZSC and used Teager–Kaiser energy operators (TKEOs) to identify SPHIF [26];
Gao et al. used empirical wavelet transform (EWT ) to decompose the differential fault
components, combined with maximum entropy theory to determine the eigencomponents
adaptively, and proposed replacement variance indicators for identifying SPHIF [27]; San-
tos et al. used discrete wavelet transform to monitor low- and high-frequency voltages,
which can not only identify SPHIF, but also determine the approximate area where SPHIF
occur [28]. However, these methods present the risk of rejection or misoperation when the
arc distortion is weak.

In summary, although the currently available methods have achieved certain results,
there are still two shortcomings as follows:

(1) In order to eliminate the effect of transition resistance, most methods use the
information of busbar zero-sequence voltage or neutral zero-sequence current, however,
the former is difficult to measure with small amplitude under single-phase high resistance
ground fault, and the latter needs to add additional equipment to measure or transmit.

(2) Unable to give a reliable and sensitive threshold value, the engineering value
is weak.

In view of the above problems, this paper proposed a SPHIF feeder detection method
that uses current-voltage phase difference (CVPD) using the easily measured initial phase
of the fault phase voltage as the reference value. Combining the theoretical and practical
constraints, the specific adjustment principle and feeder detection logic are given. A larger
number of simulations have shown that the method has good sensitivity, reliability, and
interference immunity.

1.3. Our Contribution

There are two main contributions of this study, as follows:
(1) The transient characteristics of SRGS under SPHIF are analyzed, and a new SPHIF

feeder detection criterion is constructed from the phase relationship between fault phase
voltage and feeder ZSC, where the phase of fault feeder ZSC is approximately equal to the
initial phase of fault phase voltage, and the phase of healthy feeder ZSC lags behind the
initial phase of fault phase voltage by more than 90◦, which is a simple principle.

(2) The phase voltage under a SPHIF is several kilovolts, which can be accurately mea-
sured in real-world engineering. Using the fault phase voltage initial phase as a reference
value to calculate CVPD for SPHIF feeder detection is beneficial for engineering applications.

1.4. Organization of Paper

The organization of this paper is as follows. Section 2 analyzes the zero-sequence
characteristics of SPHIF. Section 3 introduces the CVPD-based faulty feeder detection
method, including the basic principle, parameter rectification, and feeder detection process.
Section 4 presents the built simulation model and conducts a large number of simulation
experiments. Section 5 is the conclusion.

2. Materials and Methods
2.1. Single-Phase High-Impedance Ground Fault Zero-Sequence Characteristics Analysis

Figure 1 gives a schematic diagram of a SPHIF occurring in a 10 kV SRGS, taking a
feeder touch tree fault as an example. In which the 10 kV bus leads to neutral point series
of small resistance grounding through the grounding transformer, and the whole system
has m feeders L1~Lm.
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Figure 1. Diagram of feeder touch tree fault occurred in 10 kV SRGS.

When a SPHIF occurs, the healthy feeder and the feeder impedance after the fault
point have less influence on the distribution characteristics of the system ZSC. In order
to facilitate fault analysis, only the feeder to ground capacitance is considered to obtain a
SPHIF zero-sequence network as shown in Figure 2. Here, C01 v C0m is the capacitance to
ground of each feeder, Rf is the transition resistance of the fault point (changes with the
fault), RN is the neutral grounding resistance (generally takes the value of 10 Ω),

.
U0 is the

bus ZSV,
.

Uf is the equivalent supply voltage at the fault point (equal in magnitude and
opposite in direction to the phase voltage before the fault, i.e.,

.
Uf = −

.
UA),

.
I01 v

.
I0m−1 is

the healthy feeder ZSC,
.
I0k is the faulty feeder ZSC,

.
I0n is the neutral ZSC,

.
I0f is the fault

point ZSC.
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Figure 3 shows the simplified zero-sequence network Z0 is the equivalent impedance
looking in from the fault point.

Z0 =
1

1
3RN

+ jωC0Σ
(1)

where C0Σ =
m
∑

i=1
C0i is the total system capacitance to ground.
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The bus ZSV
.

U0 is:

.
U0 =

.
Uf

Z0

Z0 + 3Rf
=

.
Uf

1

1 + Rf
RN

+ 3jωRfC0Σ
(2)

The healthy feeder ZSC
.
I0i(i = 1, 2, · · · , m− 1) is equal to the zero-sequence capaci-

tance current of this feeder to ground, which theoretically presents pure capacitance, i.e.,
the phase of

.
I0i is 90◦ ahead of the phase of

.
U0.

.
I0i = jωC0i

.
U0 (3)

θi − θU = 90◦ (4)

where θi(i = 1, 2, · · · , m) is the phase of the healthy feeder ZSC and θU is the phase of the
bus ZSV.

The neutral point ZSC
.
I0n is equal to the current flowing in the neutral point grounding

resistance, theoretically showing resistance, i.e.,
.
I0n is in phase with

.
U0.

.
I0n =

.
U0

3RN
(5)

θn − θU = 0◦ (6)

where θn is the phase of the neutral point ZSC.
It can be seen from Figure 2 that the faulty feeder ZSC

.
I0k is equal to the sum of the

ZSC of all healthy feeders and the neutral point. Since the capacitance current of a single
feeder to ground is very small [5], it can be approximated that the faulty feeder ZSC

.
I0k is

equal to fault point ZSC
.
I0f:

.
I0k = −

(
.
I0n +

m−1

∑
i=1

.
I0i

)
≈ −

.
U0

(
1

3RN
+ jωC0Σ

)
= −

.
I0f (7)
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Then
.
I0k overtakes −

.
U0 by a certain angle α as:

θk = θU + 180◦ + α (8)

α = arctan(3RNωC0Σ) (9)

where θk is the phase of the faulty feeder ZSC.
In Equation(9), the magnitude of α is only related to RN and C0Σ, and the range of α

can be calculated by considering the constraints of practical conditions. In the 10 kV SRGS,
the zero-sequence capacitance current of a single feeder is below 50 A, and the size of the
full capacitance current of the system is generally below 200 A [29], so ωC0Σ ≤ 11.6 mS,
substituting into Equation (9) gives 0◦ ≤ α ≤ 20◦. Then the phase difference between the
faulty feeder ZSC and the ZSV of the bus is:

180◦ ≤ θk − θU ≤ 200◦ (10)

The phase relationship between each feeder ZSC, neutral ZSC, and bus ZSV can be
derived by combining Equations (4), (6) and (10), as shown in Figure 4.
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As can be seen in Figure 4:
(1) The neutral ZSC is in the same phase with the bus ZSV.
(2) All healthy feeder ZSCs are in phase with the bus ZSV phase 90◦ ahead.
(3) The faulty feeder ZSC is in phase with the bus ZSV phase 180◦~200◦ ahead.
In summary, the 10 kV SRGS in the healthy feeder ZSC ahead of the bus ZSV phase

90◦, while the faulty feeder ZSC ahead of the bus ZSV phase 180◦~200◦, the two differences
are huge. Therefore, it is possible to distinguish the faulty feeder from the healthy feeder
according to the phase relationship between the ZSC of each feeder and the ZSV of the bus
after the fault occurs. However, in practical engineering, many theoretically established
methods are difficult to be used due to the limited measurement accuracy of the transformer,
and the National Grid states in the “One-Second Fusion Technology Program” [30] that
the minimum precision voltage of the ZSV transformer in a 10 kV SRGS is 120 V, and the
minimum precision current of the ZSC transformer is 1 A. Substitute

.
U0 = 120 V into

Equation (2) to calculate the Rf = 445 Ω corresponding to this time. Substitute
.
I0k = 1 A

into Equations (2) and (7) to calculate the Rf = 5770 Ω corresponding to this time. The
minimum value of 445 Ω represents the transition resistance capability of the protection,
which is obviously far from satisfying the requirements, therefore this paper introduced the
easy-to-measure faulty phase voltage and used the phase relationship between the faulty
feeder ZSC and the faulty phase voltage for faulty feeder detection.
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2.2. Faulty Feeder Detection Method

According to Equation (2) it is obtained that
.

U0 phase overruns
.

Uf certain angle β,
while

.
Uf is the inverse of the faulty phase voltage at the moment of the fault, from which it

follows that:
θUf = θU + β (11)

θUA = θUf + 180◦ (12)

β = arctan

(
3ωRfC0Σ

1 + Rf
RN

)
≤ arctan(3RNωC0Σ) (13)

where, θUf is the fault point voltage phase and θUA is the fault phase voltage initial phase.
From Equations (9) and (13), it is obtained that when Rf is large, α = β. Taking

RN = 10 Ω, ωC0Σ = 11.6 mS, the maximum value of β can be obtained by substituting into
Equation (13) as:

β(max) = 20◦ = α (14)

From Equations (8), (11) and (12), it can be obtained that
.

UA and
.
I0k are in the same

phase when SPHIF occurs. Combining the analysis in the previous section, we can draw
the phase volume diagrams of

.
UA,

.
I0k and

.
I0i, as shown in Figure 5.
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The phase difference between the faulty phase voltage and the faulty feeder ZSC is
only about 20◦ and eventually stabilizes at about 0◦ with the increase of the transition
resistance, while the phase difference with the healthy feeder ZSC is greater than 90◦, which
is a huge difference between the two, so the faulty feeder can be reliably realized by using
CVPD. Equation (15) gives the specific feeder detection criterion:

∆θ = θIi − θUA =

{
(−110◦,−90◦) healthy feeder
(0◦, 20◦) faulty feeder

(15)

where ∆θ is the phase difference between the feeder ZSC and faulty phase voltage.
For 10 kV SRGS, when a SPHIF occurs, the faulty phase voltage must be greater than

the minimum fine voltage of the voltage transformer, and the phase size of the faulty
phase voltage can be measured accurately without the influence of the transition resistance.
Therefore, the proposed method based on CVPD (as shown in Figure 6) is easy to implement
in practical engineering and has high resistance to transition resistance.
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Figure 6. Faulty feeder detection method based on CVPD.

Theoretically, ∆θ will not fall in the blank position in 0, but taking into account the
impact of errors caused by system parameters, mutual inductor angle difference, noise
interference, etc., in order to improve the reliability of the method, under the condition of
ensuring that the phase angle difference range corresponding to the faulty feeder and the
healthy feeder in the criterion does not overlap, the blank area in 0 is divided equally into
two criterion intervals using the angle parallels of the second and fourth quadrants as the
boundary, and the extended final feeder detection criterion is obtained as follows:

∆θ′ =

{
(135◦,−45◦) healthy feeder
(−45◦, 135◦) faulty feeder

(16)

Figure 7 illustrates the extended faulty feeder detection method.
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2.3. Faulty Phase Detection Method

Unlike the ungrounded system, the voltage offset of the neutral point after a SPHIF
occurs in the SRGS is generated by the voltage drop ∆

.
U =

.
I0nRN on the neutral point

grounding small resistance RN. Combined with Equation (2) to draw voltage vector
diagram of SPHIF in SRGS (as shown in 0). From the previous analysis, it can be obtained
.

U0 and
.

UA phase difference in the limit case can only be reduced to 160◦, so no matter how
the neutral point is offset, and how large the transition resistance, the faulty phase voltage
.

UA amplitude is always the smallest, which can use the three-phase voltage amplitude
information for faulty phase detection.

In Figure 8,
.
EA,

.
EB,

.
EC are the three-phase power potential,

.
UA,

.
UB,

.
UC are the three-

phase voltage, and Σ
.
I0C is the sum of the capacitive currents of the whole system. After

the fault occurs, the RMS value of the three-phase voltage UA.RMS, UB.RMS, UC.RMS of the
feeder is measured separately, and the minimum phase voltage RMS value corresponds to
the faulty phase. Equation (17) gives the specific calculation equation.

V = min(UA.RMS, UB.RMS, UC.RMS)
V = UA.RMS, Fault phase A
V = UB.RMS, Fault phase B
V = UC.RMS, Fault phase C

(17)
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2.4. Specific Parameter Adjustment

(1) Starting Current Threshold IS
Two principles need to be followed to adjust the starting threshold with ZSC:
(a) The maximum unbalance ZSC of 0.37 A generated during normal operation of the

10 kV distribution network is avoided [5]. The calculation is generally performed in 3 times
ZSC in engineering, so constraint 1 is 3IS > 3× 0.37 = 1.11 A.

(b) The minimum fine work current 1 A of the ZSC transformer must be avoided, so
constraint 2 is: 3IS > 3 A.

Considering the reliability factor krel = 1.1, combining the two rectification principles
yields the rectification value of IS is:

3IS = 1.1× 3 = 3 A (18)
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(2) Action Threshold ∆θset
Following Equation (16), the rectification value of ∆θset is:

∆θset ∈ (−45◦, 135◦) (19)

When the calculated CVPD falls within the range of ∆θset, it is determined that the
feeder is a healthy feeder; when the calculated CVPD falls outside of ∆θset, it is determined
that the feeder is a faulty feeder.

2.5. Detection Process

The overall detection process of the proposed method is given in Figure 9. To improve
the reliability of the method, the phase voltage data within 0.2 s after the fault occurrence
time is taken, the average value of the phase voltage RMS is calculated for faulty phase
detection, and the average value of the phase voltage phase is calculated as the reference
phase. Each feeder ZSC data of 0.2 s after the fault occurs is taken, and the average value of
the ZSC phase is calculated for the subsequent CVPD calculation.
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3. Results
3.1. Simulation Model

According to the 10 kV SRGS shown in Figure 10, the simulation model is built in the
electromagnetic transient simulation software PSCAD with a sampling frequency of 4 kHz.
The system consists of a hybrid feeder of overhead /cable with four feeders (L1~L4), the
specific electrical parameters of the feeders are shown in Table 1, and the grid structure is
shown in Table 2. The neutral grounding resistance RN = 10 Ω, the rated capacity of the
transformer is 50 MVA, and f1~f4 is the location of the SPHIF. Setting t = 0.5 s when the
A-phase ground fault occurs, and the performance of the proposed method is tested under
different transition resistance values, different fault locations, different fault initial phase
angles, different scale systems, different noise levels, and different data missing ratios.
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Table 1. Electrical parameters of the feeder in the simulation model.

Feeder Type Phase Sequence Resistance Inductance Capacitance

Cable
positive order 0.27 Ω/km 0.225 mH/km 0.339 µF/km
zero-sequence 2.7 Ω/km 1.019 mH/km 0.280 µF/km

Overhead
positive order 0.125 Ω/km 1.3 mH/km 0.0096 µF/km
zero-sequence 0.275 Ω/km 4.6 mH/km 0.0054 µF/km

Table 2. Grid structure of simulation model.

Feeder Number Feeder Type

L1 overhead + cable
L2 cable
L3 cable + overhead
L4 overhead

3.2. Different Transition Resistance

Setting the SPHIF at f1, with the initial phase angle of the fault being 0◦, and adjusting
the transition resistance value from 0 to 5000 Ω for testing. Figure 11 gives the CVPD
waveform of each feederwhere (a1) to (a4) show the CVPD waveforms corresponding to
Rf of 0 Ω, 1000 Ω, 3000 Ω and 5000 Ω, respectively. Table 3 gives the CVPD value under
different transition resistances, and all of them can correctly detect the faulty feeder, which
indicates that the proposed method has good sensitivity. The CVPD tends to be stable
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with the increase of transition resistance, which indicates that the proposed method has
good reliability.

Sensors 2022, 22, x FOR PEER REVIEW 13 of 21 
 

 

  
(a1) Rf = 0 Ω (a2) Rf = 1000 Ω 

  
(a3) Rf = 3000 Ω (a4) Rf = 5000 Ω 

Figure 11. The CVPD waveform under different transition resistance. 316 

Table 3. The CVPD value under different transition resistance. 317 

/Ω 
Fault phase voltage ini-

tial phase /° 

CVPD/° 
Result 

L1 L2 L3 L4 

0 238.9 –19.3 –123.8 –123.5 –125 L1√ 

1000 238.9 0.3 –102.8 –102.6 –104.2 L1√ 

3000 238.9 0.5 –102.7 –102.4 –104.1 L1√ 

5000 238.9 0.5 –102.6 –102.4 –104.0 L1√ 

3.3. Different fault locations 318 

Setting the SPHIF at f1~f4, with the fault initial phase angle of 0° and Rf = 5000 Ω. 319 

Figure 12gives the CVPD waveforms under different fault locations of each feederwhere 320 

(a1) to (a4) show the CVPD waveforms corresponding to the fault location f1, f2, f3 and 321 

f4, respectively. Table 4 gives the CVPD valve under different fault locations. All of them 322 

can correctly detect the faulty feeder, which indicates that the proposed method is not 323 

affected by the location of the fault. 324 

Figure 11. The CVPD waveform under different transition resistance.

Table 3. The CVPD value under different transition resistance.

Rf/Ω Fault Phase Voltage Initial Phase θUx/◦
CVPD/◦

Result
L1 L2 L3 L4

0 238.9 −19.3 −123.8 −123.5 −125 L1
√

1000 238.9 0.3 −102.8 −102.6 −104.2 L1
√

3000 238.9 0.5 −102.7 −102.4 −104.1 L1
√

5000 238.9 0.5 −102.6 −102.4 −104.0 L1
√

3.3. Different Fault Locations

Setting the SPHIF at f1~f4, with the fault initial phase angle of 0◦ and Rf = 5000 Ω.
Figure 12 gives the CVPD waveforms under different fault locations of each feederwhere
(a1) to (a4) show the CVPD waveforms corresponding to the fault location f1, f2, f3 and f4,
respectively. Table 4 gives the CVPD valve under different fault locations. All of them can
correctly detect the faulty feeder, which indicates that the proposed method is not affected
by the location of the fault.
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Figure 12. The CVPD waveform under different fault locations.

Table 4. The CVPD value under different fault locations.

– Fault Phase Voltage Initial Phase θUx/◦
CVPD/◦

Result
L1 L2 L3 L4

f1 238.9 0.5 −102.6 −102.4 −104.0 L1
√

f2 238.9 −98.4 2.2 −98.9 −100.6 L2
√

f3 238.9 −98.8 −99.6 1.7 −101.0 L3
√

f4 238.9 −100.7 −101.4 −101.1 1.4 L4
√

3.4. Different Fault Initial Phase Angles

Setting the initial phase angle of the fault is adjusted from 0◦ to 90◦, with the SPHIF
at f1 and Rf = 5000 Ω. Figure 13 gives the CVPD waveforms under different initial phase
angles of the fault where (a1) to (a4) show the CVPD waveforms corresponding to the
initial phase angle of the fault 0◦, 30◦, 60◦ and 90◦, respectively. Table 5 gives the CVPD
value under different initial phase angles of the fault. All of them can correctly detect the
faulty feeder, which indicates that the proposed method is not affected by the initial phase
angle of the fault.
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Figure 13. The CVPD waveforms under different initial phase angles of the fault.

Table 5. The CVPD value under different initial phase angles of the fault.

Fault Initial
Phase Angle/◦ Fault Phase Voltage Initial Phase θUx/◦

CVPD/◦
Result

L1 L2 L3 L4

0 238.9 0.5 −102.6 −102.4 −104.0 L1
√

30 268.9 −2.3 −101.4 −101.2 −102.8 L1
√

60 299.0 −2.9 −88.5 −88.7 −89.9 L1
√

90 329.0 −4.4 −96.4 −96.3 −97.9 L1
√

3.5. Different Feeder Lengths

Different feeder lengths will directly lead to changes in system capacitance current. In
order to test the performance of the proposed method in the face of different feeder lengths,
four different feeder length schemes are set, as shown in Table 6.

Table 6. Feeder length scheme.

Feeder
Number

Scheme 1
/km

Scheme 2
/km

Scheme 3
/km

Scheme 4
/km

L1 7 + 7 + 8 5 + 10 + 10 5 + 10 + 10 10 + 15 + 15
L2 5 + 5 10 + 5 5 + 10 15 + 15
L3 8 + 5 + 7 5 + 10 + 10 10 + 10 + 10 15 + 15 + 15
L4 10 + 10 10 + 5 5 + 10 15 + 15

Setting the feeder length of four different feeder length schemes, with the SPHIF at
f1 and Rf = 5000 Ω. Figure 14 gives the CVPD waveforms under different feeder lengths
where (a1) to (a4) show the CVPD waveforms corresponding to the feeder length scheme of
1, 2, 3 and 4, respectively. Table 7 gives the CVPD value under different feeder lengths. All
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of them can correctly detect the faulty feeder, which indicates that the proposed method is
not affected by different feeder lengths.
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Table 7. The CVPD value under different feeder lengths.

Scheme Fault Phase Voltage Initial Phase θUx/◦
CVPD/◦

Result
L1 L2 L3 L4

1 238.9 0.5 −102.6 −102.4 −104.0 L1
√

2 238.9 −0.3 −102.8 −102.9 −104.8 L1
√

3 238.9 1.4 −103.7 −103.8 −105.7 L1
√

4 238.9 −3.4 −111.6 −111.6 −111.9 L1
√

3.6. Different Noise Levels

When a SPHIF occurs, the phase voltage is a few kilovolts, which is little affected by
noise, while the feeder zero-sequence current is only a few amperes, which is extremely
susceptible to noise. Therefore, in order to test the performance of the proposed method
when the feeder ZSC is affected by different noise levels. Figure 15 gives each feeder ZSC
waveforms under –1 dB noise interference where (a1) shows the –1dB noise waveforms
and (a2) shows the ZSC waveform affected by −1dB noise.
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Figure 15. Each feeder ZSC waveforms under −1dB noise interference.

Setting different noise levels, with the SPHIF at f1 and Rf = 5000 Ω. Figure 16 gives
the CVPD waveforms under different noise levels where (a1) shows the CVPD waveforms
corresponding to the 1dB noise and (a2) shows the CVPD waveforms corresponding to
the –1dB noise. Table 8 gives the CVPD value under different noise levels. All of them
can correctly detect the faulty feeder, which indicates that the proposed method has good
interference immunity.
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Table 8. The CVPD value under different noise levels.

Noise/dB Fault Phase Voltage Initial Phase θUx/◦
CVPD/◦

Result
L1 L2 L3 L4

1 238.9 10.4 −151.9 −143.8 −135.1 L1
√

−1 238.9 13.8 −139.6 −128.3 −92.5 L1
√

3.7. Different Data Missing Ratio

Considering that the loss of measurement data can occur under the abnormal operation
of the transformer, less information can be used for wire selection, which will reduce the
reliability of the wire selection method.

Setting the data missing ratio from 20% to 40%, with the SPHIF at f3 and Rf = 5000 Ω.
Figure 17 gives the CVPD waveforms under different data missing ratios where (a1) to
(a3) show the CVPD waveforms corresponding to the data missing ratio of 20%, 30% and
40%, respectively. Table 9 gives the CVPD value under different data missing ratios. All of
them can correctly detect the faulty feeder, which indicates that the proposed method has
good reliability.
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Table 9. The CVPD value under different data missing ratios.

Data Missing
Ratio

Fault Phase Voltage Initial Phase θUx/◦
CVPD/◦

Result
L1 L2 L3 L4

20 232.0 −119.4 −96.6 9.9 −107.8 L3
√

30 232.0 −103.7 −97.9 10.4 −107.5 L3
√

40 232.0 −123.9 −95.9 24.6 −107.5 L3
√

4. Discussion

To address the problem that the conventional zero-sequence overcurrent protection
refuses to operate under SPHIF, the proposed method has higher sensitivity, which is
mainly due to the fact that the CVPD effectively weakens the effect of transition resistance
and can significantly distinguish the faulty feeder from the sound one. However, the limit
of transition resistance of this method is still limited by the minimum fine work current
of the ZSC transformer, so it is recommended to use a proprietary ZSC transformer in
practical engineering to ensure the sensitivity of the proposed method.

Compared with the method based on feeder ZSC amplitude [5–10], the proposed
method is simple and requires less automation in the distribution network; compared
with the method using neutral ZSC [12–14], the proposed method does not require addi-
tional measurement and communication devices; compared with the method using busbar
ZSV [15–17], the proposed method overcomes the problem that busbar ZSV is difficult
to measure under SPHIF and has more practical engineering value; and compared with
the method based on waveform nonlinear characteristics [23–28], the proposed method is
still applicable under faults with weak nonlinear characteristics and has higher reliability.
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In addition, the proposed method can reliably detect the SPHIF of about 5000 Ω under
−1 dB noise interference or 40% data deficiency, which is mainly due to the fact that CVPD
integrates the ZSC phase information within 20 ms and is highly resistant to interference.

This method can be used as substation line export protection and grounding change
protection, after re-adjusting the action time limit can also be used as downstream branch
line grounding protection, each section of the protection through the timing with the SPHIF
ground fault to achieve rapid in situ isolation.

It is important to note that the proposed method has a necessary prerequisite: correct
detection of the fault phase. In this paper, the phase voltage magnitude method is used to
detect the faulty phase; however, there is a risk of incorrect phase detection as the difference
between the three-phase voltage magnitudes under a SPHIF is only a few tens of volts.
Therefore, the focus should be on how to avoid this risk in subsequent studies. In addition
to this, cable screen earthing current exists in the actual project cable lines, and subsequent
work is needed to study the degree of influence of this factor on the proposed method.

5. Conclusions

The feeder ZSC, bus ZSV and three-phase voltage characteristics of SRGS under SPHIF
were analyzed in this paper and a SPHIF feeder detection method for SRGS was proposed.
The method first determines the fault phase by using the three-phase voltage RMS value,
then uses the fault phase voltage phase as the reference value, and finally calculates the
difference between the feeder ZSC phase and the reference value to obtain the current-
voltage phase difference for detecting SPHIF feeders. According to the research of this
paper, the following conclusions can be obtained:

(1) The phase difference between the ZSC of the faulty feeder and the faulty phase
voltage is located between (0◦,20◦). The phase difference between the ZSC of the healthy
feeder and the faulty phase voltage is between (−90◦,−110◦).

(2) The phase difference between feeder zero-sequence current and faulty phase
voltage expands the fault characteristics and has the advantage of not being affected by
the transition resistance, which can improve the sensitivity of the faulty feeder detec-
tion method.

(3) The feeder zero-sequence current and faulty phase voltage used in the proposed
method are easy to collect in practical engineering. The method gives a reliable and
sensitive threshold range, which has good engineering practical value.

(4) Extensive simulation experiments show that the proposed method can accurately
detect the fault feeder under the conditions of different system sizes, different fault initial
phase angles, −1 dB noise interference, and 40% data missing. The method has good
sensitivity, reliability, and anti-interference ability.
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Abbreviations

The following abbreviations are used in the manuscript.

Small resistance to ground system SRGS
Single-phase high resistance grounding fault SPHIF
Zero-sequence current phase ZSCP (◦)
Root mean square RMS
Zero-sequence current ZSC (kA)
Current-voltage phase difference CVPD (◦)
Zero-sequence voltage ZSV (kV)
Signal-to-noise ratio SNR (dB)
Variational modal decomposition VMD
Teager–Kaiser energy operators TKEOs
Empirical wavelet transform EWT
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