Single Switch AC/DC Converter with Power Factor Correction (PFC)

Issa Batarseh
University of Central Florida
Peter Kornetzky
University of Central Florida

Find similar works at: https://stars.library.ucf.edu/patents University of Central Florida Libraries http://library.ucf.edu

This Patent is brought to you for free and open access by the Technology Transfer at STARS. It has been accepted for inclusion in UCF Patents by an authorized administrator of STARS. For more information, please contact STARS@ucf.edu.

Recommended Citation

Batarseh, Issa and Kornetzky, Peter, "Single Switch AC/DC Converter with Power Factor Correction (PFC)" (1999). UCF Patents. 521.
https://stars.library.ucf.edu/patents/521

Batarseh et al.

[54] SINGLE-SWITCH AC/DC CONVERTER WITH POWER FACTOR CORRECTION (PFC)
[75] Inventors: Issa Batarseh, Oviedo, Fla.; Peter Kornetzky, Ilmenau, Germany
[73] Assignee: University of Central Florida, Orlando, Fla.
[21] Appl. No.: 09/102,021
[22] Filed: Jun. 22, 1998
Related U.S. Application Data
[63] Continuation-in-part of application No. 60/050, 476, Jun. 23, 1997.
[51] Int. Cl. ${ }^{\text {. }}$ \qquad H02M 3/335
[52] U.S. Cl.
363/16; 363/37; 323/222
[58] Field of Search \qquad 363/16, 17, 20, 363/21, 37, 89, 98; 323/222

References Cited

U.S. PATENT DOCUMENTS

4,533,986	8/1985	Jones 363/17
5,224,025	6/1993	Divan et al. 363/16
5,416,387	5/1995	Cuk et al. 315/209
5,442,534	8/1995	Cuk et al. 363/16
5,442,539	8/1995	Cuk et al. 363/89
5,461,301	10/1995	Truong 323/207

5,479,331	12/1995	Le
5,510,974	4/1996	Gu et al. 363/134
5,515,257	5/1996	Ishii 363/21
5,559,688	9/1996	Pringle 363/89
5,592,128	1/1997	Hwang 331/61
5,594,629	1/1997	Steigerwald 363/21
5,598,326	1/1997	Liu et al. 363/34
5,600,546	2/1997	Ho et al. 363/21
5,619,404	4/1997	Zak 363/21
5,734,562	3/199	Redl 363/16

Primary Examiner-Adolf Deneke Berhane
Attorney, Agent, or Firm-Brian S. Steinberger; Law Offices of Brian S. Steinberger

[57]

ABSTRACT

One-stage power factor correction (PFC) with output electrical isolation. The converter has a configuration of combining a boost circuit and a forward circuit in one power stage. To relieve the voltage spike caused by the leakage inductance of the power transformer, two bulk storage capacitors are used. The same power switch is shared by the PFC circuit and the power conversion circuit. Due to its simplified power stage and control circuit, this converter presents a better efficiency (87%), lower cost and higher reliability. Detailed steady state analysis results show this novel converter has both good power factor correction and excellent regulation capabilities. With PSPICE simulation and experimental results, a measured power factor of 0.99 was obtained by this single switch converter.

9 Claims, 8 Drawing Sheets

Fig. 1

Fig. 2 (b) M2

Fig. 2 (d) M4

Fig. 3

Fig. 4 Storage capacitor voltage of the converter.

Fig. $5 \mathrm{Ac} / \mathrm{dc}$ conversion characteristics of the converter.

Fig. 6 Maximum duty cycle.

Fig. 7 Line regulation capability of the converter.

Fig. 8 Load regualtion capability of the converter.

Fig. 9(a) Voltage (upper) and current (lower) at the switch.

Fig. 9 (b) Line voltage and filtered input current of the converter.

Fig. 10 (a) Voltage (upper, 200V/div.) and current (lower, 2A/div.) at the switch.

Fig. 10 (b) Line voltage (upper, 200V/div.) and filtered input current (lower, $1 \mathrm{~A} / \mathrm{div}$.) of the converter.

SINGLE-SWITCH AC/DC CONVERTER WITH POWER FACTOR CORRECTION (PFC)

This invention relates to AC to DC converters. This invention is a Continuation-In-Part of U.S. Provisional Patent Application 60/050,476 titled "AC/DC Converters" filed Jun. 23, 1997.

BACKGROUND AND PRIOR ART

Abstract

Conventional single-phase rectifier power electronic circuits suffer from high total harmonic distortion (THD) and poor power factor. A number of regulations have been enacted recently to control the harmonic content of line current drawn by the electronic equipment. As a result, researchers have been actively seeking development of power supplies which can comply with those regulations. In recent years, many circuits and control methods were reported, in which high-frequency switching techniques were used to shape the input current waveform becomes dominate in power factor correction (PFC). See for example: A. Prasada. P. D. Ziogas, and S. Manias, "A Novel Passing Waveshaping Method for Single-Phase Diode Rectifiers," PESC' 89 , pp. $99-105$; I. Barbi and S. A. Oliveira da Silva, "Sinusoidal Line Current Rectification at Unity Power Factor with Boost Quasi-resonant Converters," In Proceedings of IEEE-APE'90, pp. 553-562; R. Erickson, M. Madigan, and S. Singer, "Design of a Simple High-Power-Factor Rectifier Based on the Flyback Converter," In Proceedings of IEEE-APEC'90, pp. 792-801; C. Cansein and I. Barbi, "A Unity of Power Factor Multiple Isolated Outputs Switching Mode Power Supply Using a Single Switch," APEC'91, pp. 430-436; I. Takahashi, R. Y. Igarashi, "A Switching Power Supply of 99% Power Factor By the Dither Rectifier," INTELEC 1991, pp. 714-719; M. J. Schutter, R. L. Steigerwald, M. H. Kheraluwala, "Characteristics of Load Resonant Converters Operated in a High Power Factor Mode," IEEE APEC 1991, pp. 5-16; M. Madigan, R.

 Erickson, E. Ismail, "Integrated High Quality RectifierRegulators," IEEE PESC 1992, pp.1-9; R. Redl, L. Balogh and N. O. Sokal, "A New family of single-stage isolated power-factor correctors with fast regulation of the output voltage," IEEE PESC'94 Record, pp. 1137-1144; P. Kornetzky, H. Wei and I. Barteseh, "A Novel One-Stage Power Factor Correction Converter," IEEE APEC'97 Proc., pp. 251-258; Y. S. Lee, K. W. Sui and B. T. Lin, "Novel Single-Stage Isolated Power-Factor-Corrected Power Supplies with Regenerative Clamping," IEEE APEC'97 Proc., pp. 259-265; L. Huber and M. M. Jovanovici, "SingleStage, Single-Switch, Isolated Power Supply Technique with Input-Current Shaping and Fast Output-Voltage Regulation for Universal Input-Voltage-Range-Application," IEEE APEC'97 Proc., pp. 272-280.The implementation of high frequency techniques can be classified into two categories, ie. two-stage scheme and one-stage scheme. In a two-stage scheme, an ac/dc converter with power factor correction is connected to the line, followed by a dc/dc converter. These two power stages can be controlled separately, and thus it makes both converters possible to be optimized. The drawbacks of this scheme are lower efficiency due to twice processing of the input power, larger control circuits, higher cost and low reliability.
One-stage scheme combines the PFC circuit and power conversion circuit in one stage. Due to its simplified power stage and control circuit, this scheme is potentially more efficient. The underline strategy of this scheme is to design
the circuit in a certain way that allows its PFC circuit and power conversion circuit to share the same power switch. Several PFC circuits have been reported. See for example: C. Cansein and I. Barbi, "A Unity of Power Factor Multiple Isolated Outputs Switching Mode Power Supply Using a Single Switch," APEC'91, pp. 430-436; I. Takahashi, R. Y. Igarashi, "A Switching Power Supply of 99% Power Factor By the Dither Rectifier," INTELEC 1991, pp. 714-719; M. J. Schutter, R. L. Steigerwald, M. H. Kheraluwala, "Characteristics of Load Resonant Converters Operated in a High Power Factor Mode," IEEE APEC 1991, pp. 5-16; M. Madigan, R. Erickson, E. Ismail, "Integrated High Quality Rectifier-Regulators," IEEE PESC 1992, pp. 1-9; R. Redl, L. Balogh and N. O. Sokal, "A New family of single-stage isolated power-factor correctors with fast regulation of the output voltage," IEEE PESC'94 Record, pp. 1137-1144. These circuits are especially attractive in low cost, low power applications. However, some drawbacks still exist: a) owing to improperly sharing of the power switch, when the converter operates at high frequency, the unavoidable leakage inductance of their power transformers produce high voltage spike at the switching time, resulting in decreased efficiency; b) because the power switch performs both PFC and regulation purposes, their regulation capabilities are limited; and, c) at high current and low duty ratio operation, a high voltage presents on the bulk capacitor, resulting in a high rating in design and hence raising the cost. Recently, several single switch converter topologies have been presented to overcome the above drawbacks. See for example: P. Kometzky, H. Wei and I. Barteseh, "A Novel One-Stage Power Factor Correction Converter," IEEE APEC'97 Proc., pp. 251-258; Y. S. Lee, K. W. Sui and B. T. Lin, "Novel Single-Stage Isolated Power-Factor-Corrected Power Supplies with Regenerative Clamping," IEEE APEC'97 Proc., pp. 259-265; L. Huber and M. M. Jovanovici, "SingleStage, Single-Switch, Isolated Power Supply Technique with Input-Current Shaping and Fast Output-Voltage Regulation for Universal Input-Voltage-Range-Application," IEEE APEC'97 Proc., pp. 272-280.
U.S. Patents have been proposed for AC/DC converters with power factor correction but fail to overcome the problems presented above. See for example, U.S. Pat. Nos. $5,224,025$ to Divan et al.; $5,416,387$ and $5,442,539$ to Cuk et al.; 5,479,331 to Lenni; 5,510,974 to Gu et al.; 5,515,257 to Ishii; $5,559,688$ to Pringle; $5,592,128$ to Hwang; 5,594, 629 to Steigerwald; $5,598,326$ to Liu et al.; $5,600,546$ to Ho et al.; and $5,619,404$ to Zak.

SUMMARY OF THE INVENTION

The first objective of the present invention is to provide a switching power supply that operates from AC line voltage having a high power factor and output isolation.

The second object of this invention is to provide for a one-stage power factor correction in an AC to DC converter.

The third object of this invention is to provide an AC to DC converter having an output transformer that allows the converter to be used for single output and multi-output applications.

The fourth object of this invention is to provide an AC to DC converter where the leakage inductance of the forward mode power transformer will not cause an additional voltage stress at the power switch so that a power switch having a lower voltage rating and less power dissipation can be used.

The fifth object of this invention is to provide an AC to DC converter which uses the leakage inductance of its' power transformer as part of the power supply design and
thus replaces the bulky output choke of conventional forward mode converters.

The sixth object of this invention is to provide an AC to DC converter which operates the power transformer in a forward mode operation so that a smaller size can be chosen leading to the design of a higher power density AC to DC converter.
A preferred embodiment of the AC to DC converter combines a boost circuit, Pulse Width Modulation (PWM) switching regulator and a forward circuit in one power stage. Two storage capacitors are used to relieve the voltage spike produced by the power transformer and to provide energy to the output while AC line voltage crosses zero.
Further objects and advantages of this invention will be apparent from the following detailed description of a presently preferred embodiment which is illustrated schematically in the accompanying drawings.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 is a schematic block diagram of novel AC to DC converter of the subject invention.

FIG. 2A is a circuit of a first operation mode using the conducting device of FIG. 1 during a first time interval.
FIG. 2B is a circuit of a second operation mode using the conducting device of FIG. 1 during a second time interval.

FIG. 2C is a circuit of a third operation mode using the conducting device of FIG. 1 during a third time interval.
FIG. 2D is a circuit of a fourth operation mode using the conducting device of FIG. 1 during a fourth time interval.

FIG. 3 shows a theoretical key waveform of the novel $\mathrm{AC} / \mathrm{DC}$ converter of FIG. 1.
FIG. 4 shows the storage capacitor voltage of the novel AC/DC.

FIG. 5 shows the AC/DC conversion characteristics of the novel converter.

FIG. 6 shows the maximum duty cycle for the novel converter.
FIG. 7 shows the line regulation capability of the novel converter.
FIG. 8 shows the load regulation capability of the converter.

FIG. $9 a$ shows the simulation waveforms of the novel converter for voltage (upper) and current (lower) at the switch.

FIG. $9 b$ shows the simulation waveforms of the novel converter for line voltage and filtered input current.

FIG. $10 a$ shows the measured waveforms of the converter for voltage (upper, $200 \mathrm{~V} /$ div.) and current (lower, $2 \mathrm{~A} /$ div.) at the switch.

FIG. $10 b$ shows the measured waveforms of the converter for line voltage (upper, $200 \mathrm{~V} / \mathrm{div}$) and filtered input current (lower, 1 A /div.) of the converter.

DESCRIPTION OF THE PREFERRED EMBODIMENT

Before explaining the disclosed embodiment of the present invention in detail it is to be understood that the invention is not limited in its application to the details of the particular arrangement shown since the invention is capable of other embodiments. Also, the terminology used herein is for the purpose of description and not of limitation.

FIG. 1 is a schematic block diagram of novel AC to DC converter 1 of the subject invention. Referring to FIG. 1, CS2,116 are connected to the primary part of forward mode transformer TR, 100 as follows: Terminal $114 a$ of capacitive device CS1, 114 and terminal $118 c$ of leakage inductance L2, 118 are connected to ground 53. Terminal $114 b$ of 65 capacitive device CS1, 114 and terminal $112 b$ of unidirectional conducting device are connected together with terminal $110 a$ of primary winding $110 m$. Terminal $116 a$ of
capacitive device CS2, $\mathbf{1 1 6}$ and terminal $\mathbf{1 1 2} a$ of unidirectional conducting device are connected together with terminal $118 a$ of primary winding $118 m$. Terminal of $110 c$ of leakage inductance L1, is connected to terminal $116 b$ of capacitive device CS2, 116 and to terminal $106 a$ of switching device 106. The terminals $\mathbf{1 1 0} b, 118 a$ and $122 a$ of forward mode transformer are marked with a dot. They are marked as the beginning of the windings, this means that they always have the same polarity with respect to the terminals $110 a, 118 b$ and $\mathbf{1 2 2} b$. While switching device S , 106 is on, energy is transferred from the capacitive devices CS1, 114 and CS2, 116 to the secondary winding 122 of forward mode transformer TR, 100. While this happens part of the energy stored in the capacitive devices CS1, 114 and CS2, 116 is also stored in the leakage inductors L1, 110 and L2, 118. These two inductors act as a current limiter for energy transfer. If switching device S, 106 is off, energy stored in the leakage inductors L1, 110 and L2, 118 is fed back into the storage devices CS2, 116 and CS1, 114 as well as into the secondary winding, $\mathbf{1 2 2}$ of forward mode transformer TR, 100. The secondary winding 122 can be completely isolated from the primary side. RL represents the resistive part of a possible load between the output terminal VO, $\mathbf{1 3 2}$ of converter and output ground 130. Secondary winding 122 and uniconducting device D3, 124 can be an unidirectional conducting device such as a fast acting semiconductor diode such as MUR850 and the like. Components 122, 124 and capacitive device CL, 126 form a closed loop, where current flow is only allowed towards terminal $124 b$ of semiconducting device D3. Terminals $122 a$ of secondary winding 122 and negative terminal $126 a$ of capacitive device CL are connected to output ground level. Capacitive device CL has a value of approximately $900 \mu \mathrm{~F}$, that keeps output voltage VO constant within small limits while current ID3 of uniconducting device D3, 124 is not equal to load current IL.

The basic circuit schematic of the novel single switch converter is shown in FIG. 1A. It can be shown that in steady state the converter operates in four operation modes during one switching cycle. Table I shows the four modes of operation and conducting devices during their corresponding time intervals. The equivalent circuits of the four operation topologies are shown in FIG. 2 and converter key waveforms are shown in FIG. 3.
Notice that in one switching cycle, the line voltage can be considered as a constant voltage $\mathbf{1 0}$, represented by Vg in the equivalent circuits. Capacitors CS1 11.4 and CS2 11.6 are designed to be large and equal. Hence, in the steady state analysis, each capacitor voltage was approximated by a dc source VCs1=VCs2=VCs. The four modes of operation are discussed as follows:

TABLE I

Mode	Time interval	Modes of operation			
		Conducting device			
		$\begin{gathered} \mathrm{S} \\ 106 \end{gathered}$	$\begin{gathered} \text { D1 } \\ 104 \end{gathered}$	$\begin{gathered} \text { D2 } \\ 112 \end{gathered}$	$\begin{gathered} \text { D3 } \\ 124 \end{gathered}$
M1	$\mathrm{t} 0 \leqq \mathrm{t}<\mathrm{t} 1$	x	x		x
M2	$\mathrm{t} 1 \leqq \mathrm{t}<\mathrm{t} 2$		x	x	x
M3	$\mathrm{t} 2 \leqq \mathrm{t}<\mathrm{t} 3$		x	x	
M4	$\mathrm{t} 3 \leqq \mathrm{t}<\mathrm{t} 0+$				

A. Mode $1(t 0 \leqq t<t 1)$

Referring to FIG. $2 a$, mode $\mathbf{1}$ begins at $\mathfrak{t}=\mathbf{t} 0$ when the power switch is turned ON 106. With diode D1 104
conducting, the source voltage is applied to the input choke inductor L 102, causing the current through the inductor increasing linearly. During this mode, energy is transferring from the source to the choke inductor. On the other hand, diode D2 112 is blocked by the two-capacitor voltages since the positive end of CS2 is grounded by the power switch. Thus, the diode splits the primary sides of the forward transformer into two symmetrical branches with one storage capacitor in each. These capacitors (previously charged) feed the primary sides of the forward transformer individually, resulting in part of the energy stored in the two capacitors being transferred to load, represented by load register RL, 128 and to output storage capacitor Cf during this mode.

This mode ends at $\mathrm{t}=\mathrm{t} 1$ when the power switch is turned OFF as shown in FIG. 3. During this mode, we have

$$
\begin{aligned}
& i_{L}(t)=i_{D I}(t)=\frac{V_{g}}{L} t ; \\
& i_{L \prime}(t)=i_{L 2}(t)=\frac{n V_{G}-V_{o}}{n L_{1}} r ; \\
& i_{D 3}(t)=\frac{2}{n} i_{L I}(t)=\frac{2\left(n V_{C s}-V_{o}\right)}{n^{2} L_{1}} r ; \\
& i_{D 2}(t)=0 ; V_{d s}(t)=0 .
\end{aligned}
$$

The duration of this stage is

$$
\begin{equation*}
\Delta t 1=D T s . \tag{1b}
\end{equation*}
$$

Where

$$
D=\frac{t_{1}-I_{0}}{T_{s}}
$$

is the duty cycle.

B. Mode $2(\mathrm{t} 1 \leqq \mathrm{t}<\mathrm{t} 2)$

Referring to FIG. $2 b$, during this operation mode, the power switch is turned OFF and diode D2 is turned ON due to a current iL+2 iL1 flowing through it. The equivalent topology is shown in FIG. 2 (b). Under the constraint of KCL, both the storage capacitors, Cs1 and Cs2, are being charged by current iL+iL1 during this operation mode. With the linear decreasing of the inductor current iL, magnetic energy stored in the choke L, $\mathbf{1 0 2}$ is being converted into electric energy and being stored into the storage capacitors. Thus the energy loss of the storage capacitors during Model is being recovered. At the same time, the leakage inductances L1, 101l and L2, 118 $/$ of forward transformer is being demagnetized and its magnetizing energy is fed back to the output and to the capacitors CS1, 114 and CS2, 116. When the leakage inductances $\mathrm{L} 1,110 l$ and $\mathrm{L} 2,118 l$ of the forward transformer is completely demagnetized, i.e. iL1 and iL2 become zero, the converter's operation enters Mode 3. Using FIG. 2(b), the following expressions are obtained:

$$
\begin{align*}
& i_{L}(t)=i_{D I}(t)=\frac{V_{g}}{L} D T_{s}-\frac{2 V_{C s}-V_{g}}{L}\left(t-D T_{s}\right) \tag{2a}\\
& i_{L I}(t)=i_{L 2}(t)=\frac{n V_{C s}-V_{o}}{n L_{1}} D T_{s}-\frac{n V_{C s}-V_{o}}{n L_{1}}\left(t-D T_{s}\right) \\
& i D 2=i L+2 i L 1 ; \quad i_{D 3}=\frac{2}{n} i_{L l} \\
& V_{d s}=2 V_{C s}
\end{align*}
$$

(2a)

The time intervals $\Delta \mathrm{t} 2$ is given by:

$$
\begin{equation*}
\Delta t_{2}=t_{2}-t_{1}=\frac{n V_{C s}-V_{o}}{n V_{C s}+V_{o}} D T_{s} . \tag{2b}
\end{equation*}
$$

C. Mode $3(\mathrm{t} 2 \leqq \mathrm{t}<\mathrm{t} 3)$

Referring to FIG. $2 c$, the choke inductor current, iL, continues to decrease linearly in this mode. Owing to the existence of diode D3, the primaries of the transformer present very high impedance (FIG. 2 (c)) with the currents through the windings can be negligible for energy transfer to the output. This mode ends when the choke inductor current reaches zero. The key voltages and currents in this duration can be described as followed.

$$
\begin{align*}
& i_{L}(t)=i_{D I}(t)=i_{D 2}(t)=\frac{V_{g}}{L} D T_{s}-\frac{2 V_{C s}-V_{g}}{L}\left(t-D T_{s}\right) ; \tag{3a}\\
& i_{L I}(t)=i_{L 2}(t)=i_{D 3}(t)=0 ; \\
& V_{d s}=2 V_{C S} .
\end{align*}
$$

The time intervals are:

$$
\begin{align*}
& \Delta \dot{t}_{3}=\Delta t_{3}-\Delta t_{2} \tag{3b}\\
& \text { where } \Delta \dot{i}_{3}=\frac{V_{g}}{2 V_{C s}-V_{g}} D T_{s} \tag{3c}
\end{align*}
$$

D. Mode 4 ($\mathrm{t} 3 \leqq \mathrm{t}<\mathrm{Ts}+\mathrm{t} 0$)

Referring to FIG. $2 d$, the operation mode between t 3 and $\mathrm{t} 0+\mathrm{Ts}$, when the cycle repeats, is known as a free wheeling stage, which is used for regulation purposes. When the power switch is turned ON again at $\mathrm{t}=\mathrm{Ts}+\mathrm{t} 0$, the converter operation goes into the next cycle. During this mode, we have

$$
\begin{equation*}
i L(t)=i L \mathbf{1}(t)=i L \mathbf{2}(t)=i D \mathbf{1}(t)=i D \mathbf{2}(t)=i D \mathbf{3}(t)=0 \tag{3a}
\end{equation*}
$$

The time interval is given by,

$$
\begin{equation*}
\Delta t_{4}=T_{s}-D T_{s}-\Delta t_{2}-\Delta t_{3} \tag{3b}
\end{equation*}
$$

Steady State Analysis

The steady state analysis of an ac/dc converter involves two operation frequencies, i.e. line frequency $\mathrm{f}_{L}(50 \mathrm{~Hz}$ or 60 Hz) and high switching frequency fs. The input of the power stage is a rectified sinusoidal which means the conversion ratio M is varying periodically. Dc/dc steady state analysis can be made on the power stage but conceptually, some of the results may not be applied directly to its corresponding $\mathrm{ac} / \mathrm{dc}$ converter because the input is not a steady de voltage. In the actual case of ac/dc, the steady state duty ratio will not follow its dc/dc conversion characteristic. Sampling at the output, the feed back loop will give the duty ratio to control the power flow from storage capacitors to the load. Due to the large value of capacitance of the storage capacitors, the capacitor voltages almost remain as dc, resulting in a smaller shifting in duty ratio with line cycle. In the sense of energy transferring, the input circuit (boost circuit) is an energy compensator for the storage capacitors to keep the average input power being equal to the output power. Therefore, ac/dc steady state analysis can be approximated by replacing the de input voltage and duty ratio in its dc/de steady state analysis by effective (i.e. rms) value of the rectified sinusoidal voltage (i.e. the line voltage) and average duty ratio respectively.

In the steady state analysis of the converter invention, the following notations were adopted:

$$
\begin{aligned}
& \text { - } D \text { - de/de duty ratio; } \\
& \text { Dac — ac/dc duty ratio; } \\
& \text { Dmax-maximum duty ratio; } \\
& \text { Dac, nom - nominal ad/dc average duty ratio; } \\
& V g \text { - de input voltage, } \\
& \text { Vo - output voltage, } \\
& \nu \text { line }(t) \text { - line voltage, } \\
& \text { iline }(t) \text { - line current; } \\
& V \text { line, rms - rms value of line voltage, } \\
& V C S \text { - average voltage across the storage capacitor, } \\
& T s=1 / f s \text { - } \text { switching period; } \\
& n \text {-transformer turn ratio; } \\
& T L=1 / f L \text { - line period; } \\
& \tau_{n}=\frac{L}{R_{L}} f_{S} \text { - normalized load; } \\
& M \triangleq \frac{V_{o}}{V_{g}}-\text { de/dc conversion ratio; } \\
& M_{\mathrm{ac}} \triangleq \frac{V_{o}}{V_{\text {line, rms }}}-\mathrm{ac} / \mathrm{dc} \text { conversion ratio; } \\
& k=\frac{L_{1}}{L}=\frac{L_{2}}{L} \text {-inductor ratio; } \\
& m \triangleq \frac{V_{C s}}{V_{o}} .
\end{aligned}
$$

A. Ac/Dc Conversion Ratio

Using the rms value of the line voltage as the input of the converter, the voltage across the storage capacitor can be determined by,

$$
\begin{equation*}
m=\frac{1}{2}\left[\frac{1}{n}+\frac{k n \tau_{n}}{2 D^{2}}+\sqrt{\left(\frac{1}{n}+\frac{k n \tau_{n}}{2 D^{2}}\right)^{2}+\frac{2 k \tau_{n}}{D^{2}}}\right] . \tag{4}
\end{equation*}
$$

Where

$$
m \stackrel{\Delta}{=} \frac{V_{C s}}{V_{o}}
$$

When k, n and $\tau \mathrm{n}$ are less than one, VCs can be roughly given by

$$
\begin{equation*}
V_{C s} \approx \frac{1}{n} V_{o} \tag{5}
\end{equation*}
$$

Based on the assumption of lossless converter, we have Pin,ave=Pout,ave, i.e.

$$
V_{g} \cdot I_{\text {in,ave }}=\frac{V_{o}^{2}}{R_{L}},
$$

-continued
$\frac{D^{2} T_{S}}{L} V_{C s} \frac{V_{g}^{2}}{2 V_{C s}-V_{g}}=\frac{V_{o}^{2}}{R_{L}}$.

Solving above equation for M , it gives

$$
\begin{equation*}
M=\frac{1}{4}\left(\frac{1}{m}+\sqrt{\frac{1}{m^{2}}+8 \frac{D^{2}}{\tau_{n}}}\right) . \tag{6}
\end{equation*}
$$

Where

$$
M \stackrel{\Delta}{=} \frac{V_{o}}{V_{\text {tine,rms }}}
$$

From Eq. (4), a graph showing m vs. D under different normalized loads is given in FIG. $\mathbf{4}$ for $\mathrm{n}=0.25$ and $\mathrm{k}=0.16$. It can be seen that m drops quickly when duty ratio increasing from zero to 0.2 , even at heavy load as $\tau_{n}=2$. This means we have almost a constant storage capacitor voltage in the operation range of duty ratio.
From Eqs. (4) and (6), a group of curves, $\mathrm{M}_{a c}$ vs. $\mathrm{D}_{a c}$ under different τ_{n} 's, can be obtained as shown in FIG. 5. The $\mathrm{ac} / \mathrm{dc}$ conversion characteristics of this converter can be investigated by examining these curves. It can be seen that for a certain load τ_{n}, ac/dc conversion ratio can be adjusted by changing the duty ratio of its driving signal. We may note that at light load (low τ_{n}), the proposed converter can operate as both boost and buck converter.
B. Maximum Duty Ratio and Regulation Capabilities

According to the key waveforms shown in FIG. 3, the duty ratio $\mathrm{D}_{a c}$ is limited by the following equation:

$$
\begin{equation*}
\Delta t_{1}+\Delta t_{3}^{\prime} \leqq T_{S} \tag{7}
\end{equation*}
$$

Substitute Eqs. (1b) and (3c) into Eq. (7), we obtain

$$
D_{\mathrm{ac}} \leq 1-\frac{1}{\sqrt{2}} \frac{1}{M_{\mathrm{ac}} m} .
$$

The maximum duty ratio is defined as

$$
\begin{equation*}
D_{\max }=1 \frac{1}{\sqrt{2} M m} \tag{8}
\end{equation*}
$$

In order to study the line and load regulation capabilities, we express the ac duty ratio in terms of M and τ_{n} as

$$
\begin{equation*}
D=\sqrt{\frac{M \tau_{n}}{2 a}\left(-b+\sqrt{b^{2}-4 a c}\right)} \tag{9}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{a}=2 \mathrm{M}-\mathrm{kn} ; \\
& \mathrm{b}=-4 \mathrm{M}^{2}+2 \mathrm{n}(1+2 \mathrm{k}) \mathrm{M}+\mathrm{kn}^{2} ; \\
& \mathrm{c}=-2 \mathrm{knM}(\mathrm{n}+2 \mathrm{M}) .
\end{aligned}
$$

From Eqs. (4)-(9), characteristic curves for $D_{\text {max }}$ vs. n under different conversion ratios, D vs. M under different loads and D vs. τ_{n} under different conversion ratios, are given in FIGS. 6, 7 and 8, respectively. From Eq. (8), we notice that the maximum duty ratio is independent of τ_{n}. FIG. 7 shows the maximum conversion ratio as a function of M.

From FIG. 6, it can be seen that for a given conversion ratio M , the smaller the transformer turn ratio is, the larger the maximum duty ratio will be. In practical application, selection of n should be made based on the trade off between

Referring to FIG. 7, we can investigate the line regulation capability of the proposed ac/dc converter. For example, the converter was designed with $\mathrm{n}=0.25, \mathrm{~V} \mathrm{o}=50 \mathrm{~V}$. At load m $\tau n=0.5$, the Mac gain can change between 0.1 to 0.82 , which means theoretically, the output can be kept at 50 V while the input voltage is changing within the range of $61 \mathrm{~V} \sim 500 \mathrm{~V}$. The duty ratio range is between 0.08 to its maximum 0.8 . In short, $\mathrm{a} \pm 20 \%$ variation in the line voltage requires the duty ratio change by 58% to maintain constant output.

Similarly, the load regulation capability can be examined by using FIG. 8. For an ac/dc converter with $\mathrm{n}=0.25$,fS $=$ $50 \times 10^{3} \mathrm{~Hz}, \mathrm{~L}=300 \mu \mathrm{H}, \mathrm{Mac}=0.455$ (Vline,rms $=110 \mathrm{~V}$, $\mathrm{V}=50 \mathrm{~V}$), theoretically, tn can vary between 0.1 to 1.3 with the output voltage being kept at 50 V . If the load changes $\pm 50 \%$, to maintain a constant output, a duty ratio change of 66% is required.
C. Power Factor Correction

The line current is determined by

$$
\begin{equation*}
i_{\text {tine }}(t)=\frac{v_{\text {line }}(t) D^{2} T_{s}}{2 L}=\frac{D^{2} T_{s}}{2 L} \sqrt{2} V_{\text {line, rms }} \sin \omega_{L} I . \tag{10}
\end{equation*}
$$

where: $\omega \mathrm{L}$ is the line angular frequency.
Since Ts and L are constant and Dac is nearly constant, iline (t) and vline(t) have the same wave-shape. Therefore, a good power factor can be obtained by the novel converter. D. Voltage and Current Stresses

TABLE II
35

D1 104
2 Vcs

$$
\frac{\sqrt{2} V_{\text {line,rms }}}{L} D T_{S}
$$

D2 112

$$
\left(\frac{\sqrt{2} V_{\text {line,ms }}}{L}+2 \frac{n V_{C s}-V_{o}}{n L_{1}}\right)_{D T_{S}}
$$

D3 124

$$
\begin{aligned}
& V o+n V c s \\
& \text { Approximately }
\end{aligned} \quad 2 \frac{n V_{C s}-V_{o}}{n^{2} L_{1}} D T_{S}
$$

Through steady state analysis, the voltage and current stresses on each switch were found as listed in Table II.
E. Output Voltage Ripple

By integrating the current through the output capacitor Cf, the output voltage ripple is given by

$$
\begin{equation*}
\frac{\Delta V_{o}}{V_{o}}=\frac{m}{2 n L_{1} C_{f} f_{s}^{2}} \frac{\left(2 D m n-2 D-n^{2} k \tau_{n}\right)^{2}}{m^{2} n^{2}-1} . \tag{11}
\end{equation*}
$$

F. Critical Choke Inductance

The critical choke inductance was found as

$$
\begin{equation*}
L_{c r i a}=\frac{D R_{L}}{f_{s} M^{2}} . \tag{12}
\end{equation*}
$$

To ensure the converter operating in DCM, the choke inductor must be selected with a value smaller than the critical inductance.

Guideline of the Single Switch Converter

The novel $\mathrm{ac} / \mathrm{dc}$ converter can be based on the following principles:
a) Selection of Transformer Turn Ration

Selection of transformer turn ratio should be based on the trade off between regulation capabilities and voltage stresses on the devices. According to Eq. (5), a low n will result in high voltage across the storage capacitors. Since all the voltage stresses on the switches (S and D1~D3) depend on VCs, we prefer a higher transformer turn ratio. On the other hand, from FIG. 6, a higher n causes the maximum duty cycle to be lower, reducing both the line and load regulation capabilities. Hence, a lower transformer turn ratio is desired in this case. In practical design, a proper value of n should be chosen so that it gives enough regulation capabilities and lower voltage stresses as well.
b) Setting of Nominal Duty Ratio and Normalized Load

When n has been chosen, a group of curves as shown in FIG. 8 for $\mathrm{n}=0.25$ can be generated. The nominal duty ratio can be approximated by

$$
\begin{equation*}
D, \text { nom }=0.1+0.5(D \max -0.1) \tag{13}
\end{equation*}
$$

In the above equation, we assumed that the minimum duty ratio is 0.1 . In FIG. 8, corresponding to the nominal duty ratio, normalized load m can be found.
c) Selection of Choke Inductance

The value of choke inductance is given by

$$
\begin{equation*}
L=\tau n R L T S \tag{14}
\end{equation*}
$$

d) Selection of L1 and L2

From Table II, it seems that to relieve high current stresses, we should increase the inductance L1. But the effect will be very weak because the storage capacitor voltage increases with the increasing of $\mathrm{k}=\mathrm{L} 1 / \mathrm{L}$ as shown in Eq. (6c). In practical design, we prefer a small value of k so that the voltage stresses can be reduced. For a given k, L1=L2 can be selected according to

$$
\begin{equation*}
L 1=L 2=k L . \tag{15}
\end{equation*}
$$

e) Selection of the Storage Capacitance

To select the storage capacitors, let's consider that due to the missing of one line cycle, an average voltage drop of 55 kcVCs on the storage capacitor is allowed, then by analysis we have

$$
\begin{equation*}
C_{S} \geq \frac{T_{L}}{k_{c}\left(2-k_{c}\right) R_{L} m^{2}} \tag{16}
\end{equation*}
$$

and the voltage stress on the storage capacitor can be calculated by

$$
\begin{equation*}
V C s=m V o, \tag{17}
\end{equation*}
$$

For a given design with specified ripple factor, we can find an output capacitance. Together with the output voltage, an output capacitor can be chosen.
g) Selection of Switches

The selection of switches should be based on their voltage and current stresses which can be calculated according to the equations listed in Table II.

Let us consider the following specifications as a design example:

Nominal input voltage: Vline,rms=110V@60 Hz;
Input voltage: Vline, $\mathrm{rms}=85 \mathrm{~V} \sim 130 \mathrm{~V} @ 60 \mathrm{~Hz}$;
Output voltage: $\mathrm{Vo}=50 \mathrm{~V} \pm 2.5 \%$;
Nominal load: 1A;
Switching frequency: $\mathrm{fs}=50 \mathrm{KHz}$.
Based on the above guidelines, we obtain the converter parameters as follows.
a) Transformer turn ratio n :

From FIG. 6, let's select $\mathrm{n}=0.25$ which gives a maximum duty ratio of 0.65 at $\mathrm{Mac}=0.455$.
b) The average duty ratio at nominal input is:

$$
D, \text { nom }=0.1+0.5(D \max -0.1)=0.1+0.5(0.65-0.1) \approx 0.38
$$

From FIG. 8, $\tau \mathrm{n}=0.5$ can be chosen.
c) The choke inductance is hence determined by

$$
\begin{equation*}
L=\tau n R L T S=0.5 \times 50 \times 2 \times 10^{-5}=500, \mu \mathrm{H} \tag{40}
\end{equation*}
$$

d) Let's choose $\mathrm{k}=0.16$. Then we can select L 1 and L2 as

$$
L 1=L 2=k L=0.16 \times 500=80 \mu \mathrm{H}
$$

e) Suppose that due to one line cycle missing, an average 5 voltage drop of 0.1 VCs on the storage capacitor is allowed, i.e. $\mathrm{kc}=0.1$. Then we have

$$
C_{S} \geq \frac{T_{\text {line }}}{k_{c}\left(2-k_{c}\right) R_{L} m^{2}},
$$

where

$$
m=\frac{1}{2}\left[\frac{1}{n}+\frac{k n \tau_{n}}{2 D^{2}}+\sqrt{\left(\frac{1}{n}+\frac{k n \tau_{n}}{2 D^{2}}\right)^{2}+\frac{2 k \tau_{n}}{D^{2}}}\right]
$$

So

$$
C_{S} \geq \frac{1.667 \times 10^{-2}}{0.1 \times(2-0.1) \times 50 \times 4.14^{2}}=102 \mu \mathrm{~F},
$$

and $\mathrm{VCs}=\mathrm{m} \quad \mathrm{Vo}=207 \mathrm{~V}$.
Select CS=110 $\mu \mathrm{F} @ 250 \mathrm{~V}$.
f) From Eq. (18), the output capacitance can be determined by

$$
\begin{aligned}
C_{f} & =\frac{m}{2 n L_{1} f_{S}^{2}} \frac{\left(2 D m n-2 D-n^{2} k \tau_{n}\right)^{2}}{m^{2} n^{2}-1} \frac{1}{\frac{\Delta V_{o}}{V_{o}}} \\
& =5.423 \mu \mathrm{~F}
\end{aligned}
$$

We select $\mathrm{Cf}=10 \mu \mathrm{~F} @ 100 \mathrm{~V}$.
g) From Table II, we calculate the theoretical diode and switch voltage and current stresses as listed in Table III.

TABLE III
$\left.\begin{array}{ccc}\hline \begin{array}{c}\text { Theoretical switch and diodes voltage and current stresses under nominal } \\ \text { condition }\end{array} \\ \hline & \text { Voltage Stress } & \begin{array}{c}\text { Current }\end{array} \\ \text { Device } & \text { (V) } & \text { Stress (A) }\end{array}\right]$

According to the above-calculated stresses and considering switching time, we choose:

S: IRF840; D1, D2 and D3: MUR850.

Simulation and Experimental Results

By using the above circuit parameters, a closed-loop schematic of the proposed single switch converter was simulated by PSPICE and the simulation results are shown in FIG. 9. An experimental prototype of the converter was built up in the laboratory with the same circuit parameters. To obtain the transformers ratio $(\mathrm{n}=0.25)$, the primary windings and secondary windings were built with exciting inductance. Pulse-width-modulation chip SG3525 was used for the closed-loop control. The experimental waveforms of voltage and current at the switch and filtered line current, shown in FIG. $10 a$ and $10 b$, were recorded by using an hp54542A oscilloscope. Both the simulated and the experimental waveforms agree well and show that the waveforms of the line voltage and the input current are almost sinusoidal ones with no phase difference, proving that a good power factor can be achieved by this converter topology. The measured power factor is 0.99 . In the experiment, and an efficiency of 87% was obtained. Measured power factor and efficiency shows that the novel AC to DC converter can maintain 99% PF with the line changing from 85 V AC to 135 V AC. At the nominal load, 87% efficiency was obtained.

While the invention has been described, disclosed, illustrated and shown in various terms of certain embodiments or modifications which it has presumed in practice, the scope of the invention is not intended to be, nor should it be deemed to be, limited thereby and such other modifications or embodiments as may be suggested by the teachings herein are particularly reserved especially as they fall within the breadth and scope of the claims here appended.

We claim:

1. A power supply that provides a DC(Direct Current) power to a load from an AC (Alternating Current) source comprising:
a rectifying stage for transferring electrical energy from an AC source into pulsating unipolar voltage pulses at output terminals;
a boost stage having a controllable conducting means and a first unidirectional conducting means for controlling
current flow from the output terminals of the rectifying stage and blocking the current flow into the opposite direction and a single controllable switching device connected across the output terminals; and
an inductively coupled forward stage for connecting to a load; and
an inductive-capacitive stage connected between said boost stage and said forward stage providing an inductive energy storing circuit when said switching device is closed and a capacitive charging circuit when said switching device is open, whereby a conversion efficiency of over approximately $80 \% \mathrm{AC}$ to DC is achieved.
2. The power supply of claim 1 whereby said inductivecapacitive stage includes:
a parallel circuit with a first branch having a first leakage inductance series connected to first primary input winding and then to a first storage capacitor, and a second branch having a second storage capacitor series connected to second primary input winding and a second leakage inductance with a second unidirectional conducting means having input terminal connected between the second storage capacitor and the second primary winding and an output terminal connected between the first primary winding and the first storage capacitor whereby energy is transferred between inductance devices and capacitance devices when the switching device is open and from the capacitance devices to the primary winding and the leakage inductances when the switching device is closed.
3. The power supply of claim 1 , wherein the controllable conducting means operates with a switching frequency that is greater than approximately 10 times higher than the frequency of the said AC source.
4. The power supply of claim $\mathbf{3}$, wherein a ratio between on and off time of said controllable means is controlled by:
means for sensing at least one of voltage and current of the power supply.
5. The power supply of claim 4 , wherein the ratio between on and off time of said controllable conducting means is also controlled by:
a sensed overload of the power supply.
6. The power supply of claim 4 , wherein the ratio between on and off time of said controllable conducting means is further controlled by:
an external source chosen from one of: a voltage and current.
7. The power supply of claim 1 , wherein the second controllable conducting means includes a device chosen from one of:
a power MOSFET, an IGBT, and a BJT.
8. The power supply of claim 1 , wherein the second unidirectional conducting means includes:
semiconductor diodes.
9. The power supply of claim 1 , wherein the second unidirectional conducting means includes:
a zener diode.
