
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)Nanyang Technological University, Singapore.

A Single‑Query Manipulation Planner
Lertkultanon, Puttichai; Pham, Quang‑Cuong
2015
Lertkultanon, P., & Pham, Q.‑C. (2016). A Single‑Query Manipulation Planner. IEEE Robotics
and Automation Letters, 1(1), 198‑205.
https://hdl.handle.net/10356/84985
https://doi.org/10.1109/LRA.2015.2513731

© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. The published version is available at:
[http://dx.doi.org/10.1109/LRA.2015.2513731].

Downloaded on 24 Aug 2022 16:34:42 SGT

A Single-Query Manipulation Planner

Puttichai Lertkultanon and Quang-Cuong Pham

Abstract— In manipulation tasks, a robot interacts with
movable object(s). The configuration space in manipulation
planning is thus the Cartesian product of the configuration
space of the robot with those of the movable objects. It is the
complex structure of such a “composite configuration space”
that makes manipulation planning particularly challenging.
Previous works approximate the connectivity of the composite
configuration space by means of discretization or by creating
random roadmaps. Such approaches involve an extensive pre-
processing phase, which furthermore has to be re-done each
time the environment changes. In this paper, we propose a
high-level Grasp-Placement Table similar to that proposed by
Tournassoud et al. (1987), but which does not require any
discretization or heavy pre-processing. The table captures the
potential connectivity of the composite configuration space
while being specific only to the movable objects: in particular,
it does not require to be re-computed when the environment
changes. During the query phase, the table is used to guide a
tree-based planner that explores the space systematically. Our
simulations and experiments show that the proposed method
enables improvements in both running time and trajectory
quality as compared to existing approaches.

I. INTRODUCTION

Automated robotic assembly requires the ability to plan

pick-and-place motions : pick an object from a given config-

uration (position and orientation) and place it in a desired

configuration, possibly with a desired grasp. A grasp refers

to a relative transformation between the gripper and the

object. When none of the possible grasps for picking up

the object at its initial configuration is compatible with

subsequent operations, the robot needs to change its grasp,

possibly several times, until the desired grasp can be attained.

Unlike multi-fingered hands, parallel grippers (which are the

most common and robust grippers in the industry) cannot

realize in-hand manipulations. To change a grasp with a

parallel gripper, the robot must transfer the object to some

intermediate stable placement, then transit to a new grasp.

Those operations are collectively termed “regrasping” [1].

Since a manipulation planning problem involves both the

robot and the object configurations, searching for a sequence

of transit and transfer paths, so-called a manipulation path,

has to be done in the composite configuration space C [2],

which is the Cartesian product of the robot configuration

space Crobot and the object configuration space Cobject. A

transit path, along which the robot moves alone while the

object remains at a stable placement, lies in P, the subset of

C corresponding to stable placements of the object. Similarly,

This work was partially supported by Tier 1 grant RG109/14 awarded by
Singapore MOE to the second author.

Puttichai Lertkultanon and Quang-Cuong Pham are with the School of
Mechanical and Aerospace Engineering, Nanyang Technological University,
50 Nanyang Avenue, Singapore 639798 L.Puttichai@gmail.com

a transfer path, along which the robot moves while grasping

the object with a valid grasp, lies in G, the subset of C
corresponding to valid grasps. The subset G ∩ P is central

in solving manipulation planning problems since it is the

place where transitions between transit and transfer paths

may occur [2], [3]. Manipulation planners differ mainly in

the way they explore and capture the connectivity of G ∩P .

For a parallel gripper grasping a polyhedral object, all

the valid grasps and stable placements can be categorized

into a finite number of classes. A grasp class corresponds

to e.g. a pair of object surfaces the fingers are touching. A

placement class corresponds to e.g. a surface (of the object

or of its convex hull) in contact with the table. Each grasp

and placement class may be further parameterized by a set

of continuously varying parameters.

In a pioneering work, Tournassoud et al. [1] started

by discretizing G ∩ P1 and then searched for a feasible

regrasping sequence by backward chaining from the goal

grasp. However, because of the high dimensionality of C and

the complexity arising from the discretization, the authors

had to constrain each grasp and placement class to have

only single varying parameter. Their method is therefore

limited and much dependent on the particular choice of the

parameters. Nevertheless, they did introduce the important

notion of Grasp-Placement Table, which captures part of

the connectivity of G ∩ P . This Grasp-Placement Table can

be seen as an instance of a Manipulation Graph [3] that

is particularly adapted for polyhedral objects. The Grasp-

Placement Table is a grid where each vertical line represents

a placement class while each horizontal line represents a

grasp class. Intersections of vertical lines with horizontal

lines then correspond to subsets of G ∩ P . A transfer path

appears as a connection between intersections on the same

horizontal line, whereas a transit path appears as a connection

between intersections on the same vertical line.

Here we propose a method to construct a high-level Grasp-

Placement Table (or graph). In contrast with [1], our graph

does not require any discretization or heavy pre-processing.

Moreover, it is specific only to the movable object, and not

to the environment or to the robot : it does not therefore

require to be re-computed when the environment changes.

At the query phase, the graph is used as a high-level task

planner to guide the manipulation planner in exploring C.

Specifically, the edges of the graph are generated by

ignoring all the robot kinematics. Verification of kinematic

feasibility along each edge of the graph is postponed to the

1The notion of composite configuration space was not introduced at the
time. However, their idea of grasp and placement spaces bears a close
resemblance to the formulation presented in [2].

planning phase. In doing so, our method enables handling

the full parameterization of G ∩ P . Although the idea of

delaying IK computation has been independently explored

in a recent work [4] to construct a manipulation graph, the

authors’ graph still requires discretizing grasp and placement

classes, entailing the same problem of heavy pre-processing.

By constructing and using a high-level Grasp-Placement

Table, we decouple a pick-and-place manipulation planning

problem into two layers of planning. The high-level task

planning layer consists in finding a sequence of G ∩ P
configurations that answers the query, while the low-level

motion planning layer consists in finding actual motions

between the G∩P configurations. Since the emphasis of this

paper is on the high-level planning, i.e., how we construct

and use a high-level Grasp-Placement Table to help solve

a manipulation query, addressing uncertainty, which takes

place at the second layer, is beyond the scope of this paper.

Note also that we focus here on industrial assembly,

where parallel-jaw grippers are pervasive owing to their cost-

effectiveness and ease of integration. We first specifically

consider the case when movable objects are either boxes or

composed of boxes. These properties enables an efficient

parameterizations of grasps and placements. We discuss

extension to broader types of objects in Section VI-A.

The rest of this paper is organized as follows. In Section II,

we briefly review related literature. In Section III, we present

definitions and conventions that will be used in the sequel.

Section IV introduces the high-level Grasp-Placement Table,

its construction, and its use in planning. Comparisons be-

tween the proposed planner and other manipulation planners

are presented in Section V. Finally, Section VI offers a brief

discussion and sketches future research directions.

II. RELATED LITERATURE

A. Manipulation Planning

Manipulation planners can be seen as a generalization

of motion planners where the robot is allowed to displace

specific objects, called movable objects, in its environment

via specific interactions, e.g., pushing or grasping. Early

work considered pick-and-place manipulation planning as

a regrasping problem [1], [5], [6]. The authors discretized

G ∩ P and checked at each discretized point whether the

placement was stable and the grasp was feasible. They then

executed a deterministic search of a regrasping sequence

on the set of feasible placements and grasps. Evaluation of

object placements based on minimum tipping energy was

proposed in [5].

A recent work on regrasping algorithms [4] also utilized

a discretization of G ∩P to construct a regrasp graph, which

represents connectivity of G ∩ P connected components, to

analyze workcell utility. The authors improved efficiency of

their algorithm by delaying IK computation in the graph

construction until it is necessary. However, the discretization

cost still remains considerable compared to our method of

construction.

Most later work is based on the notion of Manipulation

Graph [3] and composite configuration space [2]. Initially

the planners usually assumed discrete sets of grasps and

placements [3], [7], [8]. Later work extended the approach

to handle continuous representation [2]. The approach has

also been extended to facilitate bimanual manipulation plan-

ning [9]. Apart from permitting only two modes of motions,

transit and transfer, there is also work on generalization that

permitting finding solution paths with multiple modes of

motions [10], [11].

Although a majority of manipulation planners are

sampling-based, there also exist deterministic manipulation

planners [12], [13]. These planners construct a lattice graph

representing a discretized configuration space and then use

heuristic searches to find solution paths. However, these

planners are currently capable of planning only single-mode

motions such as reach-to-grasp motions or motions once the

robot has already grasped an object.

B. Object Rearrangement

Another problem related to manipulation planning is ob-

ject rearrangement problem [14], [15]. The problem consists

in finding a rearrangement path such that all movable objects

are moved by the robot to their goal poses. Generally the

problem can be decomposed into two subproblems. The first

problem is finding a sequence of object rearrangements and

the second one is finding manipulation paths connecting adja-

cent rearrangements. Here pick-and-place planners can serve

as local planners to connect nodes of object rearrangements.

C. Task and Motion Planning

Planning pick-and-place motions can also be considered

in a framework of task and motion planning [16], [17],

[18], [19]. A planning problem is solved through two layers

of planning : high-level task planning and low-level mo-

tion planning. A task planner executes symbolic searches

for high-level actions such as pick, move, and place, not

considering geometries nor kinematics. A motion planner

then computes actual commands to follow the strategy—a

sequence of actions—given by the task planner.

From the perspective of task and motion planning, instead

of planning tasks by a symbolic task planner, we generate

task plans by using information provided by our high-level

Grasp-Placement Table. A grasp search algorithm is used to

extract task plans, which will then inform the manipulation

planner about how to make transitions between G ∩ P
connected components. This makes the overall planner less

likely to generate solutions with redundant grasp and ungrasp

operations.

III. DEFINITIONS AND CONVENTION

In this section, we present the definitions and conventions

involved in manipulation planning. The terminology intro-

duced here will facilitate the discussions in the sequel.

A. Mathematical Definitions

We represent a composite configuration with a couple

(q,T), where q ∈ Crobot ⊆ R
n is a robot configuration, n is

the degrees-of-freedom (DOF) of the robot, and T ∈ SE(3)2

is a homogeneous transformation matrix of the object. For a

composite configuration in G we define a grasp as a vector

of parameters describing the relative transformation of the

gripper and the object. Therefore, a grasp can generally be

described by a vector of 7 parameters of quaternion and

translation, which can be uniquely identified from q and

T . The number of parameters, however, can be reduced via

grasp parameterization. An example of grasp parameteriza-

tion can be found in [20].

A single-mode path is defined as a continuous function

P from the unit interval [0, 1] to a level set of G or P. There

are two types of single-mode paths : transit and transfer. A

transit path maps the unit interval into a level set of P, i.e.,

for any two configurations (q1,T1) and (q2,T2) on the path,

T1 = T2. A transfer path maps the unit interval into a level

set of G, i.e., a grasp remains constant along the path.

Next, we define a binary operation called composition

operation. First of all, the composition of two single-mode

paths P1 and P2 is defined as

(P1 ∗ P2)(s) =

{

P1(2s/t) 0 ≤ s ≤ t/2,
P2(2s/t− 1) t/2 ≤ s ≤ t,

where t = 1 if both paths are of the same type and t = 2
otherwise. Note that the composition operation is only de-

fined when P1(1) = P2(0). From the above definition, when

P1 and P2 have the same type, M = P1∗P2 is also a single-

mode path. We use |M | to denote the parameterization

domain length or domain length of M . Note that all single-

mode paths have unit domain length.

Let
∏

b

i=a
Pi = Pa ∗Pa+1 ∗ . . . ∗Pb, where b ≥ a. We can

define the composition of k single-mode paths as

(

k
∏

i=1

Pi

)

(s) =

{

(P1 ∗ P2)(s) 0 ≤ s ≤ t2
M2(s− t2) t2 ≤ s ≤ |M2|+ t2

=

{

M1(s) 0 ≤ s ≤ |M1|
(Pk−1 ∗ Pk)(s− |M1|) |M1| ≤ s ≤ |M1|+ t1,

where M1 =
∏

k−2

i=1
Pi, M2 =

∏

k

i=3
Pi, and t1 and t2

are one if both single-mode paths are of the same type

and two otherwise. Notice that the composition operation

is associative but not commutative.

According to the above definition of the composition

operation, we can now define a manipulation path as a

composition of single-mode paths. A manipulation path is

irreducible if no two consecutive single-mode paths are of

the same type, i.e., it is an alternating composition of transit

and transfer paths. Any composition
∏

k

i=1
Pi can always be

written it as an irreducible manipulation path
∏

l

i=1
P ′

i
with

l ≤ k. For an irreducible manipulation path M , we have that

the number of transitions (between transit and transfer paths

or vice versa) is |M | − 1.

2SE(3) is the special Euclidean group of rigid body transformations.

lateralsliding

approaching

Fig. 1: The parallel gripper used in this paper with its local frame. The
lateral direction is orthogonal to both finger surfaces. The sliding direction
is parallel to both finger surfaces and is defined such that the approaching
direction is pointing out of the gripper.

B. Placement Classes and Grasp Classes

The sets P and G can be partitioned into finite disjoint

classes called placement classes and grasp classes, respec-

tively. A class groups together composite configurations with

similar properties. Each placement class indicates how an

object is placed on a table, and thus normally refers to a

surface of the object’s convex hull being in contact with the

table. Similarly, each grasp class indicates how the object is

grasped by the gripper. In our case, with an assignment of

the gripper’s local frame as shown in Fig. 1, each grasp class

refers to the relative direction of the gripper’s approaching

direction with respect to the object.

Consider a gripper grasping a box. We say that the

approaching direction is +x if the positive direction of

the gripper’s approaching axis is aligned with +x-direction

of the box’s local frame. Therefore, there are 6 possible

directions along which the gripper can approach the box3.

For convenience, we will use integers 1 to 6 to denote ap-

proaching directions +x,+y,+z,−x,−y,−z, respectively.

Now consider the case when the object is composed of m
boxes. Suppose we index those boxes with integers from 1
to m. There will be in total 6m possible grasp classes. When

the gripper is approaching the object in the direction i of the

box j, the grasp class index is i + 6(j − 1). For example,

in the grasp class 7, the gripper is grasping box 2 and the

approaching axis is aligned with +x-axis of the box.

IV. MANIPULATION PLANNING USING HIGH-LEVEL

GRASP-PLACEMENT TABLE

A. High-Level Grasp-Placement Table

1) Overview: A high-level Grasp-Placement Table (or

graph) is an undirected, unweighted graph whose nodes

represent different subsets of G ∩ P . According to the

partitioning of G and P, the set G ∩ P is then partitioned

into finite disjoint subsets. Each subset of G ∩ P is the

intersection between a particular pair of placement and grasp

classes. Therefore, a node in the graph can be represented by

a pair of integers, a placement class index and a grasp class

index. We visualize a high-level Grasp-Placement Table in

the similar way as the authors of [1] did for their Grasp-

Placement Table. Our Table is plotted on a two-dimensional

grid. Each vertical line corresponds to a placement class

3This means the approaching axis of the gripper must be perpendicular
to a surface of the box. A configuration that the approaching direction is
not perpendicular to any surface can then be achieve by rotating the gripper
about the sliding axis.

placement

class1 2 3 4 5 6

grasp class

2
4
6

box 1

Fig. 2: An example of a high-level Grasp-Placement Table for a box of
dimension 28.0 cm. × 4.9 cm. × 2.5 cm. For clarity, self-loops are not
depicted. Note that every node on the same line is connected to all other
nodes although we do not draw separate lines for them. For example, node
(1, 6) is reachable from (6, 1) in one step.

whereas each horizontal line corresponds to a grasp class.

Intersections of vertical with horizontal lines then represent

subsets of G ∩ P .

If there were no collision avoidance constraints and kine-

matic reachability constraints, any combination of an object

contact surface and a gripper’s approaching direction would

have been possible. Any pair of nodes on the same vertical or

horizontal line will be connected. Imposing those constraints

makes some nodes and edges infeasible. However, verifying

all constraints at the graph construction phase entails costly

computations. Also, by checking kinematic reachability, the

graph will become robot- and environment-dependent : it

will need to be re-computed when the environment changes.

Therefore, we propose to construct the graph by verifying

only collision avoidance constraints (between the gripper and

the table). Robot kinematic reachability constraint verifica-

tion (IK computation) is postponed until the planning phase.

2) Graph Construction: In the first step, we check for

feasibility of graph nodes. For each placement class, we

place the object at a nominal location on the table. Then

for each box composing the object, we check whether the

gripper can approach the box from any of the 6 directions,

i.e., +x-, +y-, +z-, −x-, −y-, and −z-directions, of the

box’s local frame, without colliding with the table. If there

is no collision, we add a node that represents the respective

placement and grasp classes into the graph. We continue this

procedure for all placement classes. Since we do not consider

the robot kinematics here, the actual location of the object

on the table, i.e., how far the object is from the robot, does

not affect the resulting graph.

After we obtain all feasible nodes in the first step, we

display them on a grid. Then we connect every pair of nodes

on the same vertical or horizontal line. These edges represent

potential connections between nodes. An edge connecting a

pair of nodes on the same vertical line represents transit

paths while an edge connecting a pair of nodes on the same

horizontal line represents transfer paths. Every node also has

two self-loops. One loop corresponds to a transit path; the

other loop corresponds to a transfer path. Fig. 2 shows an

example of a high-level Grasp-Placement Table for a box of

dimension 28.0 cm. × 4.9 cm. × 2.5 cm. For simplicity, we

do not show self-loops in the plot.

The construction can be generalized to handle start and

goal configurations in G and/or P by adding special nodes

into the graph. To handle configurations in P, we can add

a grasp class index 0 to the graph. For example, in the

above example of the box, we will obtain 6 new nodes,

(1, 0), (2, 0), . . . , (6, 0). These nodes are connected to all

other nodes with the same placement class. Note, however,

that there are no horizontal edges between them since it is

not possible to travel directly from one placement class to

another in P. To handle configurations in G, we can add a

placement class index 0, similarly to the previous case.

3) Guiding a Manipulation Planner via Task Plans: One

of quality measures of manipulation paths is the number of

transitions (as defined in Section III-A). Fewer transitions

means fewer grasp/ungrasp operations and fewer single-

mode paths. This may therefore lead to a shorter overall

execution time.

From the constructed graph we can extract task plans of

a specific length4 which serve as a guide for the planner

about how to travel between different subsets of G ∩P . The

planner, instead of exploring randomly how to go from one

subset of G ∩P to another, will follow those plans to search

for a manipulation path of a specific number of transitions.

Here a task plan is a sequence of graph nodes connected by

graph edges. For example, from Fig. 2 a task plan of length

3 to travel from (6, 6) to (2, 2) is given by (6, 6)→ (4, 6)→
(4, 2)→ (2, 2).

The task plans extracted from the graph only provide high-

level information on how to pick and place the object. Exact

parameter values for each grasp and placement classes will

be assigned by the planner, i.e., via random sampling, in the

planning phase (see Section IV-B.1).

B. Manipulation Planning Algorithm

1) Algorithm Details: Our pick-and-place manipulation

planner proceeds in two phases : pre-processing phase and

planning phase. In the pre-processing phase, it constructs a

high-level Grasp-Placement Table based on the models of the

object and of the gripper (the latter is needed for collision

checking). Note that neither the kinematic model of the robot

nor the environment is needed at this phase. Then this high-

level Grasp-Placement Table is used in the planning phase to

guide a bidirectional tree-based planner, similar to [21], to

search for a manipulation path. The main algorithm is listed

in Algorithm 1.

The main algorithm takes as its input a robot model R; an

object modelM; start and goal robot configurations qstart and

qgoal; start and goal object transformations Tstart and Tgoal;

and a maximum running time for the planner tmax. Details

of functions in Algorithm 1 are listed below :

• Preprocess gathers geometric information of the gripper

and the object to construct a high-level Grasp-Placement

Table G, as described in Section IV-A.2.

• Vertex initializes a new tree vertex to store information

of a composite configuration. Note that this function also

examines G to find the graph node to which the input

composite configuration belongs.

• FindShortestPathLength finds the length l of the short-

est task plan(s) to go from the graph node cstart to the

graph node cgoal. Here l− 1 serves as the lower bound of

4A task plan of length k has k − 1 transitions

Algorithm 1: Main algorithm

Main(R,M, qstart,Tstart, qgoal,Tgoal, tmax):

1 G← Preprocess(R,M)

2 vstart ← Vertex(qstart,Tstart)

3 vgoal ← Vertex(qgoal,Tgoal)

4 l← FindShortestPathLength(G, vstart, vgoal)

5 t← 0, k ← l, found ← False

6 ∆← ChoosePathLengthIncrement(vstart, vgoal)
7 while (t < tmax) and (not found) do

8 ts ← GetTime()

9 Π← FindPlansOfGivenLength(k, vstart, vgoal)

10 Q← CreateDirectedGraph(Π)

11 {found, π} ←
PlanPath(Q,R,M, vstart, vgoal, tmax − t)

12 te ← GetTime()

13 t← t+ (te − ts)
14 if found then

15 return π
16 k ← k +∆
17 return None

the number of transitions of manipulation paths connecting

(qstart,Tstart) and (qgoal,Tgoal).
• ChoosePathLengthIncrement chooses the suitable

value of ∆ for the query. If either (qstart,Tstart) or

(qgoal,Tgoal) is in G ∩ P , ∆ can be 1. Otherwise, ∆ has

to be 2 in order to keep the resulting manipulation path

irreducible.

• CreateDirectedGraph creates a directed graph Q from

task plans in Π. A node of Q is encoded as a couple

(di, ci), where ci is the corresponding node of G and di
indicates the number of steps ci is away from cstart

5.

• PlanPath, which acts as a motion planner, searches for

a manipulation path according to information provided by

Q. PlanPath is listed in Algorithm 2.
• ExtendFrom first randomly samples a new composite

configuration in the grasp and placement classes suggested

by Q. Then it will attempt to connect the composite

configuration contained in v with the newly sampled one.

The function returns True if the attempt is successful.

• RemoveInfeasibleEdges removes edges in Q which

lead to more than N failed attempts by ExtendFrom,

where N is a threshold value set by the user.

2) Example: Consider the task of moving the box, whose

high-level Grasp-Placement Table is shown in Fig. 2, from

the placement and grasp cstart = (6, 6) to cgoal = (2, 2). In

the first planning loop in Algorithm 1, the algorithm will try

to find a manipulation path of length k = 3. The set Π will

store two task plans : (6, 6) → (4, 6) → (4, 2) → (2, 2) and

(6, 6) → (1, 6) → (1, 2) → (2, 2). The directed graph Q,

constructed from Π, will serve as a guidance for the planner

as follows.

In each while loop in Algorithm 2, the planner will

randomly pick an existing vertex vsample on a tree. Suppose

5We need to encode the level di of ci into each node of Q since the
node ci may appear at different steps in different task plans. This helps the
planner not to get lost when many task plans contain the same node ci.

Algorithm 2: Planning phase

PlanPath(Q,R,M, vstart, vgoal, tmax):

1 TFW ← Tree(vstart), TBW ← Tree(vgoal)

2 Ta ← TFW, Tb ← TBW

3 t← 0
4 while t < tmax or Q.haspath do

5 ts ← GetTime()

6 v ← SampleTree(Ta)

7 Q← RemoveInfeasibleEdges(Q)

8 result ← ExtendFrom(v,Q)

9 if result == REACHED then

10 π ← ExtractPath(TFW, TBW)

11 return {True, π}
12 te ← GetTime()

13 t← t+ (te − ts)
14 Swap(Ta, Tb)

15 return {False, None}

vsample contains a composite configuration in placement and

grasp classes (4, 6). From Q, the planner then knows that

the next extension should be attempted towards a composite

configuration in the placement and grasp classes (4, 2).
ExtendFrom will then sample a composite configuration

in that subset of G ∩ P and call a local planner, e.g., a

bidirectional RRT planner [21], to attempt the connection.

C. Remarks

Remark 1: The high-level Grasp-Placement Table G, and

hence Q, is constructed without considering kinematic con-

straints. Failed attempts by ExtendFrom are likely due to

kinematic infeasibility. Therefore, we need to set a thresh-

old N to prevent the planner from repetitively attempting

infeasible connections.

This threshold also affects the running time of our planner.

If we set N too low, feasible edges of Q can also be removed

due to false negative reports of kinematic infeasibility. This

will lead to obtaining solutions with redundant transitions.

On the other hand, if the threshold is set too high, it will

take longer time for the planner to declare an infeasible edge

and hence longer overall running time.

Remark 2: We can tailor the sampling of vertices from

a tree, done in SampleTree, by putting different sampling

weight on different vertices. For example, we can use weights

proportional to the level of csample in Q, i.e., dsample. In this

way, vertices farther away from the root will be more likely

to be selected.

Remark 3: Our planner tends to work better in a less

constrained environment. In a very constrained environment6

in which the robot needs to grasp and ungrasp the object

a number of times before it can move the object to the

final transformation, our planner will spend a considerable

amount of time verifying infeasible edges. However, in

6This may be seen as a narrow passage in C. An example of such cases
is the problem considered in [2] where the robot needs to pull a bar out of
a tight cage mounted on the floor.

(a) (b) (c)

Fig. 3: Scenes used in our experiments. There are two identical (movable)
objects shown in each figure. The objects on the left are at the initial
transformations. The objects on the right are at the final transformations.

actual industrial settings, although the environment might be

cluttered, it is usually not tightly constrained.

V. RESULTS AND COMPARISONS WITH OTHER

MANIPULATION PLANNERS

In this section, we present details of comparisons between

our planner and two other planners : Primitive Manipulation

Planner (Section V-B.1) and Discretization-Based Manipula-

tion Planner (Section V-B.2). We implemented all planners

in Python and used OpenRAVE [22] as a simulation en-

vironment. The local planner employed in all manipulation

planners was the OpenRAVE built-in bidirectional RRT. The

robot was a 6-DOF industrial manipulator Denso VS-060
equipped with a 2-finger Robotiq gripper 85. All simulations

were run on a 3.2 GHz Intelr CoreTMdesktop with 3.8 GB

RAM.

A. Task Details

The planners had to plan pick-and-place motions for three

objects : a box, an L-shaped object, and a small chair. The

robot was to move from Home, i.e., q = 0, pick up the

object at a given object transformation, place it at another

given transformation, and finally return to Home. Snapshots of

all three settings are shown in Fig. 3. The Grasp-Placement

Tables of the L-shaped object and the chair are shown in

Fig. 4(a) and Fig. 4(b), respectively. (The Grasp-Placement

Table of the box is similar to the one in Fig. 2.) These

tasks are useful especially for assembly operations, such

as furniture assembly where the robot needs to grasp a

furniture part at some placement and move it to some desired

transformation to attach the part to other parts. We set chose

start and goal object transformations such that the robot

needed to perform regrasp operations at least once in order

to complete the tasks.

B. Descriptions of Alternative Manipulation Planners

We implemented two alternative manipulation planners,

each of which lies on opposite ends of the spectrum of

Manipulation Graph construction. The first planner does not

explicitly construct the graph while the second constructs the

graph by means of discretization. Our planner lies midway

between the two.

1) Primitive Manipulation Planner (PMP): PMP has min-

imal knowledge of the structure of C as it has no pre-

processing stage. It explores C according to the transition

diagram, similar to [23], shown in Fig. 5.

We implemented PMP as a bidirectional tree-based plan-

ner. It grows one tree rooted at (qstart,Tstart), the other rooted

placement

class1 2 3 4 5

grasp class

3

6

9

12

box 1

box 2

(a) The high-level Grasp-Placement Table for an L-shaped object

placement

class1 2 3 4 5 6

grasp class

6

12

18

24

30

36

42

48

box 1

box 2

box 3

box 4

box 5

box 6

box 7

box 8

(b) The high-level Grasp-Placement Table for a small chair

Fig. 4: High-level Grasp-Placement Tables of objects used in our simula-
tions.

P G ∩ P

transit

transit

transit → transfer or

transfer → transit

Fig. 5: A transition diagram used in Primitive Manipulation Planner.

at (qgoal,Tgoal). In each iteration, it samples a new composite

configuration and tries to connect it with existing vertices

on a tree. For example, if the newly sampled configuration

is in G ∩ P and is to be connected with a configuration

in P on a tree, then the local planner will try connecting

them with a transit path. For the distance metric used in

our implementation, we defined a distance d between two

configurations (q1,T1) and (q2,T2) as a weighted sum of

the Euclidean distance between the robot configurations and

a distance between the object transformations, i.e., d =
α‖q2 − q1‖

2 + (1 − α)w(T1,T2), where 0 ≤ α ≤ 1
and w(T1,T2) is a weighted sum of the minimal geodesic

distance between two rotations (see [24] for more detail) and

the Euclidean distance between two displacements.

2) Discretization-Based Manipulation Planner (DBMP):

In contrast with PMP, DBMP constructs its variant of Manip-

ulation Graph, two-layer regrasp graph [4], by discretizing

placements and grasps

We implemented DBMP following [4]. The planner starts

by constructing the set of possible grasps by means of

sampling. Then it builds a two-layer regrasp graph : the first

TABLE I: Pre-Processing time, planning time, and numbers of transitions from three problems averaged over 100 runs.

Problem 1 (Box) Problem 2 (L-shaped object) Problem 3 (Small chair)

prep.
time (s.)

plan.
time (s.)

tran-
sitions

success
rate

prep.
time (s.)

plan.
time (s.)

tran-
sitions

success
rate

prep.
time (s.)

plan.
time (s.)

tran-
sitions

success
rate

Our planner 0.24 12.18 4.0 100% 0.50 15.32 4.0 100% 1.95 29.19 4.0 100%

PMP – 32.02 5.52 100% – 46.83 5.07 73% – 68.82 5.88 50%

DBMP 35.53 17.99 4.0 72% 55.18 39.76 4.0 53% 102.38 37.08 4.0 46%

layer composes of placements and the second layer composes

of grasps. Two placements in the first layer are connected

together if they share at least one common valid grasp. To

solve a query, DBMP first searches for placement sequences

that connect the start and goal placements. Then it examines

each placement sequence and searches for feasible grasps

associated with it.

However, since all the searches are deterministic and

proceed in a depth-first fashion, the time-complexity of

DBMP is significantly large. Instead of having three varying

parameters for each placement class : two parameters for a

location on the table and one parameter for the rotation about

an axis normal to the table’s surface, we constrained each

placement class to have only a single varying parameter,

the rotation. The same was also done implicitly in [4].

Furthermore, the deterministic search is also much sensitive

to indexing of grasps and placements. To reduce this effect

we shuffled grasp and placement indices before each run.

Note that our implementation of grasp set computation was

different from the method used in [4], which was basically

a discretization. Therefore, the pre-processing time put in

Table I is intended only for reference. The numbers of total

grasps computed in the cases of a box, an L-shaped object,

and a chair are 124, 242, and 331, respectively.

C. Simulation Results and Comparisons

For each object, we ran each of the three planners 100
times. The data collected are pre-processing time, planning

time, numbers of transitions, and success rate. (If no solution

was found in 100 s., then the run was considered failed.) Data

were averaged over successful runs and reported in Table I.

1) Comparison with Primitive Manipulation Planner:

From the data reported in Table I, we can see that by

exploiting more information about the connectivity of subsets

of G ∩ P , i.e., by constructing high-level Grasp-Placement

Tables, our planner was able to search for manipulation paths

more systematically and efficiently, as reflected through the

running time and the path quality achieved by our planner.

As PMP had no information about the connectivity, much

planning time was spent attempting infeasible connections

between G ∩P configurations. Furthermore, when the object

was composed of more boxes, connection attempts were even

more prone to failure since from any subset of G ∩ P , the

ratio of the number of reachable G∩P subsets to the number

of all the subsets decreased.

2) Comparison with Discretization-Based Manipulation

Planner: In fact, the two-layer regrasp graph [4] is similar

to ours. One major difference is that they did not exploit

any grasp parameterization in building the graph. Therefore,

in their case, each grasp class contains exactly one grasp,

hence numerous grasp classes. Also, the deterministic search

employed in DBMP makes its capability relatively limited.

Firstly, all placements have to be constrained to only one

location on the table, or at most a few, due to time complexity

of the search. Second, a significant amount of time is spent

on exploring infeasible placement and grasp sequences due to

the depth-first fashion of the search. This makes the success

rate of DBMP in the given time much lower than the other

planners.

D. Hardware Experiment

Besides simulations, we also conducted a hardware ex-

periment. In this experiment, the robot must pick up the

leg of a stool, which we approximated by three boxes,

and hold it with a given grasp to facilitate a subsequent

screwing operation (to be performed by another robot; not

included in this experiment). Snapshots of the start and goal

configurations are shown in Fig. 6. One can see that the

initial pose of the object does not allow grasping with the

desired grasp. Thus, the robot needs to regrasp the object

several times. A video of the robot performing the task can

be found at https://youtu.be/tLouwj0wITQ.

VI. DISCUSSION AND CONCLUSION

A. Extension to Broader Classes of Object Models

Our method for constructing the high-level Grasp-

Placement Table is mainly based on parameterizations of

grasp and placement classes. Parameterization enables cat-

egorizing infinitely many grasps and placements into a finite

number of grasp and placement classes. This enables us to

effectively capture the connectivity of G ∩ P subsets and

encode it into a high-level Grasp-Placement Table without

using any discretization.

Our method can generalize to models for which it is pos-

sible to find efficient placement and grasp parameterizations.

In general, it is not difficult to find placement classes of a

general object as one can compute the convex hull of the

object and then test which surfaces of the hull result in

stable placements. Therefore, the main requirement is that

the object is grasp-parameterizable.

A wide variety of objects can indeed be grasp-

parameterized, including many daily-life objects. For exam-

ple, for a bottle, one can categorize grasps into three classes,

see Fig. 7. For highly irregular objects with no efficient

grasp parameterization, one may have to resort to grasp

discretization. In such a case, our high-level Grasp-Placement

Table will be similar to the regrasp graph of [4].

(a) (b) (c) (d) (e) (f) (g)

Fig. 6: Snapshots from the experiment on the real robot. (a) The start configuration. (b)–(f) The robot performed pick-and-place motions to move
the object to a stable placement which allowed grasping with the desired final grasp. (g) The goal configuration. The video can be found at
https://youtu.be/tLouwj0wITQ.

(a) (b) (c)

Fig. 7: Three possible grasp classes for a parallel gripper grasping a bottle.
Arrows show gripper motions that result in grasps contained in the same
class.

B. Conclusion

We have presented a manipulation planner to tackle pick-

and-place planning problems. We first proposed a method to

construct a high-level Grasp-Placement Table based on the

models of the robot, the object, and the environment, without

resorting to discretization of G ∩ P , the fundamental set of

configurations where transition between transit and transfer

paths may occur. Our construction is therefore associated

with a full parameterization of G∩P , in contrast to previously

proposed methods. The Table then serves as a guide for the

planner to explore the composite configuration space.

Our method to construct the Grasp-Placement Table read-

ily applies to movable objects that are boxes or composed

of boxes. In such cases, assuming that the gripper can

exert large enough forces with its fingers, all grasp classes

considered here are also force-closure. We also discussed

extension of the method to handle broader classes of objects.

The experimental results presented in Section V confirmed

that the high-level Grasp-Placement Table helps improve

both running time and manipulation path quality as compared

to existing manipulation planners.

REFERENCES

[1] P. Tournassoud, T. Lozano-Pérez, and E. Mazer, “Regrasping,” in
Robotics and Automation. Proceedings. 1987 IEEE International Con-

ference on, vol. 4, 1987, pp. 1924–1928.

[2] T. Siméon, J.-P. Laumond, J. Cortés, and A. Sahbani, “Manipulation
planning with probabilistic roadmaps,” The International Journal of

Robotics Research, vol. 23, no. 7–8, pp. 729–746, 2004.

[3] R. Alami, J.-P. Laumond, and T. Siméon, “Two manipulation planning
algorithms,” in WAFR Proceedings of the workshop on Algorithmic

foundations of robotics, 1994, pp. 109–125.

[4] W. Wan, M. M. Mason, R. Fukui, and Y. Kuniyoshi, “Improving
regrasp algorithms to analyze the utilityof work surfaces in a work-
cell,” in Robotics and Automation (ICRA), 2015 IEEE International

Conference on, 2015, pp. 4326–4333.

[5] F. R ohrdanz and F. M. Wahl, “Generating and evaluating regrasp
operations,” in Robotics and Automation, 1997. Proceedings., 1997

IEEE International Conference on, vol. 3, 1997, pp. 2013–2018.

[6] S. A. Stoeter, S. Voss, N. P. Papanikolopoulos, and H. Mosemann,
“Planning of regrasp operations,” in Robotics and Automation, 1999.

Proceedings. 1999 IEEE International Conference on, vol. 1, 1999.

[7] Y. Koga and J.-C. Latombe, “On multi-arm manipulation planning,”
in Robotics and Automation, 1994. Proceedings., 1994 IEEE Interna-

tional Conference on, vol. 2, 1994, pp. 945–952.
[8] C. L. Nielsen and L. E. Kavraki, “A two level fuzzy PRM for

manipulation planning,” in Intelligent Robots and Systems, 2000.

(IROS 2000). Proceedings. 2000 IEEE/RSJ International Conference

on, vol. 3, 2000, pp. 1716–1721.
[9] K. Harada, T. Tsuji, and J.-P. Laumond, “A manipulation motion plan-

ner for dual-arm industrial manipulators,” in Robotics and Automation

(ICRA), 2014 IEEE International Conference on, 2014, pp. 928–934.
[10] K. Hauser and V. Ng-Thow-Hing, “Randomized multi-modal motion

planning for a humanoid robot manipulation task,” The International

Journal of Robotics Research, vol. 30, no. 6, pp. 678–698, 2011.
[11] J. Barry, K. Hsiao, L. P. Kaelbling, and T. Lozano-Pérez, “Ma-

nipulation with multiple action types,” in Experimental Robotics,
ser. Springer Tracts in Advanced Robotics. Springer International
Publishing, 2013, vol. 88, pp. 531–545.

[12] B. J. Cohen, S. Chitta, and M. Likhachev, “Search-based planning for
manipulation with motion primitives,” in Robotics and Automation

(ICRA), 2010 IEEE International Conference on, 2010, pp. 2902–
2908.

[13] B. Cohen, S. Chitta, and M. Likhachev, “Single- and dual-arm motion
planning with heuristic search,” The International Journal of Robotics

Research, vol. 33, no. 2, pp. 305–320, 2013.
[14] M. Stilman, J.-U. Schamburek, J. Kuffner, and T. Asfour, “Manipula-

tion planning among movable obstacles,” in Robotics and Automation,

2007 IEEE International Conference on, 2007, pp. 3327–3332.
[15] A. Krontiris and K. E. Bekris, “Dealing with difficult instances

of object rearrangement,” in Proceedings of Robotics: Science and

Systems, 2015.
[16] S. Cambon, R. Alami, and F. Gravot, “A hybrid approach to intricate

motion, manipulation and task planning,” The International Journal

of Robotics Research, vol. 28, no. 1, pp. 104–126, 2009.
[17] T. Lozano-Pérez and L. P. Kaelbling, “A constraint-based method

for solving sequential manipulation planning problems,” in Intelligent

Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Con-

ference on, 2014, pp. 3684–3691.
[18] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russel, and P. Abbeel,

“Combined task and motion planning through an extensible planner-
independent interface layer,” in Robotics and Automation (ICRA), 2014

IEEE International Conference on, 2014, pp. 639–646.
[19] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, “FFRob: an

efficient heuristic for task and motion planning,” in Algorithmic

Foundations of Robotics XI. Springer International Publishing, 2015,
vol. 107, pp. 179–195.

[20] N. Yamanobe and K. Nagata, “Grasp planning for everyday objects
based on primitive shape representation for parallel jaw grippers,”
in Robotics and Biomimetics (ROBIO), 2010 IEEE International

Conference on, 2010, pp. 1565–1570.
[21] S. M. Lavalle and J. J. Kuffner, “Rapidly-exploring random trees:

Progress and prospects,” in Algorithmic and Computational Robotics:

New Directions, B. R. Donald, K. M. Lynch, and D. Rus, Eds. A.
K. Peters, 2001, pp. 293–308.

[22] R. Diankov, “Automated construction of robotic manipulation
programs,” Ph.D. dissertation, Carnegie Mellon Univer-
sity, Robotics Institute, August 2010. [Online]. Available:
http://www.programmingvision.com/rosen diankov thesis.pdf

[23] F. Lamiraux and J. Mirabel, “HPP: a new software framework for
manipulation planning,” 2015. [Online]. Available: https://hal.archives-
ouvertes.fr/hal-01138118

[24] F. C. Park and B. Ravani, “Smooth invariant interpolation of rotations,”
ACM Transactions on Graphics, vol. 16, no. 3, pp. 277–295, 1997.

