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Abstract— Opening and navigating through doors remains
a challenging problem, particularly in cluttered environments
and for spring-loaded doors. Passing through doors, especially
spring-loaded doors, requires making and breaking contacts
with the door and preventing the door from closing while
passing through. In this work, we present a planning framework
that handles non-spring and spring-loaded doors, in cluttered
or confined workspaces, planning the approach to the door,
pushing or pulling it open, and passing through. Because the
problem is solved in a combined search space, the planner
yields an overall least-cost path. The planner is able to insert
a transition between robot-door contacts at any point along
the plan. We utilize a compact graph-based representation of
the problem to keep planning times low. We precompute the
force workspace of the end-effectors to eliminate checks against
joint torque limits at plan time. We have validated our solution
in both simulation and real-world experiments on the PR2
mobile manipulation platform; the robot is able to successfully
open a variety of spring-loaded and non-spring-loaded doors
by pushing and pulling.

I. INTRODUCTION

Opening doors is necessary in order to enhance and

expand the set of tasks an autonomous robot can perform

indoors. The majority of commercial doors are equipped

with automatic mechanisms to ensure closure. These types of

doors are typically called spring-loaded doors, whereas doors

that do not close automatically are known as non-spring-

loaded. Autonomously planning for opening both spring-

and non-spring-loaded doors is essential to provide the func-

tionality required of a useful indoor robot. One must tackle

several problems in order to build an integrated door opening

implementation for a mobile manipulation platform, such as

detecting the type of door and the location of the handle,

building a kinematic model of the door, and coordinating

the arm and base of the robot to open the door with respect

to space constraints in the immediately surrounding area. Our

focus is on the last issue: i.e., planning for and coordinating

the motion of the arm and the base to approach, open, and

pass through doors.

Although door opening in indoor environments has been

widely addressed in recent work for mobile manipulation

systems, ([1], [2], [3], [4], [5]), opening and moving through

doors is still a challenging problem. Doors vary with respect
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Fig. 1. The PR2 pushing open a spring-loaded door. Once the base is in
contact with the door, the arm can let go of the door and use the base to
keep pushing the door open as it moves through.

to size, shape, space constraints, and handles; therefore, hard-

coded and precomputed motions designed to open doors

can easily fail when designing a robust system. Reactive

approaches and low-level controllers may fail to consider

obstacles and may need to be modified to handle doors with

different parameters. Opening and navigating through doors,

especially spring-loaded doors, requires making and breaking

contacts with the door. For spring-loaded doors, the robot

must maintain contact with the door and actively counteract

the spring to keep it from closing. For doors in cluttered

or confined environments, it is often necessary to switch

the side of the door the robot contacts. We present, to the

best of the authors’ knowledge, the first planning framework

that handles non-spring and spring-loaded doors, functions

in cluttered or confined workspaces, and plans the approach

to the door, pushing or pulling it open, and passing through.

The plan is generated in a unified search space, including

transitions between different robot-door contacts (for exam-

ple, base against the door as well as gripper on the door

handle), finding a least-cost solution for traversing doors.

This is important because it allows the planner to decide

the best location and time to transition from opening the

door to moving through it. In contrast, disjoint approaches

like hierarchical planners will specify but not modify the

transitions.

Our approach to motion planning starts with using a low-

dimensional, graph-based representation of the problem in

order to plan a door-opening procedure quickly and reliably.

This provides several advantages including the ability to

quickly plan for opening various doors and account for

walls or other obstacles in their surrounding environments. If

necessary, contact must be transferred very carefully between

the arms and the base of the robot to open and maintain the



position of the door throughout execution of the opening

action. Our planning algorithm can take into account which

(if any) part of the robot is currently holding the door open

and allows for transitions between arms as well as using

the base to push against the door. We note that, particularly

for pulling spring-loaded doors, it is very difficult to open

the door and maneuver such that the base is in position to

hold the door open as it passes through the door frame. Our

planner handles this difficult situation.

A robotics platform for use in door opening is greatly

aided by having some method for manipulating the door

from both sides. For the purposes of this work, we assume

a dual-arm mobile manipulator is used. Our approach is

validated by an extensive set of experiments performed using

the PR2 robot, a platform used extensively for navigating and

acting within indoor environments ([6],[7]). The experiments

involved multiple tests for opening a variety of doors (pulling

and pushing both spring- and non-spring-loaded doors).

II. RELATED WORK

Robotic door opening has received a fair amount of

attention in recent years. Within the overall task of robots

opening doors, research can involve visual identification of

doors and door handles ([8],[9],[3],[10]) or the physical

action of opening the door. We simplify door identification

since our contribution relates to the planned robotic motion

required for door opening; door detection is outside the scope

of this work. We chose a simple visual identification system

based on the ARToolKit [11], but any other can be used.

Recent work has seen a number of robotic platforms

addressing door opening. Early experiments ([1],[2]) have

led to a number of systems designed for this task. However,

as we mentioned in [4], many of these systems have not

completely solved the door opening problem. Some do

not pull open doors ([12],[10],[3],[6]). Others such as [13]

use impedance control to open doors while learning the

kinematic model, but may hit obstacles and do not move

the robot base.

Purely reactive approaches such as [14],[15] will not work

in complex environments and for multiple contacts. Planning

algorithms provide a way to take into account factors that

may not have been considered when designing a completely

precomputed action or a reactive controller. There are also

planning approaches that do not include motion of the robot

base while opening doors. [16] plans manipulation motions

for the opening of cabinet doors, allowing switching between

different caging grasps, but the base of the robot remains

stationary. Task space regions can accommodate pose con-

straints [17], but have not been used to simultaneously plan

arm and base trajectories for door opening.

There have been other recent approaches to door-opening

systems. However, none of these combine all of the fol-

lowing: switching contacts to allow end-effectors or the

body of the robot to brace the door; the ability to handle

spring-loaded doors; and combining the approach to the

door, including selecting an initial contact with the door, and

opening/passing through the door as a single plan. A num-

ber of trajectory planners which take into account external

wrenches on the end-effector have been developed both for

wheeled platforms ([18], [19]) and humanoid platforms ([20],

[21]). However, these methods only allow pushing doors and

cannot switch contact locations. In [22], the authors create

a behavior-based system able to push and pull doors open,

but do not deal with spring-loaded doors and obstacles. In

[23], the authors estimate door parameters and pull open a

door with a modular re-configurable robot featuring passive

and active joints, but cannot pass through spring-loaded

doors. In [24], Dalibard et al. introduce random sampling

planning algorithms for humanoid robots to move through

a doorway while also opening and closing the door. They

have demonstrated results using both arms of the robot to

move through the door and avoid obstacles, but are unable

to pass through spring-loaded doors. In [5], Jain and Kemp

extend previous work in which a robot could successfully

open doors and drawers to include motion of the robot base.

Their work does not include switching contact locations and

would not allow the robot to brace open and pass through a

spring-loaded door.

We build on our prior work of [4], in which collision-free

trajectories were generated for opening non-spring-loaded

doors. The previous system was limited to a single contact,

the end-effector upon the door handle. We build upon this

by adding transitions between robot-door contacts, including

planning for the initial contact with the door. Pushing and

pulling spring-loaded doors are handled by incorporating

additional constraints on maintaining contact with the door.

State feasibility is determined by checking against a precom-

puted map of the force-workspace. In contrast to previous

work, the entire plan from approach, to opening, to moving

through doors is computed in a single search. This allows a

least-cost solution to be found that ensures the feasibility of

contact transitions. Unpublished results have been shown at

two workshops ([25], [26]).

III. MOTION PLANNING

We solve the planning problem for approaching, pushing

and pulling open both non-spring and spring-loaded doors,

and moving through them. The approach is most beneficial

for doors that cannot be fully opened while the base remains

stationary, but is also useful for other doors in constrained

spaces. When attached to the door, we constrain the motion

of the manipulator to a 1D manifold traced by the path of

door handle.

The door-opening problem is to find a configuration path

such that:

1) the robot passes through the door

2) robot avoids self-collision and collision with obstacles

3) path is feasible with respect to kinematic constraints

Spring-loaded doors have additional constraints:

1) once contact is made, some part of the robot is in

contact with the door at all times

2) keeping the door open cannot violate joint torque limits
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Fig. 2. Door intervals do not overlap when the robot intersects the area
swept by the door (a), but do overlap as the robot moves further away (b).

Our planning algorithm operates by constructing and

searching a graph of predefined and dynamically generated

motion primitives [27]. The graph search uses the constructed

graph to find a path from the start state (corresponding to

the current position of the robot with respect to the door

and the current door angle) to any state satisfying the goal

conditions, specifically opening the door such that the robot

can pass through the door frame by moving forward.

In the following sections, we explain the algorithm, cov-

ering the state-space representation, motion primitives, cost

function and heuristics, and graph search.

A. Graph Representation

The graph is constructed using a lattice-based representa-

tion. A lattice is a discretization of the configuration space

into a set of states and connections between those states,

where every connection represents a feasible path. Let G =
(S,E) denote the graph G we construct, with S the set of

states and E the set of transitions between states. To discuss

the states in S, let us first consider the motion of a mobile

manipulator opening a door. Let (xb, yb, θb) ⊂ SE(2), where

θb is the heading, represent the configuration of the base,

and θd ⊂ R the set of possible door angles. One additional

variable is needed to store the free angle of the manipulator.

This produces states of 5 continuous variables. Storing the

side of the door the robot is contacting, as well as the part of

the robot in contact with the door, takes additional, though

discrete, variables. We consider right end-effector on handle,

left end-effector on handle, and base against door contacts.

As we mentioned in [4], it is sufficient to use a more

compact representation of the door angle. Instead of storing

the door angle θd directly, we utilize a discrete variable,

d, called the door interval. Door intervals are illustrated in

Figure 2. The door interval is 0 when the door is at an angle

where it may be fully closed without colliding with the robot.

A door interval of 1 denotes that the door is at an angle where

it may be fully opened without colliding with the base. The

two intervals are separate if the body of the robot intersects

the swept area of the door, as is the case in Figure 2a. If

the robot is far enough from the door, as in Figure 2b, these

intervals overlap, denoted with a value of 2. We note that,

though the door angle is not stored, the planner has the ability

to quickly reconstruct the set of door angles for a robot pose

p, Λ(p), feasible given the current contacts.

Additionally, instead of storing the free angle of the

manipulator, it is sufficient to place restrictions on the manip-

ulator. We chose to restrict it to elbow-down configurations.

Conservative collision checking can be done against the

swept volume of the arm, which can be precomputed for

end-effector poses. In our compact representation, a state in

the state-space used by the planner, s ∈ S, is given by

s = (xb, yb, θb, d, h, v)

where d is the door interval, h is the side of the door whose

handle is being grasped, and v indicates the part of the

robot in contact with the door. v takes 4 possible values,

corresponding to no contact, left end-effector on door handle,

right end-effector on door handle, and base against door.

We use a lattice-based planning representation ([28], [29])

to define the set of transitions E between states. A motion

primitive is a discretized, finite-length feasible path between

neighboring states. It can be defined as a discretized path of

intermediate offsets of (xb, yb, θb) and transitions in d, h, v,

or some subset thereof. The lattice graph is dynamically

constructed by the graph search as it expands states.

We use two different types of motion primitives that

connect a state s to a successor state, s′ ∈ succ(s). The

first primitives describe motions for the mobile base. For

a holonomic base they represent forward and backward

translational motion, rotation in place, strafing, and moving

forward and backward while turning. For a nonholonomic

base, they satisfy the nonholonomic constraints on its motion.

These primitives are augmented with transitions between

door interval values d, generated at runtime because changes

in d are a result of moving the base with respect to the

door. In particular, when moving the base from a pose that

is completely outside the swept area of the door (as in Figure

2b) to a pose within the swept area (as in Figure 2a), there are

two copies of the states being created; one with d = 1 and

one with d = 0. The second set of primitives do not include

motion for the base. Instead, these are transitions between

discrete variables representing the part of the robot in contact

with the door v and the side of the door being grasped h. In

other words, these transitions correspond to such actions as

removing the end-effector from the door handle and bracing

the door with the robot base, or grasping the door handle

on the opposite side of the door with the free end-effector

and releasing the currently held door handle. Because these

primitives do not include motion of the mobile base, they

cannot transition between values for the door interval d.

Before a successor of state s, s′ can be added to the lattice

graph, it must first be checked for feasibility. For a successor

to be valid, for every pose p along the discretized motion

primitive, the set of valid door angles Λ(p) must overlap

between adjacent poses. The corresponding door intervals

for adjacent poses must also be the same (or include the

overlapping door interval, d = 2). This way, the base can

move along the motion primitives from one pose to another

while continuously contacting the door. Additionally, the

robot base and conservative arm estimate must be collision

free. The allowed contact transitions for the planner are as

follows: (1) when the robot is not yet in contact with the

door, it may contact the door with either arm or the base;
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Fig. 3. (a) Values used for the precomputation discretization. α and
θ are the angles of the shoulder-handle vector and exerted force vector
relative to the x-axis of the base, while r is the magnitude of the shoulder-
handle vector. (b) Force workspace computation for the right arm, (for
α ∈ [−1.9, 0.6] and r ∈ [0.45, 0.85]) with color representing the minimum
normal force the arm can apply in a given direction, with light blue near
the center containing the greatest force at 34.4N and red at the sides being
the least. Values shown for θ = 0.

(2) when an end-effector is on a handle, the planner may

transition to using the other arm on the other side of the

door, or bring the base into contact with the door, provided

the valid angles for old and new contact overlap. If the robot

is not yet in contact with the door, the only valid angle is the

door closed angle. Additionally, if the door is to come into

contact with the base, the valid door angles are such that the

door is no more than 5 cm from the base.

1) Precomputation: Finding the valid door angle ranges

Λ(s) for a given state s can be expensive, motivating moving

as much computation as possible off-line. To check whether

a given door angle is valid requires checking for valid inverse

kinematics solutions or checking that the end-effector pose

is within the (precomputed) robot’s reachable workspace.

Further, for spring-loaded doors, the ability to exert a given

force normal to the door can be checked by referencing the

robot’s force workspace, similar to force workspace approach

presented in [30]. The force workspace precomputation also

functions as a reachable workspace precomputation, return-

ing the reachable workspace when the query is set to regions

where the allowable force is greater than zero. For our

purposes, the force workspace precomputation only has to

be done for a horizontal plane at the height of the door

handle. It is worth noting that we assume that the door is

moving relatively slowly so the quasi-static assumption is

appropriate.

We precompute the force workspace values for a range

of robot positions and door angles. Possible door handle

locations in the robot base frame can be described by three

values as shown in Figure 3a. The angles α and θ represent

the angles of the shoulder-gripper vector and the gripper

applied force relative to the x-axis of the base. The distance

between shoulder and end-effector is given by r. For a given

inverse kinematics solution for the arm, (specifying a value

for the free angle) we can calculate the maximum force the

arm is able to exert normal to the door in the θ direction. The

end-effector Jacobian is calculated and then plugged into the

following relation:
τ = JTFe

where τ is the vector of joint torques and Fe is the wrench

applied at the end-effector. Referring to Figure 3, F is

specified as the force component of the wrench Fe in the

direction indicated by the angle θ in a plane parallel to the

ground plane.

We exploit the linear relationship between τ and F to

scale the value of F by mini∈joints τi,MAX/τi to get the

maximum allowed force for that configuration. Because the

arm is redundant and multiple inverse kinematics solutions

exist for a given desired end-effector pose, this process

is repeated for twenty elbow-down IK solutions and the

minimum force across all these solutions is selected. If no IK

solution exists, we record the allowed force as zero. Values

for θ = 0 are shown in Figure 3b.

B. Cost Function and Heuristic

The cost of a transition in our graph representation is

defined as the sum of the two terms,

c(s, s′) = cmovement × ccostmap + cdoor

In the first term, cmovement is the cost associated with

moving the robot along a given base motion primitive.

This term depends on the time it takes to execute the

motion primitive. It also allows the user to minimize the use

of certain primitives, such as moving backward. ccostmap

is given by using the maximum cost of the 2D costmap

cells traced by the robot footprint along the transition. The

costmap projects world obstacles to a 2D grid and represents

proximity to obstacles with increased costs. The second term,

cdoor, is proportional to the change in door angle nearest

to the center of the robot’s reachable workspace from state

to state. To enable this, for each state we record a door

angle deemed λ(s) which minimizes a function punishing

deviation from a nominal shoulder-handle distance rc and

angle αc:

λ(s) = min
θd∈Λ(s)

(

1−
1

1 + (r − rc)2(α− αc)2

)

where r and α are defined in Figure 3 and rc and αc

correspond to the center of the reachable workspace for the

arm being used. Of course, if the robot has not yet contacted

the door or the base is in contact, this term is ignored.

Transitions associated with switching between robot-base

contacts have fixed costs determined by the user, allowing

the user to penalize switching if desired.

The purpose of the heuristic is to efficiently guide the

search towards a feasible solution. Since part of the condition

for a state s to be considered a goal state is that Λ(s) overlaps

with the fully open door angles, we set the first term of the

heuristic to estimate the remaining angle the door needs to

be opened before it is considered fully open. The second

term in the heuristic is a term for the distance of the robot

to a circle of radius rlen around the door. The heuristic is

given as:

H(s) = max(0, |xrobot − xhinge| − rlen) + |λ(s)− λopen|

We set rlen to the length of the door from hinge to handle

plus the length of the arm. The purpose of this term is to

estimate the cost of the plan to drive to the door and make
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Fig. 4. ARToolKit detection of the door using one of the wide-stereo
cameras (a) and a visualization of the door (b). The inflated 2D costmap is
in pink.

contact. Both of these terms are admissible and consistent.

When the robot is further than rlen from the door, and thus v
is empty because the robot is not in contact with the door, the

first term remains at its maximum value. When the robot is

able to contact the door (v is nonempty), the second term in

the heuristic is zero and the first term may decrease. Because

of this, the sum of the terms is an admissible and consistent

heuristic.

C. Search

Given a graph as defined above, composed of states linked

by motion primitives, we need an efficient way to search it

for a solution path. A∗ search is a very popular method for

graph search that finds an optimal path, which may not be

possible if deliberation time is limited [31]. Instead, we use

an anytime variant, Anytime Repairing A∗ (ARA∗) [32]. The

algorithm generates an initial, possibly suboptimal solution

then focuses on improving the solution while time remains.

The algorithm is provably complete for a given graph G and

provides theoretical bounds on sub-optimality of solutions.

It works by inflating the heuristic by a value ǫ ≥ 1. Given

additional time, the graph search is able to decrease the

bound ǫ to 1.0 and provide the optimal solution.

IV. IMPLEMENTATION

The door-opening task consists of two main stages: first

detecting the door and determining its parameters, followed

by planning and executing the door-opening motion. Door

detection is outside the scope of this work; for determining

the door and handle sizes and positions, we use a priori

knowledge of the door being used either in simulation or

real-life trials. The initial position and relative open angle

are determined using the ARToolKit [11], which provides a

framework for tracking fiducial markers. Each door is mea-

sured in advance and several door properties are recorded,

including the distance from each marker to the edge of the

door, the distance to the door handle, the depth of the door

handle, the side with the hinge, the direction of swing, and

the necessary force at the handle to open the door. We

make the assumption that the required force remains constant

throughout the trajectory, though [33] shows that the required

force diminishes as the door opens.

Our testbed is a Willow Garage PR2, as shown in Figure

4. The robot has two arms with 7 degrees of freedom, an

omni-directional base, a pan-tilt head, and an adjustable

height torso. We use a Hokuyo scanning laser range finder

attached to the base and a tilting laser scanner to generate a

3D collision map and 2D costmap for navigation. The left

camera of the wide stereo-camera pair is used to detect the

ARToolKit markers.

The planner yields a trajectory of n states of the form

s = (xb, yb, θb, d, h, v). Before the path can be executed on

the robot, the inverse kinematics at each position must be

resolved, requiring the door angles. Because for each state

there may be many feasible door angles in a given door

interval, it is desirable to minimize the motion of the door.

We formulate and solve the following quadratic problem as

a post-processing step:

min
∑

i≤n ||θi − θi−1||
2
2

s.t. θi,LB < θi < θi,UB

solving for the door angle at each step i, where the upper and

lower bounds are given by maximum and minimum angles in

Λ(si). With the door angles known, the door handle locations

and thus end-effector poses are known. Combined with the

trajectory for the base, we have sufficient information to

generate the joint space trajectory for the arms by solving

the IK for the arm at each step (or at least those steps

in which an arm is attached to the door). Because of the

force workspace precomputation and conservative collision

checking, we know an IK solution exists. To resolve the

kinematic redundancy of the arm, the IK solver uses an initial

seed value for one of the joint angles, then analytically solves

the remaining 6 degrees of freedom. In some situations, such

as an interior corner door, the presence of walls may separate

inverse kinematics solutions into disjoint sets (elbow up and

elbow down). We handled this by only using elbow-down

configurations. Transitions between arms involve calls to an

arm-specific planner using sampling-based motion planning

[34]. At this point, a trajectory for the base and joint angle

trajectories for the arms are known.

V. EXPERIMENTAL RESULTS

We have tested our planner on a simulated PR2 and on the

physical robot. For all of the experiments, the environments

are discretized at a resolution of 2.5 cm. The robot base

heading is discretized at 22.5 degrees; 13 motion primitives

associated with motion of the base are given for each

heading. Path lengths of the primitives range from 2.5 cm

to 20 cm. Typical plans were between 20 and 110 motion

primitives in length.

Two of our simulated environments are shown in Figure

5. The first set of simulated tests, with results in Tables I and

II, shows how the number of states expanded and planning

time vary between open and tight spaces. The corner hinge

and corner edge environments refer to the narrow hallway

environment of Figure 5b, minus the right or left wall,

respectively. As for the office environment, Figure 5a, the

obstacle along the left wall is placed at different distances

to the door. The corner hinge case is relatively open and

simple for the planner to solve; the robot may move through
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Fig. 5. Simulated environments include an office door with nearby obstacles
(a) and a narrow hallway (b).

Fig. 6. Frames from a successful test in the office environment. The left
obstacle is 1.2 m from the door frame. The last image shows a trace of the
base and end-effector locations throughout the motion. Note from the base
trajectory (red) that the robot backs up and turns as it initially pulls open
the door.

the door as soon as the door open angle is large enough for

it to pass through. However, a wall placed on the other side

of the door as in the corner edge case requires the robot to

open the door further before it can transition to holding the

other side of the door and pass through. The narrow hallway

is quick to solve because walls on both sides greatly limit

the possible states. Conversely, when starting further from

the door, as in the office door case shown in Figure 6, the

fixed cost of transitions to contact the door lead to more

states being expanded prior to the contact. With more room

(as the obstacle is further and further away from the door)

more and more states are expanded. The resulting paths are

of decreasing cost as more direct routes from the start to the

door become obstacle-free.

The second set of tests, shown in Table III, illustrates

the effects of changing the force required to open spring-

loaded doors. From the same start state, the plans for 1 N

and 10 N are identical; joint torque limits were not a limiting

factor at under 10 N. However, moving to 15 N, some of

the transitions in the previous plans are infeasible so the

Planning Time (s) Expansions Final
Door First Final First Final Soln.

Soln. Soln. Soln. Soln. Cost
ǫ = 5.0 ǫ = 1.0 ǫ = 5.0 ǫ = 1.0 ǫ = 1.0

Corner Hinge 0.97 2.23 2249 6838 551

Corner Edge 3.32 6.17 11267 25790 880

Narrow Hall 0.13 0.21 873 1160 822

Office (1.0m) 0.74 1.79 2148 6115 707

Office (1.2m) 0.80 2.13 2513 7512 707

TABLE I

SIMULATION: PLANNING TIMES, EXPANDED STATES, AND COSTS FOR

PULLING DOORS OPEN.

Planning Time (s) Expansions Final
Door First Final First Final Soln.

Soln. Soln. Soln. Soln. Cost
ǫ = 5.0 ǫ = 1.0 ǫ = 5.0 ǫ = 1.0 ǫ = 1.0

Corner Hinge 1.07 4.97 7468 31448 775

Corner Edge 4.06 8.79 26516 55134 1076

Narrow Hall 0.17 0.41 1347 1855 750

Office (0.8m) 3.93 6.69 21859 37937 2085

Office (1.0m) 5.03 9.69 26540 48897 1685

Office (1.2m) 6.03 11.11 32879 60032 1463

TABLE II

SIMULATION: PLANNING TIMES, EXPANDED STATES, AND COSTS FOR

PUSHING DOORS OPEN.

Planning Time (s) Expansions Final
Normal First Final First Final Soln.

Force (N) Soln. Soln. Soln. Soln. Cost
ǫ = 5.0 ǫ = 1.0 ǫ = 5.0 ǫ = 1.0 ǫ = 1.0

1.0 0.97 2.23 2249 6838 551

10.0 1.00 2.24 2249 6838 551

15.0 4.30 5.95 14948 24905 871

TABLE III

SIMULATION: PLANNING TIMES, EXPANDED STATES, AND COSTS FOR

PULLING REQUIRING DIFFERENT NORMAL FORCES AT THE HANDLE.

search must expand more states to route around the infeasible

regions. This leads to a longer, higher cost solution. For 20 N

and above, no solution exists for pulling open doors; the arms

of the PR2 are not strong enough to hold such doors open

to allow transitioning from contacts on one side of the door

to the other.

Next, we discuss results on the physical PR2 for pushing

and pulling both spring-loaded and non-spring-loaded doors.

These results were gathered prior to a recent normalizing of

the cost and heuristic functions and have much higher costs.

Due to recent implementation optimizations, the previous

results take more time per expansion. They also specify the

initial contact with the door. The results of running twenty

planning trials on a few doors for both pulling and pushing

are listed in Table IV and Table V, respectively. The testbed

(shown in Figure 4a) and conference room door were not

spring-loaded. The kitchen door required 15 N normal force

at the handle to open, while the office door required 27 N.

In between trials, we moved the starting location of the

base by a few centimeters and the initial orientation varied

but was kept within ±20 degrees of normal to the door.

On average, both pushing and pulling plans took under 6

seconds to find an initial solution, in most cases, much less.

The cost of pushing plans is higher, as the robot must plan



through a narrow passageway in the costmap, most likely

with nonzero costs. Pulling plans allow the robot to withdraw

from the door into open space of the costmap. The testbed

door was also narrower than the kitchen door, requiring the

robot to pass through higher cost cells in the costmap, but

reducing the number of expansions (states added to the graph

during planning) and thus yielding faster planning times. The

conference room door, the longest to plan, bordered directly

on a wall.

Images from the PR2 pushing open a spring-loaded door

and pulling a non-spring-loaded door are shown in Figure

7. The video accompanying this paper contains these runs

as well as pushing open an office door and pulling open

the kitchen door. Note that the motion in the video is not

smooth because we are commanding one waypoint for the

arms and base at a time in order to keep them synchronized.

Twenty trials total were carried out past the planning stage.

The gripper managed to slide off the handle when pushing

the kitchen door open, but the robot was able to successfully

pass through the door; these trials have been counted as

successes. As long as the robot was initially able to grasp

the door handle (i.e., aside from door detection issues), the

robot never failed to pull open a door which required 15 N

or less normal force at the handle, and only once failed to

push a door requiring less than 27 N of normal force at the

handle. The one failure, due to an issue with the costmap,

generated a path which collided with the door frame.

Failures outside the scope of the planning occurred due

to poorly estimated door parameters. Such errors resulted

in missed grasps of the door handle, as happened in eight

additional trials. Errors in handle and hinge detection can

generate large internal forces in the arm during the motion;

the end-effector slipped off the door handle in three success-

ful trials. Future work will incorporate door model estimation

and replanning to improve robustness.

VI. CONCLUSION

In conclusion, we have implemented a graph-based search

algorithm that allows a mobile manipulator, such as the PR2,

to open both spring-loaded and non-spring-loaded doors. To

the authors’ knowledge, this is the first paper to incorporate

switching between arms and the base to accomplish this task

and demonstrate the results outside of simulation. Solutions

to this planning algorithm are constrained to avoid obstacles

as well as move the base of the robot and keep an arm in

reach of the handle or the base against the door. The compact

graph-based representation greatly reduces the dimensional-

ity of the constrained planning problem, but requires an off-

line precomputation step for evaluating end-effector forces

for a range of robot positions and door angles. We have

verified the effectiveness of our approach with real-world

experiments and can attest to the contribution our algorithm

makes toward autonomous indoor navigation.

While applied to door opening, this work can be gener-

alized to a variety of systems involving closed chains as

mentioned in [35]. It is particularly relevant to systems in

which making and breaking contacts with the environment

Planning Time (s) Expansions Final
Door First Final First Final Soln.

(Force, N) Soln. Soln. Soln. Soln. Cost
ǫ = 5.0 ǫ = 1.0 ǫ = 5.0 ǫ = 1.0 ǫ = 1.0

Testbed 0.249 0.485 79.8 99.3 135,340
(0) ±0.201 ±0.244 ±75.0 ±68.6 ±141, 760

Kitchen 2.22 2.95 370 465 12, 841
(15) ±1.59 ±2.10 ±265 ±347 ±7, 683

Conference 3.50 5.59 601 942 29, 032
(0) ±1.06 ±2.76 ±175 ±486 ±21, 696

TABLE IV

PLANNING TIMES, EXPANDED STATES, AND COSTS FOR PULLING

DOORS OPEN. CONTAINS AVERAGES AND STANDARD DEVIATIONS FOR

20 TRIALS ON EACH DOOR.

Planning Time (s) Expansions Final
Door First Final First Final Soln.

(Force, N) Soln. Soln. Soln. Soln. Cost
ǫ = 5.0 ǫ = 1.0 ǫ = 5.0 ǫ = 1.0 ǫ = 1.0

Testbed 0.292 2.04 86.2 649 418,310
(0) ±0.069 ±0.467 ±20.8 ±162 ±38, 174

Kitchen 2.20 3.03 916 1, 228 94, 809
(15) ±0.301 ±0.245 ±116 ±80.9 ±70, 150

Office 0.636 1.92 195 589.6 441, 890
(27) ±0.132 ±0.251 ±41.6 ±91.8 ±61, 484

TABLE V

PLANNING TIMES, EXPANDED STATES, AND COSTS FOR PUSHING

DOORS OPEN. CONTAINS AVERAGES AND STANDARD DEVIATIONS FOR

20 TRIALS ON EACH DOOR.

will result in changes in chain topology, for instance, plan-

ning for humanoid robots navigating complex environments

using both their arms and legs.
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