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ABSTRACT 

This paper investigates a queueing system, which consists of Poisson input 

of customers, some of whom are lost to balking, and a single server working a 

shift of length L and providing a service whose duration can vary from customer 

to customer. If a service is in progress at the end of a shift, the server works 

overtime to complete the service. This process was motivated by the behavior 

of fishermen interviewed in the NY Great Lakes Creel Survey. 

We derive the distributions of the number of services (X), overtime and total 

server idle time (T), both unconditionally (for Poisson arrivals) and conditionally 

on the number (n) of arrivals per shift, assuming that the arrival times are not 

recorded in the data. These distributions provide the basis for estimation of the 

parameters from a single realization of the queueing process during [0, L]. The 

conditional distributions also can be used to estimate common service time, w, 

when (n, X) or (n, T) are observed. Confidence intervals based on Tare of 

shorter length, for all confidence coefficients, than the corresponding intervals 

based on X. 

Keywords: Single server queue, balking, conditional distributions, maximum 

likelihood, confidence limits. 

Short Title: Single Server Queue With Balking 
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1. INTRODUCTION 

The queueing system to be considered consists of Poisson input of 

customers, some of whom are lost to balking, and a single server working a shift 

of length Land providing a service whose duration, Wi, can vary from customer 

to customer. Investigation of this queueing system was motivated by the 

behavior of fishermen encountered in the NY Great Lakes Creel Survey 

(Robson and Jones [9]). In this study, an interviewer is stationed at a marina or 

boat launch for a predetermined shift length and asks fishermen returning with 

their catch a fixed set of questions, requiring constant service time, w. Balking 

arises since a fisherman will leave immediately if the interviewer is occupied. 

Although the model described here will allow for variable service time, the 

length of the interview was virtually constant for all fishermen. If a service is in 

progress at the end of a shift, the server works overtime to complete the service. 

Consequently, no queue accumulates: the customer's waiting time is always 

zero and the customer's time in the system is either 0 or wi. Feller [4, pp. 306, 

315, 339] describes a process for the Type I Geiger counter, which is similar but 

lacks the overtime feature, and gives the asymptotic mean and variance of the 

number of particle registrations, i.e., the number of services. For the Creel 

Survey, the goal is to estimate the unknown number (n) of fishermen returning 

to the marina during the shift, based on the known number of interviews. Once 

the number of arrivals is estimated, the number of fish caught can be estimated 

for the balkers, thereby providing the estimates of the total catch for each fish 

species. 
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Several features of the Creel Survey make application of this simple 

queueing model appropriate. The interviewer visits several marinas in a work 

day, starting at a random location along the route. The shift lengths for each 

marina on any day are fixed and range from one to two hours. Because (1) the 

shift length at any site is short relative to the length of a fishing day and (2) the 

time at which the interviewer arrives at a given marina is random (due to the 

random starting point in his route), the assumption of Poisson arrival process of 

fisherman seems reasonable. Recall that the purpose of applying the queueing 

model to the Creel Survey data is to allow estimation of the number of arrivals 

for each shift at each marina, which will allow estimation of the number of fish 

caught by the balkers. The data base contains information from several shifts at 

each marina for a given interviewer. The arrival rate parameter will vary from 

site to site and from day to day for any site due to weather conditions, time of 

day that the interviewer arrives at the site, etc. Thus, to get the best correction 

for missing values (i.e., the number of fish caught by the balkers), one wants to 

estimate the number of arrivals separately for each shift and each site. 

The distributional properties of the number of services performed (X), 

overtime (Y) and total server idle time (T) are derived both unconditionally (for 

Poisson arrivals) and conditionally on the number of arrivals per shift in 

Sections 2 and 3, assuming that arrival times are not recorded in the data. We 

consider the distributional results for overtime more appropriate for measuring 

queueing system behavior rather than for estimating the number of arrivals (n) 

or the arrival rate (A.). The service times are assumed to be independent, 



-4-

identically distributed, strictly positive random variables. However, for purposes 

of estimation, it is sometimes useful to view the service time distribution in terms 

of a given sequence of wi's that is known through the final service of the shift. 

The statistical estimation discussed here and in Rubin and Robson [11] is 

based on observation of a single shift from the queueing process, which often is 

the case in nonindustrial applications. This differs somewhat from estimation 

and statistical inference for stochastic processes discussed by Basawa and 

Prakasa Rao [1] and Basawa and Prabhu [2] in that, with a single observation of 

the process, one cannot rely on large sample properties. We do not consider 

the consistency of the estimators given here; our concern focuses primarily on 

exact (small sample size) properties. 

Samaan and Tracy [12] derive estimators of the customer arrival rate for a 

single server queue with loss (balking) when the customer arrivals form a 

Poisson process and the service times are uniform on the interval (0, 1 ). In their 

case, the interdeparture times of customers are known and become the basis 

for estimation of A.. Basawa and Prabhu [2] discuss large sample inference for 

single server queues, having interarrival time and service time distributions 

belonging to the exponential family, where the sample data are assumed to 

contain the set of interarrival times and service times as well as the number of 

arrivals and the number of service completions. They derive approximate 

maximum likelihood estimates of the customer arrival rate for several models. 

The stopping rule for the process described above is a hybrid of rules 1 and 2 of 

Basawa and Prabhu [2] due to the overtime feature. However, when one uses 
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the distributions that are conditional on the number of arrivals per shift for 

estimation, one operates under a rule, which is a hybrid of Basawa and 

Prabhu's rules 1, 2 and 3, which trivially satisfies the conditions for their 

approximate likelihood function. However, the stability conditions required for 

application of their estimators cannot be met with a single observation of the 

process. 

In this paper, point and interval estimators of the unknown number of arrivals 

(n) are derived from the conditional distributions of total server idle time (T) or 

the number of services (X), which are given in Section 3. Derivation of 

corresponding estimators of the unknown rate (A.) of the Poisson arrival process, 

based on the unconditional distributions, are described briefly. We also 

consider estimation of common service time (w) for the case of service times 

assumed to be equal, when either (n, X) or (n, T) are observed from a single 

shift of the queueing process. Statistical estimates of parameters, such as 

service time, from a system in operation aid in assessing queueing system 

behavior and in design of more efficient systems (Prabhu [8]). 

For notational convenience, variables, moments, probabilities and 

distributions, which are conditional on the realized number (n) of arrivals, will be 

denoted with a lowercase subscript (n), while their unconditional counterparts 

bear an uppercase subscript (N). We use the term probability density function 

(pdf) loosely, applying it to mixed distributions as well as to continuous 

distributions. The special case of constant service time, w, for all customers will 

be discussed where this simpler case affords results unavailable in general. 
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2. JOINT DISTRIBUTION OF NUMBER OF SERVICES AND 

OVERTIME 

The joint pdf of the number of services and overtime can be used as the 

basis for deriving all other distributional results. Consequently, we will derive it 

for the general case of unequal service times. 

Assume that the sequence of service times w1, w2, •.. is known through the 

final service of the shift or that these observed Wi are the given realization of 

independent, identically distributed (strictly positive) random variables. Let Wi 

denote the partial sums of this sequence, Wo=O and Wi =Wi_1+wi· Let Zi denote 

the number of balkers arriving during the ith service and let 11i denote the partial 

sums, 110=0 and 11i=11i_1+Zi. If N customers arrive during (0, L) and exactly X 

services are performed then 11x =N-X. Note that the random variable Wx_1 is 

bounded above by L; I<o. LJ(L-Wx-1) = 1. Hence, for a given wi sequence, X is 

bounded above by M such that WM_1 ~ L < WM, and when n also is given then 

X~ min(n, M). 

Let lj denote the duration of the server's idle period immediately preceding 

the start of the jth service. Thus, 11 is the arrival time of the first of the N 

customers and for j > 1, lj is the length of time between completion of the (j -1 )th 

service and the arrival of the next customer. We note that the Poisson input 

assumption implies that 11, 12, ... is a sequence of independent, identically 

distributed exponential random variables. 

LetT denote the server's total idle time, 0 < T < L, and define 

T = L - Wx + Y = L- Wx-1 - (wx- Y) (1) 
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where Y then denotes the amount of overtime, O::s;;Y < Wx. Note that when L and 

the service time sequence w1, w2, ... are specified, then specification ofT 

uniquely determines X and Y. For the case of all service times equal, when L 

and the common service time, w, are known, one can solve explicitly for X from 

T without knowing the service time sequence, using the relation: 

X-1< (L-T) /w ::s;;X. 

This joint distribution is obtainable by formally invoking the Poisson 

assumption to give, for 0 < y < Wx , P(X=x, Y>y) 

= P(l1 +W1 +I2+W2+ ... +lx ::s;; L < L+y < l1 +W1 +I2+W2+ ... +lx+Wx) 

= P(l1+l2+ ... +lx ::s;; L-Wx-1 < L-Wx-1+Y < l1+l2+ ... +lx+Wx) 

= P(L-Wx+Y < l1+l2+ ... +lx ::s;; L-Wx-1) 

= Gx(L-Wx-1; A.) - Gx(L-Wx+Y; A.) 

or, for L-Wx < t ::s;;L-Wx-1, 

P (X= x, T > t} = Gx(L-Wx; A.)- Gx+1 (t ; A.), 

where the gamma cdf Gx(t; A.) is the x-fold convolution of 1-exp(-A.t). 

Similarly, at y = 0, we formally obtain a Poisson frequency function for 

P(X=x, Y=O} = P(l1+l2+ ... +lx ::s;; L-Wx < l1+l2+ ... +lx+1} 

= Gx(L-Wx; A.)- Gx+1(L-Wx; A.) 

= P (X=x, T =L-Wx}· 

Differentiating produces the following: 

Theorem 1. The unconditional joint density function of the number of 

services, XN , and overtime, Y N , when the customer arrivals form a Poisson 

process with rate parameter A->0, is: 
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fXN ,YN (x, y; A, L) = 

exp(-A.{L-Wx)) (A.(L-Wx)) x/ x! for y=O, Wx <L 

A exp(-A.(L-Wx+y))(A.(L-Wx+Y))x-1/ (x-1 )! for max (0, Wx -L) <Y S.Wx 

o otherwise. 

Conditional on X and T, the frequency distribution of the number of balkers 

arriving during the fixed interval (0, L), 'l1x = N-X, is the Poisson distribution of the 

number of arrivals during a period of total duration L-T. Hence, for 

0 ~X~ min (n, M -1) and n ~ 0, 

fN,XN,TJn, x, L-Wx; A, L) 

= exp(-A(L-Wx))(A(L-Wx)) x exp(-AWx)(AWx} n-x/ (x! (n-x) !) 

and, for L-Wx< t ~L-Wx_ 1 , 1 ~X ~ min (n, M) and n ~ 1, 

fN.XN.TJn, x, t; A, L) 

=Ax tx-1 exp(-At){A(L-t)} n-x exp(-A.(L-t)) I ((x-1 )! (n-x)!). 

Since N is Poisson distributed with parameter AL, we obtain the conditional 

distributions of (Xn, Y n) or (Xn, T n) as 

Theorem 2. The joint density function of the number of services, Xn , and 

overtime, Y n , conditional on N = n arrivals, where n > 0, is: 

( ~ } (L-Wx) x Wxn-x /L n for Wx <L, y = 0 

fx0 , Yn (x, y; n, L) = X ( ~ } (L-Wx+Y) x-1 (Wx-Y) n-x /L n for max(O, Wx -L) < y <Wx 

0 

where X~ min(n, M). 

otherwise, 

Exactly the same distributions for (X, Y) or (X, T) would be obtained under an 

alternative scenario in which service is instantaneous but the server's work shift 
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is foreshortened by an amount wi with the arrival of the ith customer, subject 

only to the overtime constraint; i.e., the server gives up an amount of time off 

equal toy. We refer to this alternative scenario as the "instant service mode" in 

contrast to the earlier "real time mode". Probability calculations are sometimes 

more easily seen in one mode than the other (see Appendix B). 

3. MARGINAL DISTRIBUTIONS OF TOTAL IDLE TIME, NUMBER OF 

SERVICES AND OVERTIME 

The unconditional marginal distributions of T, X, and Y can be derived 

as corollaries to Theorem 1 , while their conditional counterparts can be derived 

as corollaries to Theorem 2. As usual, the marginal results for a given variable 

are derived by integrating over or summing out the other variable in the 

bivariate distributions. 

3{a) Total idle time {T) 

Notice that when the sequence of service times is known through the final 

service, T uniquely specifies X. Consequently, the pdf of idle time is given by: 

Corollary 1.1. For a given sequence of service times, the pdf of total server 

idle time (TN), when customer arrivals form a Poisson process with rate A>O, is: 

{

(Atrexp( -At) 1 xl for t = L-Wx 

hN(t; A, L) = A (At)x-1exp(-At)/(x-1)! for max (0, L-Wx) < t < L-Wx-1 (2) 

0 otherwise. 

The cdf and upper tail probability can be derived directly from the pdf. The 

cdf has jump discontinuities corresponding to increases in the number of 

services. 
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Rubin [1 0] discusses a generalized unconditional cdf of idle time for equal 

service times, which covers the scenario of a time homogeneous Poisson 

arrival process with parameter A, but A itself is the realization of a random 

variable with cdf H. Consequently, each of multiple observations of the process 

could have a different rate parameter for the Poisson arrival process, and with 

idle time observed for each replicate, the mixing distribution H becomes the 

estimation target. 

The marginal distribution of total server idle time, conditional on the number 

of arrivals (n), can be derived from Theorem 2. 

Corollary 2.1 . The pdf of total server idle time (T n), conditional on the 

number of arrivals (n) during a shift of length L, is given by: 

( ~ ) t (L-t) n-x I L n for t = L-Wx 

hn (t; n, L) = X ( ~ ) tx-1(L-t) n-x I L n for max (0, L-Wx) < t < L-Wx-1 (3) 

0 otherwise, 

where max(O, L-Wn):::;; t <L, 0 < Wx. 

The conditional cdf and conditional upper tail probability can be derived 

directly from the pdf; they bear superficial resemblance to an incomplete beta 

function, but the arguments depend on t. For 0< t <L, the cdf is strictly 

increasing unless 0:::;; t < L-Wn. when Fr n(t)=O, and the cdf jumps at t =1-Wj. for 

j=1 , ... , n. The cdf approaches the limit one as t approaches L, but it is actually 

undefined at t = L. 

Figure 1 illustrates the conditional cdf for equal service times with L=1, 

w=0.1 and n = 20, as well as the unconditional cdf with L=1, w = 0.1 and 
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Poisson rate parameter, A=20. The conditional and unconditional cdfs of idle 

time can be used to construct interval estimators for nand A, respectively, while 

the pdfs of idle time allow for maximum likelihood estimation of nand A. 

The unconditional and conditional expected values of total server idle time 

do not have a compact form. For the case of equal service time, they are most 

easily calculated using the linearity property of expectations and substituting the 

appropriate expectations of X andY. 

3(b) Number of services (X) 

The marginal distributions of the number of services (X) become relevant 

when the amount of overtime (Y) is unobservable. The unconditional marginal 

distribution of the number of services can be written most succintly as the upper 

tail probability, which is the following cumulative chi square probability. 

Corollary 1.2. The unconditional upper tail probability of the number of 

services, XN, is: 

fA(L-Wx-1) 

P (XN ~ x; A., L} = Jo qx-1 exp{-q) dq 1 r(x) 

= P (x~x < 2A (L-W x-1)) 

for 1 s x s M and A> 0. 

Note that P(XN ~; A, L) = 1. The expected value for the unconditional 

distribution, 

~ f(L-Wx-1) 

E (XN) = t
1 

Jo Ax qx-1 exp(- Aq) dq I r(x) 

(4) 

(5) 

for 0 s Wx_1 <Land M: WM_1 SL<WM, does not have a simple closed form. 
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For equal service time, the unconditional expected number of services can 

be approximated as: 

E (XN) :: AL I ( 1 +AW) + 0.5 (Aw I ( 1 +AW )f, (6) 

for fixed AW and large A. This approximation results from an argument of 

approximate stationarity of the queueing process for large A and small w. 

An intuitive rationale for (6) is that the average number of services should be 

(average number of arrivals) I (average number of arrivals per service), where 

the denominator is 1 +AW, the served customer plus the expected number of 

balkers arriving during the ensuing busy period. If overtime occurs, then 

arrivals during the overtime period should be included in the numerator, since 

the denominator, 1 +AW, treats all service periods as complete. Thus, the 

numerator is the average number of arrivals in an interval (0, L+ Y) of random 

length L+Y. Conditional on YN, the expected number of arrivals is A(L+YN)· 

Therefore, the ratio above becomes: 

A (L+ E(YN)) I (1 + AW). (7) 

As will be shown in Section 3(d), the unconditional expected value of overtime 

can be approximated by: 

E (YN):: Aw21(2 (1 +Aw)). (8) 

Substituting (8) into (7) gives (6). 

Cox and Smith [3, pp. 49, 65-68] note that stationary processes often provide 

good approximations to similar processes lacking stationarity. The 

approximation given in (6), like those which will be presented for overtime, can 

be shown numerically to behave very well for small to moderate w and small to 
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large A. (Table 1 ). 

Table 1. The exact and approximate unconditional expected number of 

services, E(XN), for several values of A. and w with A.w held constant and L=1. 

The o/o relative error of the approximation has been calculated as ((exact -

approximate) I exact) x 100. 

E (XN) o/o Relative 

A. w A.w Exact Approximate Error 

2.0 0.5000 1.0 1.12890583 1.12500000 0.34598 

3.0 0.3333. 1.0 1.62450848 1.62500000 -0.03026 

4.0 0.2500 1.0 2.12484783 2.12500000 -0.00716 

5.0 0.2000 1.0 2.62503016 2.62500000 0.00115 

6.0 0.1667 1.0 3.12500570 3.12500000 0.00018 

7.0 0.1429 1.0 3.62499832 3.62500000 -0.00005 

8.0 0.1250 1.0 4.12499832 4.12500000 -0.00000 

9.0 0.1111 1.0 4.62500009 4.62500000 0.00000 

10.0 0.1000 1.0 5.12500000 5.12500000 0 

25.0 0.0400 1.0 12.62500000 12.62500000 0 

50.0 0.0200 1.0 25.12500000 25.12500000 0 

100.0 0.0100 1.0 50.12500000 50.12500000 0 

2.0 0.2500 0.5 1.38889234 1.38888889 0.00025 

3.0 0.1667 0.5 2.05555549 2.05555556 0.00000 

4.0 0.1250 0.5 2.72222222 2.72222222 0 

5.0 0.1000 0.5 3.38888889 3.38888889 0 

6.0 0.0833 0.5 4.05555556 4.05555556 0 

7.0 0.0714 0.5 4.72222222 4.72222222 0 

8.0 0.0625 0.5 5.38888889 5.38888889 0 

9.0 0.0556 0.5 6.05555556 6.05555556 0 

10.0 0.0500 0.5 6.72222222 6.72222222 0 

25.0 0.0200 0.5 16.72222222 16.7222222 0 

50.0 0.0100 0.5 33.38888889 33.3888889 0 

100.0 0.0050 0.5 66.72222222 66.72222222 0 
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As for the unconditional marginal distribution, the marginal distribution of the 

number of services (Xn), conditional on the number of arrivals (n), can be written 

most succintly as the upper tail probability. Notice that the conditional upper tail 

probability corresponds to a cumulative beta probability. 

Corolla[y 2.2. The upper tail probability of the number of services, Xn, 

conditional on the number of arrivals, is: 

11-(Wx-1/L) 

P (Xn ~ x; L) = x { n ) ux-1 ( 1-u) n·x du 
X 0 

(9) 

n-x 

.. L( ~) W~-1 (L-Wx-1)n-r I L" 

r=O 

(1 0) 

for 0 ~ Wx_1 < Land x ~ min (n, M). 

Recalling the connection between an incomplete beta integral and a truncated 

binomial sum provides the sum given in (1 0) (Johnson and Kotz [6]). The 

expected value for the conditional distribution, 

min{n, M) n-x 

E (Xn) = L leo. L~l-Wx-1) L { ~ ) W~-1 {L-Wx-1) n-r I L", (11) 
X= 1 r=O 

also lacks a simple closed form. 

For the special case of equal ~ervice time for all customers, approximate 

stationarity of the process occurs for large arrival rate (A.} and short service 

times (w), suggesting the approximation: 

E {X0) = n I (1 + (n-1){w/ L)), (12) 

which is exact for w = 0, w = U(n-1} and w = L. Notice that the denominator of 

the approximation is the expected number of clients that balk or are served per 
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service time w, while the numerator is the total number of arrivals in the shift. 

The approximation behaves well for a variety of n, L, w configurations (Figure 

2). Moreover, for the case of equal service time, the conditional cdf of the 

number of services (Xn) and the conditional upper tail probability of the number 

of balkers (n-Xn = Zn) are equivalent (Rubin (1 0]). This allows one to derive 

estimators of n when only the number of balkers is observed. 

Tis stochastically larger than X, both conditionally and unconditionally, 

since either pair of distributions for the general case has monotone likelihood 

ratio {Lehmann [7], pp. 83-85). The monotonicity of the ratio of beta kernels of X 

and T (conditional) or the ratio of gamma kernels (unconditional), and the fact 

that, for either set of kernels, the integral of the kernel of X over the entire range 

equals that ofT, imply that the cutoff for X is less than the cutoff forT for all a e 

(0, 1 ). Consequently, for any parameter, the 1-2a confidence interval based on 

T is shorter than corresponding interval based on X for all a e (0, 1 ). This is 

satisfying from a statistical point of view: the interval estimator based on more 

information {T) is more efficient, in the sense of having shorter length. 

3(c) Overtime (Y) 

The marginal distributions of overtime and approximations to relevant 

quantities are given in this section. The approximations for the probability of no 

overtime and for the mean and variance of overtime are useful in measuring the 

behavior of queueing systems. Simplified conditional results exist for the case 

of equal service times (w) with n < [Uw], where[·] designates the integer part of 

the argument; they are given in Section 3(d). 
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The unconditional distribution of overtime is derived directly from the 

unconditional joint density function of the number of services and overtime 

given in Theorem 1. 

Corollary 1.3. The unconditional pdf of overtime, YN, when customer 

arrivals form a Poisson process with rate A.>O, is: 

fyN (y; A., L) = 

~ exp(-A.(L-Wx)) (A.(L-Wx)) x/ xl fory = 0 

X=O 

f A.l(max(o, Wx-L},wx}(Y) exp(-A.(L-Wx+y)){A.(L-Wx+Y))x-1/(x-1)1 fory > 0 

0 otherwise, 

where M: WM_ 1 ~L<WM. 

The exact unconditional mean and variance of overtime are quite messy, 

even for equal service times (Rubin [1 0]). However, in the case of equal service 

time, many quantities calculated for the unconditional distribution of overtime 

can be approximated making use of the approximate stationarity of the process. 

The following approximations for the unconditional distribution of overtime have 

been shown empirically to be well-behaved for fixed A.w and large A.: 

P (YN = 0; A., w} = 1/(1+A.w} (13) 

fyN {y; A., w) = A.w I ( 1 +A.w} (14) 

FyN (y; A.,w) = ( 1 +A.y)!( 1 +A.w) (15) 

E (YN):: A.w2f (2( 1 +A.w)) (16) 

Var (YN) = A.w3 (4+A.w) 1 ( 12( 1 +'A.wr) (17) 

The rationale for these approximations is as follows. Recall that a shift 
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consists of pairs of busy and idle times for the server, and the occurrence of 

overtime depends on the random positioning of a shift termination point within 

the busy/idle pair. Thus, the probability of positive overtime is equivalent to the 

probability of the shift termination point occurring during a busy period (the 

constant service time, w). Applying the renewal theorem to the limiting case of 

the queueing process gives: 

. . . ) _ E(busy period) 
P(pos1t1ve overt1me = E(b . d) E("dl . d) 

usy peno + 1 e peno 

= w I (w+A.-1) = A.w I ( 1 +A.w), 

which equals (14). Consequently, the probability of no overtime, for the limiting 

case, is: 

P (vN = 0; A.,w) = 1 - P(positive overtime) 

:: 1 I { 1 +AW). 

which equals (13). 

Notice that the random positioning of a termination point implies that if the 

point~ fall in a busy period, then overtime is uniformly distributed on the 

interval (0, w). This observation, together with (13) and (14) give the cdf of 

overtime for the stationary process as: 

FyN(y; A,w)"' 1/(1+Aw) +(Aw 1(1 +Aw)f (1/ w) dt 

= ( 1 +A.y) I ( 1 +A.w) , 

which equals (15). Similarly, the expected value of overtime for the stationary 

process is: 
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E <vN> = ( 1 +'-wl ·'<o> + (A.w, ( 1 +A.w)l w -'f v dy. 

while the second moment of Y N is approximately AW3 I ( 3( 1 +AW )) . 

Consequently, the variance of overtime can be approximated by (17). 0 

Numerical results for P(YN =0), E(YN) and Var(YN) indicate that the 

approximations are good to at least eleven decimal places for w<0.2 and 

moderate to large A (A>6) and are virtually exact for 0.001<W<0.1 and A>1. 

The approximations are good to at least six decimal places for 0.2<W<0.4 and 

moderate to large A (A> 1 0). 

The conditional marginal distribution follows directly from the conditional 

joint distribution of the number of services and overtime given in Theorem 2. 

Corollary 2.3. The pdf of overtime, Y n• conditional on the number of arrivals, 

is: 

fvn(y; n, L) = 

for y = 0 

mi~M) 

L I( max (o, Wx- L), wx)(Y) X ( ~ } {L-Wx+Y) x-1 {Wx-Y) n-x/L n for y > 0 
X=1 

0 otherwise, 

forM: WM_1 !5; L<WM. 

The conditional cdf and conditional expectation can be found by integration, but 

the latter does not have a compact form. 
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3(d) Conditional distribution of overtime for the case of n < [Uw] 

The conditional distribution of overtime simplifies greatly for the special 

case of equal service time for all customers and the number of arrivals less than 

[Uw], the maximum number of services possible in a shift of length L. Recursion 

formulae exist for the P(Y n =0) and the P(Y n >Y) in this special case. These are 

helpful in performing numerical and algebraic calculations. For typographic 

simplicity, we let the shift length equal unity (L=1) in this section. 

Corollary 2.4. When all services are of duration w and L=1, the probability of 

no overtime, conditional on the number of arrivals, is: 

P(Y n =0) = 1- nw P(Y n-1 =0) for n < [1/w]. 

The recursion relation is proved by showing that 

P(Yn =0) + nw P(Yn_1 =0) = 1. 

This requires several binomial expansions in conjunction with recombining of 

terms, which allows one to rewrite the resulting expression as a polynomial in 

w. Details of the proof are given in Appendix A. 

Corollary 2.5. When all services are of duration w and L=1, the probability of 

no overtime, conditional on the number of arrivals is 

n 

P(Yn=O)= L(n}i(-w)i, 

i 

where (n) i = fl (n-k+ 1) for n < [1/ w]. 
k-=1 

Proof. From Corollary 2.4 we know that 
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P(Y0 = 0) = 1- nw ~ ( n~ 1 )(1-xw)x (xw)n-x. 

X=O 

(18) 

Expanding the finite sum and rearranging terms give the above formula. D 

Corollary 2.6. When all services are of duration w and L=1, the probability 

that overtime exceeds y, conditional on the number of arrivals, is: 

P(Y n >Y) = n (w-y) P(Y n-1 =0) 

for n < [1/w] and 0 < y < w <1. 

A sketch of the proof is given in Appendix B. 

For n < [1/w], P(Y n =0) can be approximated by 

1/(1 +(n + 0.5)w). 

(19) 

(20) 

The core of the approximation, 1/(1 +nw), results from the approximate 

stationarity argument for the queueing process. Empirical results indicate that 

the added 1/(2w) in the denominator improves the approximation. An 

approximation based on the same reasoning is available for P(Y n >y) with 

n < [1/w]: 

P (YN > y) = n (w-y) I ( 1 +(n-0.5) w). (21) 

As a consequence of Corollaries 2.4 and 2.6 we note that: 

Corollary 2.7. When all services are of duration wand L=1, the distribution 

of overtime, conditional on the number of arrivals and on overtime positive, is 

uniform on the interval (0, w) when n < [1/w]. 

fr.Q.Qf. Because we have Poisson arrival of customers, the arrival times are 

uniformly distributed on the interval {0, 1) for shift length equal to one. Positive 

overtime is generated by the arrival time of the last served customer occurring 

after 1-w but before 1. By conditioning on positive overtime, we are rescaling 
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an arrival time distribution that is uniform on (0, 1) to be uniform on a shorter 

interval, (0, w). D 

The expected value and variance for this overtime distribution are w /2 and 

w2/12, respectively. Applying the results of Corollaries 2.4 and 2.6 gives 

P(Y n >YIY n >0) equal to (w-y)/w. Thus, for n < [1/w] 

Fv0 (y1Yn>0) = y/w. 

4. ROLE OF DISTRIBUTIONAL RESULTS IN ESTIMATION 

Point and interval estimators of the unknown number of arrivals (n) or the 

unknown rate (A.) of the Poisson arrival process can be derived from the 

conditional and unconditional distributions, respectively, of total server idle time 

(T) or the number of services (X). The target of inference and which 

distributions are relevant may differ in accordance with the type of data that 

have been collected. For the Creel Survey, total server idle time is unlikely to 

be the data. However, in an industrial setting, total server idle time or its 

complement, the cumulative service time for the shift, may be the relevant data. 

Confidence limits for n and A. are derived by writing confidence statements in 

terms of the appropriate cdfs or upper tail probabilities and solving the resulting 

equations for their parameters, while maximum likelihood estimators of n and A. 

are derived using the pdfs ofT or X. For the case of equal service time, Rubin 

and Robson [11] have constructed point estimators of n, based on Tor X, that 

are unbiased over the restricted range of n < 1/w. They [11] also derive point 

and interval estimators of n using the conditional cdf of the number of balkers 
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(Z), for the case of equal service time. Estimators of nand A. could be derived 

from the marginal distributions of overtime, although only observing overtime 

seems unlikely for most applications. 

In the Sections 5 and 6, the conditional distributions are used to estimate the 

number of arrivals (n) or common service time (w) when n and X or n and T are 

observed. Both maximum likelihood estimates and confidence limits are 

derived. 

5. ESTIMATION OF NUMBER OF ARRIVALS (n) 

Interval or point estimation of n can be based on the conditional distributions 

of X, (X, Y) or T when the shift length is known. One must know the sequence of 

wi's through x to use T, while one need know only the cumulative service time, 

Wx, to use (X, Y) or X. When· the sequence of service times is known through 

the xth service, then T =L-Wx+Y uniquely specifies X. It is not possible, however, 

to resurrect (X, Y) from T when only Wx is known. 

5(a) Point Estimators of n Based on T, (X, Y) or X 

A maximum likelihood estimator (MLE) of the number of arrivals can be 

constructed either from the conditional density function ofT, given in (3) or 

from the conditional joint density function of X andY, given in Theorem 2. 

Notice that one must know the sequence of wi's through x to use the 

former, while one need know only the cumulative service time, Wx, to use 

the latter. In either case, setting the difference between the likelihood 

functions at n and n-1 equal to zero yields: 
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nml (T) = x LIT= X LI(L-Wx+Y). (22) 

The ratio of the likelihoods, 

fn (tx) I fn-dtx) = (n I {n-x))({L-tx) I L) = {n I (n-x))((Wx- y) I L), 

where 0 < L- tx = Wx -y < L, is a strictly decreasing function of n, which 

passes through unity at a point n = nml (T) that is relatively close to X for 

small Wx. The ratio of adjacent ratios of the likelihoods is less than unity: 

(fn+1 {tx)lfn(tx))l(fn{tx)lfn-dtx)) = 1 - xl{n(n-x+1)) < 1 

for 0 :s:; x :s:; n, implying that the likelihood function is unimodal with its 

maximum near nml {T) = X L I (L-Wx+ Y). 

The MLE of n based on X, nml (X), does not have a closed form and is 

most easily found by calculating P {Xn = x; n, L) = 

n-x n-x-1 
L { n} W~-dL-Wx-1)n-r I L" - L ( n } W~(L-Wx)n-r I L" 
r=O X r-0 X+1 

for successive values of n until the probability decreases. The value of n, 

for which P (Xn = x; n, L) is largest, is nml (X). 

The finiteness of nm1 {X) is guaranteed because it is bounded above and 

below by the largest and smallest values, respectively, of 

nmi(T) = nmi{X, Y) = XLI(L-Wx+Y) 

as a function of Y; thus, the following theorem proves that P (X0 = x; n, L) is 

maximum for n in the given interval. Using the fact that f0 (x, y) I f0 _1 (x, y) is 

a decreasing function of n, which passes through unity at n = XL I(L-Wx+ Y) 

for O:Sy<wx, we can prove by contradiction that the n-solution to 

f0(x) = f0 _1 (x) belongs to the interval given in the theorem below. 
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Theorem 3. The integer-valued MLE of n based on X, Rml (X}, satisfies 

XL I (L-Wx-1) s; Rml (X) s; XL I(L-Wx) 

for Wx < L and 0 s; y < Wx . 

Maximum likelihood estimation of A. based on I or X is simpler than that 

for n, since the respective unconditional likelihood functions can be 

differentiated with respect to A.. Rubin and Robson (11] give details. 

S(b) Confidence Limits for n 

The cdf of idle time, conditional on n arrivals, is an increasing function 

of n and can be used to construct confidence limits for n. A 1-a lower 

confidence limit for n can be constructed by solving for n in the equation: 

1t/L 

a= P (Tn,; II L; rj = x• (:.) 
0 

ux'-1 (1 - u)n-? du, (23) 

where 0 < t IL < 1 , O<Wx and 

x* = {~+1 for L-t = Wx 

for Wx-1 < L-t <Wx . 

* Notice that the 2 possibilities for x arise because one must consider whether or 

not the upper limit of integration is equal to a mass point of the distribution. 

Alternatively, the incomplete beta probability given in (23) can be transformed to 

an F probability, allowing one to determine upper and lower confidence limits 

for n from the F-tables, using the appropriate confidence level. Applying the 

transformation 

v = (n-x* + 1) t I x* (L-t) 

to (23) gives 

P(Vn ~(n-x*+1)tlx*(L-t)) =a, 
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where Vn has an F distribution with parameters 2x* and 2(n-x*+1). Notice that 

t /(L-t) represents the estimated odds for service of any given one of the n 

randomly arriving customers, as does the unobserved ratio (x*/n)/{1-(x*-1 )/n}. 

The 1-a upper confidence limit for L can be determined from the equation: 

(24) 

where Fa, b is the critical value of the central F distribution with a and b degrees 

of freedom, for all t, os; t < L. 

The 1-a lower confidence limit for n can be obtained setting the conditional 

upper tail probability ofT equal to a. For the conditional upper tail probability of 

T, x* =X+ 1 for all t (Rubin [1 0]). Therefore, the 1-a lower confidence limit for n is 

the solution to the equation 

F2(X+1), 2(n-x) ( 1-a) = (n-x) t I (x+ 1 )(L-t). (25) 

It is more convenient to apply this definition of x * to upper and lower confidence 

limits, alike. Thus, 1-2a confidence limits for n can be constructed by holding 

the observed odds estimate, T/(L-T), fixed and adjusting the unobserved odds 

estimate, {(x+ 1 )/n)}/{1-(x/n)}, to achieve odds ratios equal to upper and lower 

critical values of V n· 

Integer-valued approximate solutions to equations (24) and (25) can be 

determined using F-tables. Exact solutions, which are noninteger, can be 

computed using the F cdf and a root finding algorithm. 

If one had observed (L, X, Wx), one could use the conditional upper tail 

probability of X, given by (9) or (1 0), for deriving confidence limits of n. Since x 

s; n, if nlower <X, we replace nlower with x. This procedure provides a 1-2a 
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confidence interval which is open (max(x,nrower) <n < nupper) and has coverage 

probability of at least 1-2a. However, as mentioned earlier, this 1-2a 

confidence interval for n would be longer than that derived above using 

(L, T, w1, ... , Wx)· 

The 1-a confidence limits for A. may be calculated in a similar manner, using 

the results of Section 3(a) when T is observed or Corollary 1.2 when X is 

observed. One rewrites the confidence statements based on the unconditional 

cdf and the unconditional upper tail probability in terms of the incomplete 

gamma function and solves the resulting equations for A., yielding the lower and 

upper confidence limits, respectively. 

6. ESTIMATION OF SERVICE TIME (w) OR RELATIVE SERVICE 

TIME (w/L) WHEN SERVICE TIMES ARE EQUAL 

For the case of equal service time, when both n and X are observed, one 

can estimate w if the shift length is known or the relative service time, w/L, if both 

w and L are unknown. Notice that, even for the equal service time case, one 

cannot resurrect (X, Y) from total idle time (T) or total busy time (S) when w is 

unknown. Maximum likelihood estimation of w based on (n, X, Y), when Lis 

known, is possible but is complicated by the fact that the range of Y is 

dependent on w. Interval estimation of w based on the joint cdf of X andY, 

conditional on the number of arrivals, may be possible. We have not attempted 

it because the conditional joint cdf is too cumbersome. Hence, only point and 

interval estimation of w or w/L based on (n, X) is described below. 
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6(a) Maximum likelihood Estimation of w Based on (n, X) 

The conditional distribution of the number of services can be used to derive 

the MLE of w, Wml (X, n). From the upper tail probability of X given in (9), notice 

that the conditional density function is the difference between two beta 

probabilities and that only the upper limit of integration for each probability 

depends on w. Therefore, the first derivative of the likelihood function with 

respect to w is proportional to 

xn-x-1 (L-xw)X -w(x-1)"-X+1 (L-(x-1)w)x-11(n-x). (26) 

Evaluating the second derivative of the likelihood function with respect to w at 

the point for which the first derivative (or, equivalently, (26) ) is equal to zero 

yields: 

- x { ~ ) w n-x (x-1)"-X+1 (L- (x-1) w)x-1{L I w (L- (x-1) w) + x2 I (L- xw)} < 0, 

indicating that the MLE of w is the unique maximum of the likelihood of X, 

conditional on n arrivals. Using Newton's Recursion Formula with 

wo = (n-x)ln(x-1) 

as a starting value, we find that the iteration converges rapidly to Wml (X, n). 

The starting value was derived by setting equation (26) equal to zero and 

algebraically rearranging the equation to yield: 

( ) {1- x-1)·(n-x)(1+wi(L- xw))-x 
w x-1 l(n-x) = (xi(L-(x-1)w)) (27) 

Note that the two terms in the numerator of the right hand side (RHS) of (27) are 

approximately equal to one and that the denominator of the RHS is greater than 

one for x=1, ... , n, and is approximately equal ton, for x=n and small w. Thus, 
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1/ w = n(x-1) I (n-x). 

6(b) Confidence limits for w Based on (n, X) 

The conditional upper tail probability of the number of services is used 

to derive confidence limits for w when (n, X) are observed and the shift length is 

known. Because nand ware inversely related, we use the equation that yields 

the upper confidence limit for n to yield the lower confidence limit for w, and 

proceed similarly for the upper confidence limit of w. Solving for win 

n-x (L- xw) F (1 ) 
X+1 XW = 2(x+1},2(n-x) -a. (28) 

yields the 1-a. lower confidence limit while solving equation for w in 

n-x+1{L-(x-1)w) () 
x (x-1)w = F2x,2(n-x+1} a. (29) 

yields the 1-a. upper confidence limit. These equations can be solved explicitly 

for w, while they must be solved iteratively to yield confidence limits for n. 

Therefore, the 1-2a. confidence interval for w based on (n, X) is: 

L(n-X) < w < L(n-X+ 1 )F2(n-X+1), 2x(1- a.) 

X((n-X)+(X+ 1 )F2(X+1}, 2(n-x)( 1- a.)) (X-1 ){X+(n-X+ 1 )F2(n-X+1 ). 2x( 1- a.)) . 

The 1-2a. confidence interval for w/L based on (n, X) is found by dividing 

through by L in the expression given above. 

When equation (29), or its generalized version for arbitrary service 

distribution, is used to calculate a lower bound on n, if nlower(x) < x, we replace 

nlower(x) with x. Likewise, we replace the upper confidence limit of w with L if the 

upper confidence limit exceeds L. Therefore, when X=1 both the MLE and the 

upper confidence limit of w are equal to L for all n, but the lower confidence limit 

of w depends on n. As n approaches infinity, the lower confidence limit of w 
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approaches the limit UX for all values of X> 1, while the upper confidence limit 

approaches U(X-1) for X>1. 

APPENDIX A 

Corollary 2.4. When all services are of duration w and L=1, the probability of 

no overtime, conditional on the number of arrivals, is: 

P(Y n =0) = 1- nw P(Y n-1 =0) 

ErQQ.f. Using the pdf of Y n for the case n < [1/w] yields: 

n 

P(Y0 =0) = L (n )C1-xw)x(xw)n-x 
X== 1 X 

The recursion relation is proved by showing that 

P(Y n = 0) + nw P(Y n-1 = 0) = 1 

if 0 < nw < 1, which is equivalent to showing that 

for n < [1/w]. 

for nw < 1. 

-1+ f, (n )C1-xw)x(xw)n-x+nw~ ( n-1 }(1-xw)x(xw)"-1-x=O. (A.1) 
X=1 X X=1 X 

Noting that 

n-1 { } n 
nw L, n-1 (1- xw)x(xw}n-1-x = L, ( n )C1- xw)x(xw}n-x(n-x)/x, 

X=1 X X=1 X 

we find that the left hand side (LHS) of (A.1) is equal to 

n -1 

-1 +(1-nw)"+nw:L (n }(1-xw)x(xw)n-x-1. 
X= 1 X 

Applying the Binomial Theorem to (1-nw)n and (1-xw)X and combining these 

terms yields: 

LHS = nw I± ( n )C-1)x(nw)x-1 +I ( n) ± ( x )C-1)v(xw)n-x-1+v\. 
\x=1 X · X=1 X V=O V I 

Making the transformation k=x-v and noting that 
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give: 

n -1 n 

LHS = nw L {n }(w)n-1-k L { n~k }(-1)x-k(x)n-k-1. 
k-=O k x=k xk 

Making the transformation t =x-k gives: 

n -1 n-k 
LHS = nw L ( n )(w)n-1-k L { n-k }(-1)t(t+k)n-k-1. 

k=O k t=O t 

Letting m=n-k-1 and applying the Binomial Theorem to (t+k)n-k-1= m give: 

LHS= nw I (n )(w)n-1-k~ {m+1}(-1)t l (m)kvtm-v. 
k=O k t=O t V=O V 

Switching the order of summation fort and v gives: 

n-1 m lll+1 
LHS=nw L (n)(w)n-1-kL {m)kvL(m+1)(-1)t tm-v. (A.2) 

k=O k V=O V t=O t 

Note that 

for v = 0, 1, 2, ... , m 

(Gradshteyn and Ryzhik [5], p. 4). Since (A.2) is a polynomial ink with the 

coefficient of each term equal to zero, then (A.2) is equal to zero. Therefore, 

(A.1 ) is equal to zero and 

P(Y n =0) = 1-nw P(Y n-1 =0). D 

APPENDIX 8 

Corollary 2.6. When all services are of duration wand L=1, the probability 

that overtime exceeds y, conditional on the number of arrivals, is: 
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P(Yn > y) = n (w- y) P(Yn-1 =0) 

for n < [1/w] and 0 < y < w <1. 

fm.Qf. Let D = w- y. 

(Note that P(Y n > y) = P(w -Y n < w- y =D). ) 

P (Y N > Y) = ~ P (Y N > y, XN = X+ 1) 
X=O 

=P(YN>Y,XN=1)+ ~ P(YN<Y,XN=X+1). 
X=1 

(8.1) 

For n arrivals and only one service, overtime exceeds y only when all n arrivals 

occur in the interval (1-w+y, 1 ). Consequently, P(Y n >y, Xn =1) = (w-y)n = 11n. 

The second term in (8.1) is most easily calculated in instant service mode as 

~ L (nl I (at b! cl)) ( 1-xw-11) a t1.b (xw) c, 

X-=1 a, b, c 

where a= 0, 1, ... , x, b = 1, 2, ... , nand e=n-(a+ b). With r = a+b, applying the 

Binomial Theorem to (1-xw -11)a gives: 

~ i ( ~ }(xw)n-r i { ~} ~ ( r~b }(-1)v !1b+v (1-xwV{b+v). 

x = 1 r .. X+ 1 b = n-x v = 0 

With k = b+v, we must calculate the coefficients of 11k for the polynomial in the 

equation above. Applying the procedure developed in the proof of Corollary 

2.4, we find that the coefficient of 11n in (8.1) is: 

~ { ~ }(-1)a(n-a)= 0 
a=O 

and that for t1.k with 1 <k<n the coefficient is: 

(8.2) 
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After several transformations we find that (8.2) equals 

( n) ~ ((n-k)! /g!)(-w)n-k-g ~ { k-1 )(-1)k-b, 
k g=O b=O b 

where 

~ ( k-1 )(-1)k-b = 0. 
b=O b 

Therefore, the coefficient of Ak is zero for 1 < k < n. Since (8.2) holds for k=1, 

the coefficient for A is: 

I { n )(xw)n-x-1 (1-xw)x{ X+1 ) =n I { n-1 } (1-xw)x(xw)n-1-x 
X= 1 X+ 1 1 X= 1 X 

= n P(Y n-1=0) . 

Therefore, 

P(Y n >Y) = n (w- y) P(Y n-1 =0). 0 
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Figure 2. Expected number of services, conditional on n=15, vs. w for L=1 0 (L\ = 

exact; *=approximate). 


