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Abstract

This paper describes the foundations and algorithms of a
new probabilistic roadmap (PRM) planner that is: (1)single-
query –i.e., it does not pre-compute a roadmap, but uses the
two input query configurations to explore as little space as
possible; (2)bi-directional i.e., it searches the robot’s free
space by concurrently building a roadmap made of two trees
rooted at the query configurations – and (3) applies a sys-
tematic lazy collision-checking strategy –i.e., it postpones
collision tests along connections in the roadmap until they
are absolutely needed. Several observations motivated this
collision-checking strategy: (1) PRM planners spend more
than 90% of their time checking collision; (2) most connec-
tions in a PRM are not on the final path; (3) the collision
test for a connection is the most expensive when there is no
collision; and (4) the probability that a short connection is
collision-free is large. The strengths of single-query and bi-
directional sampling techniques, and those of lazy collision
checking reinforce each other. This combination reduces
planning time by large factors, making it possible to han-
dle more difficult planning problems, including multi-robot
problems in geometrically complex environments.

1. Introduction

Probabilistic roadmaps (PRM) have proven to be an
effective tool to capture the connectivity of a robot’s
collision-free space and solve path-planning problems
with many degrees of freedom (dofs) [1, 2, 3] and/or
complex admissibility (e.g., nonholonomic, stability,
dynamic, and visibility constraints) [4, 5]. A PRM
planner samples the configuration space at random and
retains the collision-free points asmilestones. It con-
nects pairs of milestones by simple paths and retains
the collision-free ones aslocal paths. The milestones
and local paths form theprobabilistic roadmap. The
motivation is that it is often impractical to explicitly
compute the collision-free subset (thefree space) of a
configuration space, but there exists collision-detection
algorithms that efficiently checks whether a given con-

figuration or local path is collision-free [1]. Under
broad assumptions, the probability that a PRM plan-
ner finds a collision-free path, if one exists, goes to 1
exponentially in the number of milestones [6, 7].

PRM planners spend most of their time performing
collision checks (often much more than 90%). Several
approaches are possible to reduce the overall cost of
collision checking:

� Design faster collision-checking algorithms.
However, efficient techniques already exist,
e.g., some checkers pre-compute a hierarchy of
bounding volumes for every object in an environ-
ment [8, 9, 10]. For each collision query, they
then use the hierarchies to quickly rule out large
portions of objects that cannot collide. The scale
up well to environments where object surfaces
are described by several 100,000 triangles [6].

� Design smarter sampling strategies. For exam-
ple, the strategy in [3] produces a first roadmap
by sampling the configuration space uniformly.
Next, it picks additional milestones in neighbor-
hoods of existing milestones with no or few con-
nections to the rest of the roadmap. Other strate-
gies generate a greater density of milestones near
the boundary of the free space, as the connectivity
of narrow regions is more difficult to capture than
that of wide-open regions [11, 12].

� Postpone collision tests until they are absolutely
needed (lazy collision checking). The planner
in [13] distributes points uniformly at random
in configuration space. It initially assumes that
all points and connections between them are
collision-free. It computes the shortest path in this
network between two query configurations and
tests it for collision. If a collision is detected, the
node and/or segment where it occurs are erased,
and a new shortest path is computed and tested;
and so on.



We think that lazy collision checking is a promising
approach, but that its potential has only been partially
exploited in [13]. The network built is reminiscent of a
roadmap pre-computed by a multi-query planner [2, 3].
One must decide in advance how large it should be. If it
is too coarse, it may fail to contain a solution path. But,
if it is too dense, time will be wasted checking similar
paths for collision. The focus on shortest paths may
also be inappropriate when obstacles force the robot to
take long detours.

In this paper, we present a new PRM planner – called
SBL, for Single-query,Bi-directional, Lazy collision
checking – that tries to better exploit lazy collision
checking, in particular by combining it with single-
query, bi-directional sampling techniques similar to
those in [6, 7]. It concurrently builds and searches
a network of milestones made of two trees rooted at
the input query configurations, hence focusing its at-
tention to the subset of the free space that is reach-
able from these configurations. It also locally adjusts
the sampling resolution, in order to take larger steps in
wide-open regions of the free space and smaller steps
in narrow regions. It does not immediately test con-
nections between milestones for collision. Only when
a sequence of milestones joining the two query config-
urations is found, the connections between milestones
along this path are tested, and this test is performed at
successive points ordered according to their likelihood
of revealing a collision. So, no time is wasted testing
connections that are not on a candidate path and rela-
tively little time is spent checking connections that are
not collision-free. On a 1-GHz Pentium III processor,
the planner reliably solves problems for 6-dof robots
in times ranging from a small fraction of a second to
a few seconds. Comparison with a similar planner us-
ing a traditional collision-checking strategy shows that
the lazy strategy cuts the number of collision tests and
the running time by a factor from 4 to 6 for moder-
ately cluttered environments like those shown in Fig. 1
(a)-(b)-(c) to 20 to 40 for more cluttered environments
like those shown in Fig. 1(d)-(e), to over 40 for more
cluttered environments. SBL also solves multi-robot
problems reliably and efficiently, like the one shown in
Fig. 5 (36 dof in total).

Section 2 defines terms and notations used
throughout this paper. Section 3 provides the
foundations of the lazy collision-checking strategy.
Section 4 describes the SBL algorithms. Section
5 presents experimental results on single-robot
(6 dof) and multi-robot (up to 36 dofs) prob-
lems. The planner’s code can be downloaded
from http://robotics.stanford.edu/˜latombe/projects/.
Movies showing runs of the planner are also available.

2. Definitions and Notations

Let C denote the configuration space of a robot and
F � C its free space. We normalize the range of values
of each dof to be[0; 1] and we representC as [0; 1]n,
wheren is the number of dofs of the robot. We define
a metricd overC. Our implementation of SBL uses the
simpleL1 metric. For anyq 2 C, the neighborhood of
q of radiusr is the subsetB(q; r) = fq0 2 Cjd(q; q0) <
rg. With theL1 metric, it is ann-D cube.

No explicit geometric representation ofF is com-
puted. Instead, given anyq 2 C, a collision checker
returns whetherq 2 F . A path� in C is considered
collision-free if a series of points on� , such that ev-
ery two successive points are closer apart than some",
are all collision-free. A rigorous test (eliminating the
need for") is possible by using a distance-computation
algorithm instead of a pure collision checker [1, 7].

A query to a PRM planner is defined by twoquery
configurations, qinit andqgoal. If these configurations
lie in the same component ofF , the planner should
return a collision-free path between them; otherwise,
it should indicate that no such path exists. There are
two main classes of PRM planners:multi-query and
single-query. A multi-query planner pre-computes a
roadmap which it later uses to process multiple queries
[2, 3]. To deal with any possible query, the roadmap
must be distributed over the entire free space. Instead,
a single-query planner computes a new roadmap for
each query [6, 7, 14]. The less free space it explores
to find a path between the two query configurations,
the better. Single-query planners are more suitable in
environments with frequent changes.

A single-query planner either grows one tree of
milestones fromqinit or qgoal, until a connection
is found with the other query configuration (single-
directional search), or grows two trees concurrently,
respectively rooted atqinit andqgoal until a connection
is found between the two trees (bi-directional search)
[7]. In both cases, milestones are iteratively added to
the roadmap. Each new milestonem 0 is selected in a
neighborhood of a milestonem already installed in a
treeT , and is connected tom by a local path (hence,
m0 becomes a child ofm in T ). Bi-directional planners
are usually more efficient than single-directional ones.

SBL is a single-query, bi-directional PRM planner.
Unlike previous such planners, it does not immediately
test the connections between milestones for collision.
Therefore, rather than referring to the connection be-
tween two adjacent nodes in a roadmap tree as alocal
path, we call it asegment.
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Figure 1: Path planning environments.

3. Experimental Foundations

The design of our planner was suggested by experi-
ments that we performed with the PRM planner de-
scribed in [7]. To study the impact of collision-
checking on the running time, we modified the plan-
ner’s code by removing collision-checks for connec-
tions between milestones. As could be expected, the
planner was faster by two to three orders of magnitude,
but surprisingly a significant fraction of the generated
paths were actually collision-free. Fig. 1 shows envi-
ronments in which we made this observation.

Every segment created between two milestones by
the planner of [7] is relatively short (less than 0.15).
Thus, the above observation suggested that two config-
urations picked at random are both collision-free and
close to each other, then the straight-line segment be-

tween them has high probability of being collision-
free. To verify this analysis, we generated 10,000
segments at random withL1 lengths uniformly dis-
tributed between 0 and 1 (recall that theL1 di-
ameter ofC is 1). This was done by picking 100
collision-free configurations inC uniformly at random
and connecting each such configurationq to 100 ad-
ditional collision-free configurations obtained by ran-
domly sampling neighborhoods ofq of different diam-
eters. We decomposed the range[0; 1] of possible seg-
ment lengths into 50 equal-sized intervals and we used
rejection sampling to eventually get the same number
of segments in each interval. We then tested each of the
10,000 segments for collision. The charts of Fig. 2(a)
and Fig. 2(b) display the ratio of the number of seg-
ments that tested collision-free in each interval in the
environments of Fig. 1(a) and Fig. 1(e), respectively.
In those cases, a segment shorter than 0.2 has proba-
bility greater than 0.7 of being collision-free. Similar
charts were obtained with the other environments.

In fact, there is a simple explanation for the results
of Fig. 2. Since the robot and the obstacles are “thick”
in all or most directions, the obstacle regions inC are
also thick (or fat [15]) in most directions. Hence, a
short colliding segment with collision-free endpoints
is necessarily almost tangential to an obstacle region
in C, an event that has small probability. Indeed, con-
sider Fig. 3, where the dark region is a thick obsta-
cle region in a fictitious 2-D configuration space. Let
q andq0 be two configurations picked at random that
are both collision-free, close to each other, and such
that the straight segment joining them intersects the
obstacle region (Fig. 3(a)). Assume thatq was picked
first and thatq0 is selected next inside the rectangu-
lar neighborhood ofq of a smallL1 radius. In gen-
eral, the subset of this neighborhood (shown in gray in
Fig. 3(b)) in whichq 0 must be selected in order to sat-
isfy the above conditions is only a small fraction of the
neighborhood’s collision-free subset. The probability
is small to first pickq close enough to the boundary
of F and next pickq 0 in the appropriate subset of the
neighborhood ofq. Note that this would not be true if
the obstacle regions inC were thin, e.g., if the robot
was a point moving in a planar maze of thin walls.

We also observed that, if a short segment is collid-
ing, then its midpoint has high probability to collide.
Fig. 2(c) 2(d) gives, for each interval of Fig. 2(a) 2(b),
the measured fraction of colliding segments whose
midpoints are colliding.

The above results and other tests led us to make the
following key observations:
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Figure 2: Collision ratios among connections.
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Figure 3: Illustration of the result of Figs. 2.

1. Most local paths in a PRM are not on the final
path. Using the planner of [7] in the environments
of Fig. 1, we measured that the ratio of milestones
on the final path varies between 0.01 and 0.001.

2. The test of a local path is most expensive when it
is actually collision-free. Indeed, the test ends as
soon as a collision is detected, but is carried down
to the finest resolution when there is no collision.

3. A segment between two milestones has high prob-
ability of being collision-free.

4. If a segment is colliding, its midpoint has high
probability to be in collision.

Observations 1, 2, and 3 indicate that testing seg-
ments early is likely to be both useless and expensive,
while observation 4 suggests that segments should be
tested by recursively breaking them into halves.

4. Description of the Planner

SBL is given two parameters:s – the maximum num-
ber of milestones that the planner is allowed to gener-
ate – and� – a distance threshold. Two configurations
are considered “close” to one another if theirL1 dis-
tance is less than�. In our implementation,� is typi-
cally set between 0.1 and 0.3.

4.1. Overall algorithm

Algorithm PLANNER
1 Installqinit andqgoal as the roots

of Tinit andTgoal, respectively
2 Repeats times
3 EXPAND-TREE
4 �  CONNECT-TREES
5 If � 6= nil then return�
6 Return failure

The planner builds two milestone trees,Tinit and
Tgoal, respectively rooted atqinit andqgoal. Each loop



of Step 2 performs two steps: EXPAND-TREE adds a
milestone to one of the two trees, while CONNECT-
TREES tries to connect the two trees. The planner re-
turnsfailure if it has not found a solution path afters
iterations at Step 2. If the planner returnsfailure, either
no collision-free path exists betweenqinit andqgoal, or
the planner failed to find one.

4.2. Tree expansion

EXPAND-TREE()
1 PickT to be eitherTinit,

or Tgoal, each with probability 1/2
2 Repeat until a new milestoneq

has been generated
3 Pick a milestonem from T at random,

with probability�(m) � 1=�(m)
4 Fori = 1; 2; :::; k until a new milestoneq

has been generated
5 Pick a configurationq uniformly

at random fromB(m; �=i)
6 If q is collision-free then install it as a

child ofm in T

Each expansion of the roadmap consists of adding a
milestone to one of the two trees. The algorithm first
selects the treeT to expand. A number�(m) is asso-
ciated with each milestonem in this tree, which mea-
sures the current density of milestones ofT aroundm.
A milestonem is picked fromT with probability in-
verse of�(m) and a collision-free configurationq is
picked at a distance less than� from m. This config-
urationq is the new milestone. The use of the proba-
bility distribution �(m) � 1=�(m) at Step 3 was in-
troduced in [6] to avoid over-sampling regions ofF . It
guarantees that the distribution of milestones eventu-
ally diffuses through the subsets ofF reachable from
from qinit andqgoal. In [6, 7] this condition is required
to prove that the planner will eventually find a path,
if one exists. The alternation between the two trees
prevents any tree from eventually growing much big-
ger than the other, as the advantages of bi-directional
search would then be lost.

Step 4 applies an adaptive sampling strategy, by se-
lecting a series of up tok milestone candidates, at ran-
dom, from successively smaller neighborhoods ofm,
starting with a neighborhood of radius�. When a can-
didateq tests collision-free, it is retained as the new
milestone. The segment fromm to q is not checked
here for collision. On the average, the jump fromm to
q is greater in wide-open regions ofF than in narrow
regions.

4.3. Tree connection

CONNECT-TREES()
1 m most recently created milestone
2 m0  closest milestone tom in the tree

not containingm
3 If d(m;m0) < � then
4 Connectm andm0 by a bridgew
5 �  path connectingqinit andqgoal
6 Return TEST-PATH (� )
7 Returnnil

Letm now denote the milestone that was just added
by EXPAND-TREE. Letm0 be the closest milestone
to m in the other tree. The two trees are connected
by a segment, called abridge, betweenm andm 0 if
these two milestones are less than some� apart. The
bridge creates a path� joining qinit andqgoal in the
roadmap. The segments along� , including the bridge,
are now tested for collision. TEST-PATH returnsnil if
it detects a collision.

4.4. Path testing

The path-testing strategy of SBL derives from the
charts shown in Fig. 2. The planner associates a
collision-check index�(u) with each segmentu be-
tween milestones (including the bridge). This in-
dex takes an integer value indicating the resolution at
which u has already been tested. If�(u) = 0, then
only the two endpoints ofu (which are both mile-
stones) have been tested collision-free. If�(u) = 1,
then the two endpoints and the midpoint ofu have been
tested collision-free. More generally, for any�(u),
2�(u) + 1 equally distant points ofu have been tested
collision-free. Let�(u) denote the length ofu. If
2��(u)�(u) < ", thenu is marked safe. The index
of every new segment is initialized to 0.

Let �(u; j) designate the set of points inu that must
have already tested collision-free in order for�(u) to
take the valuej. The algorithm TEST-SEGMENT(u)
increases�(u) by 1:

TEST-SEGMENT(u)
1 j  �(u)
2 For everyq 2 �(u; j + 1)n�(u; j)
3 if q is in collision, then returncollision;
4 if 2�(j+1)�(u) < "
5 Then marku assafe
6 else�(u) j + 1

For every segmentu that is not marked safe, the cur-



rent value of2��(u)�(u) is cached in the data structure
representingu. The smaller this value, the greater the
probability thatu is collision-free.

Let p be the number of segments in the path� to
be tested by TEST-PATH, andfu1; u2; :::; upg denote
those segments, withu1 originating atqinit and up
ending atqgoal. TEST-PATH(� ) maintains a priority
queueU sorted in decreasing order of2��(u)�(u) of
all the segmentsfu1; u2; :::; upg that are not marked
safe.

TEST-PATH(� )
1 WhileU is not empty do
2 u extract(U )
3 If TEST-SEGMENT(u) = collision then
4 Removeu from the roadmap
5 Returnnil
6 If u is not markedsafe, then re-insert it inU
7 Return�

Each loop of Step 1 results in increasing the index on
the segmentu that is in first position inU . This seg-
ment is removed fromU . It is re-inserted inU if TEST-
SEGMENT(u) at Step 3 neither detects a collision, nor
marksu assafe. If u is re-inserted inU , it may not be in
first position, since the quantity2��(u)�(u) has been
divided by 2. TEST-PATH terminates when a collision
is detected – then the colliding segment is removed –
or when all segments have been markedsafe (i.e.,U is
empty) – then the path� is returned.

The removal of a segmentu disconnects the
roadmap into two trees. Ifu is the bridge that
CONNECT-TREES created to connect the two trees,
the two trees return to their previous state. Otherwise,
the removal ofu results in a transfer of milestones
from one tree to the other. Assume thatu is in Tgoal,
as illustrated in Fig. 4(a), wherew 6= u denotes the
bridge added by CONNECT-TREES. The milestones
m1; :::;mr betweenu and w (r = 3 in Fig. 4(a))
and their children inTgoal are transferred toTinit as
shown in Fig. 4(b). The parent-child connections be-
tween the transferred milestones remain the same, ex-
cept those betweenm1; :::;mr, which are inverted. No
milestone is removed from the roadmap. The collision-
checking work done along all segments, except the one
that tested to collide, is saved in their indices.

4.5. Implementation details

We have implemented SBL with several collision
checkers, including PQP [9]. Each rigid object in an
environment is described by a collection of triangles
representing its surface. PQP pre-computes a bounding

qi

m3
m2

m1

w

u

qg

(a)

qi

qg

(b)

Figure 4: Transferring milestones between trees.

hierarchy of oriented-bounding boxes for each object.
No other pre-computation is done.

The planner spatially indexes every milestone of
Tinit (resp. Tgoal) in an h-D array Ainit (resp. Agoal).
Both arrays partition the subspace defined by h dimen-
sions of C (in our implementation h = 2) into the same
grid of equally sized cells. Whenever a new milestone
q is installed in a tree, the appropriate cell of the corre-
sponding array is updated to contain q. When a mile-
stone is transferred from one tree into the other, the
two arrays are updated accordingly. A init and Agoal

are used at Step 3 of EXPAND-TREE, where we pick
a milestone m from one tree T with a probability dis-
tribution �(m) � 1=�(m). Rather than maintaining
the density �(m) around each milestone, we first pick
a non-empty cell of Ainit, then a milestone from this
cell. So, the probability to pick a certain milestone
is greater if this milestone lies in a cell of Ainit con-
taining fewer milestones. This technique is fast and



results in a good diffusion of milestones in F along
the h selected dimensions. To ensure diffusion along
all dimensions of C, we pick the h dimensions at ran-
dom and we periodically change them. Each change
requires re-computing the arrays A init and Agoal, but
the total cost of this operation is negligible relative to
collision checking.

Ainit and Agoal are also used at Step 2 of
CONNECT-TREES to identify the milestone m0 that
will be connected to the newly added milestonem. The
implemented CONNECT-TREES attempts two con-
nections. First, instead of selecting m0 as the closest
milestone to m in the other tree, it picks m0 to be the
closest milestone in the same cell as m, but in the other
array. Note that m and m0 are then only guaranteed to
be close along h dimensions. The second attempt picks
m0 uniformily at random in the other tree. Our exper-
iments have shown that on average this technique is
faster than just connecting m to the closest milestone.
(The “closest-milestone” heuristic tends to postpone
the finding of some easy connections.)

Finally, we added a simple path optimizer to elim-
inate blatant jerks. It takes a path � as input and per-
forms the following operation several (typically, 10 to
20) of times: pick two points q and q 0 in � at random
and, if the straight-line segment connecting them tests
collision-free, replace the portion of � between q and
q0 by this segment.

5. Experimental Results

SBL is written in C++. The running times reported be-
low were obtained on an 1-GHz Pentium III processor
and 1Gb of main memory running Linux. The planner
uses the PQP checker. The distance threshold � was
set to 0.15 and the resolution " was set to 0.01. Each of
the indexing arrays Ainit and Agoal had size 10� 10.
The two dimensions of C indexed in these arrays are se-
lected uniformily at random among all the dimensions
of C, and changed whenever 50 new milestones have
been generated. The pre-computation time of PQP is
not included in the running times given below.

Table 1: Number of triangles in robot and obstacles.

1a 1b 1c 1d 1e
nrob 5,000 3,000 5,000 3,000 3,000
nobst 21,000 50,000 83,000 100 50

Fig. 1 displays some of the single-robot examples
we used to test our planer. In each example, the dark

curve is traced by the center-point of the robot’s end-
effector for one non-optimized path generated by the
planner. The light curve is defined in the same way
for the optimized path. The numbers of triangles in the
geometric models of the robot and the obstacles, nrob

and nobst, in each example, are listed in Table 1.

The geometrically simpler examples 1d and 1e are
intended to test SBL when the free space contains nar-
row passages, a notorious difficulty for PRM planners
[12].

5.1. Basic performance evaluation

Table 2 gives averages over 100 runs of SBL on each
of the five examples of Fig. 1. In all cases, the plan-
ner found a path in reasonable time; there was no fail-
ure (the maximal number of milestones s was set to
10,000). In all runs, a large fraction of the collision
checks were made on the solution path. As noticed in
[13], these collision tests cannot be avoided. The run-
ning times in Table 2 do not include path optimization,
which in all cases takes an additional 0.1 to 0.2s.

We collected statistics for different values of the pa-
rameter � ranging between 0.1 and 0.3. They did not
reveal major variations in the planner’s running time.
We also tried indexing arrays of resolutions other than
10� 10, including 3-D arrays, but performance results
were not significantly different.

5.2. Comparative performance evaluation

To assess the efficiency of the lazy collision-checking
strategy, we have implemented a version of our plan-
ner that fully tests every connection between two mile-
stones before inserting it in the roadmap. This plan-
ner is similar to those presented in [4, 7]. Note, how-
ever, that our two planners do not exactly generate the
same milestones, even when they use the same seed for
the random number generator. Indeed, while the SBL
considers any collision-free configuration q picked in
the neighborhood of a milestone m as a new mile-
stone (Step 4 of EXPAND-TREE), the second plan-
ner also requires that the connection between m and q
be collision-free. Moreover, in the second planner no
milestone is ever transferred from one tree to the other.

Table 3 shows results with the modified planner, on
the same five problems. The maximal number of mile-
stones s was set to 10,000 and the results are averages
over 100 runs. The average running times of SBL are
smaller than those of the full collision-checking plan-
ner by factors ranging from 4.4 for the problem in Fig.
1(c), to over 40 for the problem in Fig. 1(e).



Table 2: Statistics on the examples of Fig. 1.

Total Milest. in Milest. in Total Nr. of Coll. Checks Samples Time for Std. Dev.
time (s) roadmap path Coll. Checks on the path tested Coll.Checks (s)

a 0.60 159 13 1483 342 145 0.58 0.38
b 0.17 33 10 406 124 47 0.17 0.07
c 4.42 1405 24 7267 277 3769 4.17 1.86
d 4.45 1609 39 11211 411 7832 4.21 2.48
e 6.99 4160 44 12228 447 6990 6.30 3.55

Table 3: Experimental results for the full-collision check planner.

Total Milest. in Milest. in Total Nr. of Coll. Checks Samples Time for Std. Dev.
time (s) roadmap path Coll. Checks on the path tested Coll.Checks (s)

a 2.82 22 5 7425 173 83 2.81 3.01
b 1.03 29 9 2440 123 46 1.02 0.70
c 18.46 771 16 38975 219 3793 18.35 15.34
d 106.20 3388 32 300060 421 9504 105.56 59.30
e 293.77 6737 24 666084 300 11971 292.40 122.75

5.3. Multi-robot examples

We ran SBL on several problems in the environment of
Fig. 5, which represents a spot-welding station found
in automotive body shops. This station contains 6
robots each with 6 dofs each. SBL treats them as if
they formed a single robot with 36 dofs, hence builds a
roadmap in a 36-D configuration space. To keep SBL
general, we did not take advantage of specific proper-
ties of the environment. For example, SBL assumes
that collisions may occur between any two bodies of
any two robots, while many pairs of bodies cannot col-
lide.

Table 4 gives averages over 100 runs of SBL on 9
problems. Fig. 5 shows the initial and final configura-
tions for the problem named PIII-6 in Table 4. PIII-2
and PIII-4 are the same problem, but reduced to robots
1 and 2, and robots 1 through 4, respectively. The prob-
lems PI-2/4/6 and PII-2/4/6 are simpler, with either the
initial or the goal configurations being the rest config-
uration of the robots.

In all 100 � 3 � 3 = 900 runs, SBL successfully
returned a path in a satisfactory amount of time. In
each run, the maximum number of milestones allowed
to the planner was set to 10,000, but the maximum
number of milestones actually generated by SBL was
6917 for a run of problem PIII-6. The increase in the
running times when the number of robots goes from
2 to 4 to 6 is caused both by the quadratic growth in
the number of pairs of bodies that are tested at each
collision-checking operation and by the greater diffi-
culty of the problems due to the constraints imposed

Figure 5: Multi-robot problem.



Table 4: Statistics on 9 multi-robot problems.

Total Milest. in Milest. Total Nr. of Coll. Checks Samples Time for Std. Dev.
time (s) roadmap in path Coll. Checks on the path tested Coll.Checks (s)

PI-2 Robs 0.26 11 4 242 58 18 0.26 0.52
PII-2 Robs 0.25 11 5 248 76 13 0.25 0.17
PIII-2 Robs 2.44 191 17 2356 243 718 2.41 1.57

PI-4 Robs 3.97 62 7 1015 106 193 3.96 5.67
PII-4 Robs 3.94 56 10 968 166 112 3.93 2.4
PIII-4 Robs 30.82 841 32 8895 542 2945 3057 15.55

PI-6 Robs 28.91 322 14 3599 121 1083 28.82 28.91
PII-6 Robs 59.65 882 30 6891 533 1981 59.41 31.08
PIII-6 Robs 442.85 5648 91 47384 1525 24511 439.39 170.46

by the additional robots upon the motions of the other
robots. We created a specific version of SBL that tests
only the pairs of bodies that can possibly collide. For
the most complex problem (PIII-6), the average run-
ning time was reduced to 323s.

6. Conclusion

This paper shows that a PRM planner combining
a lazy collision-checking strategy with single-query
bi-directional sampling techniques can solve path-
planning problems of practical interest (i.e. with re-
alistic complexity) in times ranging from fractions of
a second to a few seconds for a single or few robots,
and from seconds to a few minutes for multiple robots.
Several relatively straightforward improvements are
still possible. For example, we could use PQP for com-
puting distances rather than as a pure collision checker.
This could significantly reduce the number of calls to
this program [1].

Our main goal is now to extend SBL to facilitate the
programming of multi-robot spot-welding stations in
automotive body shops. In particular, each robot must
perform several welding operations, but the ordering
of these operations is not fully specified. Hence, the
planner will have to compute an optimized tour of the
welding locations to be visited by each robot. This is
a variant of the Traveling Salesman Problem, where
the distance between two locations is not given and,
instead, must be computed by SBL. Clearly, if there
are r locations to visit, we do not want to invoke this
planner O(r2) times; a better method must be found.
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