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Abstract. A singular limit is considered for a system of Cahn-Hilliard
equations with a degenerate mobility matrix near the deep quench
limit. Via formal asymptotics, this singular limit is seen to give rise
to geometric motion in which the interfaces between the various pure
phases move by motion by minus the surface Laplacian of mean cur-
vature. These interfaces may couple at triple junctions whose evo-
lution is prescribed by Young’s law, balance of fluxes, and continu-
ity of the chemical potentials. Short time existence and uniqueness is
proven for this limiting geometric motion in the parabolic Hölder space
C

1+ α
4 , 4+α

t, p , 0 < α < 1, via parameterization of the interfaces.

1. Introduction. Isothermal phase separation in multicomponent sys-
tems can be modeled by a system of Cahn–Hilliard equations. In such a
system the diffusional mobility matrix in general can be expected to be de-
pendent on the concentration of the components. In regions in which one
component is predominant, the mobility tends to be much smaller than in
regions in which there is a mixture of different components. This implies
that diffusion in interfacial regions is relatively enhanced. In particular, this
phenomenon becomes more pronounced at low temperatures where entropy
contributions are smaller. Therefore, it is reasonable to consider systems of
Cahn–Hilliard equations in which the mobility matrix depends on the con-
centrations of the different components (cf. [11, 24, 32]). The mass balance
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for the various components then gives the following evolution equations for
the concentrations ui, i = 1, ..., N ,

ui
t = −∇ · J i ,

J i = −
N∑

j=1

Lij(u)∇wj , (1)

wi = DiΨ(u) − 1
N (DΨ(u) · e) − γΔui ,

where e = (1, ..., 1)t and u = (u1, ..., uN )t. The number N denotes the
number of the components and J i is the flux of the i′th component, which is
taken here to be a linear combination of the thermodynamical forces ∇wj .
The functions wi are modified chemical potentials which are prescribed as
functional derivatives of the free energy functional

E(u) =
∫

Ω

(
Ψ(u) + γ

2 |∇u|2
)

,

where the variational derivative has been taken over the set of all functions
which satisfy the constraint

∑N
i=1 ui = 1. This constraint reflects the fact

that the ui are defined here as volume (or molar) fractions of the components.
In this paper we assume the homogeneous part of the free energy Ψ to be of
regular solution type; i.e.,

Ψ(u) = θ

N∑
i=1

ui lnui − u · Au,

where A is a N × N matrix. The gradient energy coefficient γ > 0 that
appears in the gradient part of the free energy is a small parameter and we
will see that

√
γ is directly proportional to the thickness of the interfaces.

Furthermore, E is taken to be defined on a bounded domain Ω ⊂ R
n with

a sufficiently smooth boundary. As boundary conditions for the system
(1), we assume no–flux conditions and natural boundary conditions for the
concentrations; i.e., J i · ν = 0 and ∇ui · ν = 0 where ν is the exterior normal
to ∂Ω.

Phase separation for multicomponent systems were first studied by Mor-
ral and Cahn [25] and De Fontaine [14]. In particular their linear stability
analysis suggested that systems of Cahn–Hilliard equations model spinodal
decomposition in multicomponent systems. This was later supported by the
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numerical simulations of Eyre [22] and Blowey, Copetti, and Elliott [5]. We
also refer to the work of Barrett and Blowey [3, 4] who analyze a numer-
ical method for a system of Cahn–Hilliard equations with a concentration
dependent mobility matrix. They performed numerical simulations with a
concentration dependent mobility which is taken to be small in the pure
component and as expected they observed that the time scale of the evolu-
tion increases as the mobility in the pure component decreases. A derivation
of the system (1) from basic thermodynamical principles was given by El-
liott and Luckhaus [19] in the case of a constant mobility matrix. They also
proved global existence and uniqueness. Elliott and Garcke [18] studied a
system of Cahn–Hilliard equations with a concentration dependent mobility
matrix which allowed the mobility to vanish for the pure component. They
discussed properties of the mobility matrix and showed existence of a weak
solution of the resulting system of fourth order degenerate parabolic equa-
tions. We also refer to the work of Tombakoglu and Ziya Akcasu [32] who
derived the system (1) with a concentration dependent mobility matrix from
a mean field theory.

The simplest choice of a concentration dependent mobility matrix which
is physically relevant, has as its entries

Lij(u) = ui(δij − uj) i, j = 1, ..., N (2)

(cf. [32, 18]). This matrix is symmetric and fulfills the condition
∑N

j=1 Lij =
0 which is necessary in order to ensure that the constraint

∑N
i=1 ui = 1 is

preserved during the evolution. Although our results are also true for more
general mobility matrices (cf. [18]), we restrict our discussion to the form
(2) in order to keep the presentation simple.

Our goal in this paper is to relate the system (1) to a sharp interface
model in the limit in which the interfacial thickness tends to zero as the time
is rescaled appropriately. The first result in this direction for a single Cahn–
Hilliard equation with a constant mobility was obtained by Pego [27]. By the
means of formal asymptotic expansions, Pego [27] showed that in the scaling
γ = ε2, t → εt, as ε ↘ 0 solutions of the scalar Cahn–Hilliard equation with
constant mobility can be expected to converge to solutions of the Mullins–
Sekerka evolution problem. Later Pego’s result was justified rigorously in
the radially symmetric case by Stoth [31] and by Alikakos, Bates, and Chen
[1] under the assumption that the limiting motion has a smooth solution.
We note that recently, the existence and uniqueness of a smooth solution to
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the two–phase Mullins–Sekerka problem has been proved independently by
Chen, Hong, and Yi [13] and Escher and Simonett [21]. Cahn, Elliott, and
Novick–Cohen performed a formal asymptotic analysis for a single Cahn–
Hilliard equation with a concentration dependent mobility. With the scaling
γ = ε2, t → ε2t, they obtained motion by surface diffusion as the singular
limit near the deep quench; i.e., as ε, θ ↘ 0. This evolution law is defined
purely in terms of local geometric quantities in contrast to Mullins–Sekerka
evolution where the geometric data of the interfaces are coupled with the
evolution of bulk fields. We also mention the work by Elliott and Garcke
[17] and Escher, Mayer, and Simonett [20] for existence and stability results
for diffusive surface motion laws.

The connection between a multiphase Ginzburg–Landau system and a
sharp interface problem was first demonstrated by Baldo [2]. He applied
Γ–convergence techniques to show that functions that minimize E over a set
of functions with prescribed mass converge to solutions of a sharp interface
problem which consists of finding a partition of Ω into N phases which
fulfills a minimal interface condition. Here, each of the phases is constrained
to have fixed volume. Via formal asymptotic expansions, Bronsard and
Reitich [8] related a vector valued Allen–Cahn equation to mean curvature
evolution for interfaces which are coupled by an angle condition, known as
Young’s law [34], at triple junctions. They also showed a local existence
result for the limiting evolution problem. The angle condition at the triple
junction can be viewed as a balance of mechanical forces and it arises in the
formal asymptotic expansions as a solvability condition for a three layered
stationary wave. Recently Bronsard, Gui and Schatzman [6] proved the
existence of such a wave in the case of a symmetric three–well potential.

Cahn and Novick–Cohen [12] and Novick–Cohen [26] studied an Allen–
Cahn/Cahn–Hilliard system modelling simultaneous phase separation and
ordering in binary alloys. Assuming a degenerate mobility, in [26] formal
asymptotic expansions were applied to show that the singular limit of this
system couples motion by mean curvature and quasi–static diffusion with
surface diffusion. Triple junctions have also been derived recently by for-
mal asymptotics in the context of a phase field model for solidification of a
eutectic alloy in the stationary case by Wheeler, McFadden and Boettinger
[33]. In parallel with our work, Bronsard, Garcke and Stoth [6] studied an
asymptotic limit of a system of Cahn–Hilliard equations with a constant
mobility matrix. They obtained an evolution law that couples Laplace’s
equation in bulk regions, the Gibbs–Thomson law on interfaces, Young’s
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law at triple junctions to a dynamic law of Stefan type. For the limiting
evolution they demonstrated a conditional existence result using an implicit
time discretization and methods from geometric measure theory.

In this paper we show that with the scaling γ = ε2, t → ε2t, the singular
limit of (1) in the deep quench limit yields motion by minus the Laplacian
of the mean curvature for each of the interfaces. At triple junctions Young’s
law, a condition that follows from the continuity of chemical potentials and
a no–flux condition hold. At the intersection of an interface with an exter-
nal boundary a Neumann type angle condition and a no–flux condition are
obtained. Furthermore, we derive a fourth order parabolic boundary value
problem such that solutions of this initial boundary value problem param-
eterize curves which solve this limiting geometric evolution problem. We
prove local in time existence for this initial boundary value problem. Taking
into account equivalence classes of solutions obtained by reparameterization
of the evolutionary curves and allowing for variability in fixing the tangential
velocity uniqueness for the geometric problem is also proved.

2. Formal asymptotic expansions. In what follows we consider the
scaling t → ε2t and γ = ε2 (cf. Cahn, Elliott, Novick–Cohen [10]) and write
(1) as

ε3ui
t = −ε∇ · J i , (3)

J i = −
N∑

j=1

Lij(u)∇wj , (4)

wi = DiΨ(u) − 1
N (DΨ(u) · e) − ε2Δuj , (5)

where Ψ is chosen to be of regular solution type. We assume that A =
(aij)i,j=1,...,N is positive definite when restricted to {u |∑N

i=1 ui = 1}. The
coefficients aij are pair interaction coefficients of components i and j and
since it is reasonable to assume that a phase does not interact with itself, aii

is taken here to be zero (cf. De Fontaine [14]). This implies that the minima
of Ψ are of equal height in the limit θ ↘ 0. The assumptions on A give
rise to a N–well structure for Ψ when θ > 0 is sufficiently small. Moreover,
each of the N phases can be identified by the property that one of the N
components is predominant. Throughout our discussion, we assume that

θ = O(ε).
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The derivation of the outer and inner solutions will only be sketched. For
a more detailed analysis in the binary case we refer to Cahn, Elliott, and
Novick–Cohen [10] and Novick–Cohen [26].

2.1. The outer expansion. Let us denote by a(k), k = 1, ..., N , the
N local minima of Ψ on the Gibbs simplex G = {u | ∑N

i=1 ui = 1, ui ≥ 0}.
This implies that the a(k) are solutions of the system of algebraic equations

DiΨ(u) − 1
N (DΨ(u) · e) = 0, i = 1, ..., N.

Since the a(k) converge at the corners of the Gibbs triangle exponentially
fast as ε ↘ 0, we can label the a(k) so that∣∣∣ak(k) − 1

∣∣∣ ≤ C1e
−C2

ε ,
∣∣ai(k)

∣∣ ≤ C1e
−C2

ε for i 	= k,

where C1, C2 are constants which are independent of ε for ε sufficiently small
and are therefore independent of θ.

Let us consider now a region of the outer solution which is dominated by
component k; i.e., u ≈ a(k). We make here the self–consistent ansatz that
u is of the form

ui = ai(k) +
(
εui

1 + ε2ui
2 + ...

)
e−

C
ε + H.O.T. for i = 1, ..., N,

J i =
(
J i

0 + εJ i
1 + ε2J i

2 + ...
)
e−

C
ε + H.O.T. for i = 1, ..., N,

wi =
(
εwi

1 + ε2wi
2 + ...

)
+ H.O.T. for i = 1, ..., N,

where by H.O.T. we denote higher order terms.

2.2. The inner expansion. We now analyze the behaviour of the so-
lution in an interfacial region separating two phases under the assumption
that we are finitely away from both triple junctions and external boundaries.
The two phases which bound this interfacial region are denoted here as k1

and k2. We employ the ”classical” variables (ρ, s) (cf. Caginalp and Fife [9]
and Rubinstein, Sternberg, and Keller [28]) for the scaled distance function
from the interface ρ = d/ε where d is the signed distance from the interface
and s is an arc–length variable along the interface. We use the convention
that the unit normal defining the sign of ρ points into the domain denoted
as k2. Any given function v(x, t) written in terms of the new variables as
v(t, ρ, s) satisfies

∇v = 1
ε

∂
∂ρv ∇d + ∂

∂sv ∇s , (6)

vt = ∂
∂tv − 1

ε
∂
∂ρv V + ∂

∂sv st. (7)
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Here V = −dt denotes the velocity of the interface. We now assume that
there exist asymptotic expansions for ui, J i, wi, i = 1, ..., N , given in terms
of these variables; i.e.,

ui = ui
0 + εui

1 + ... , i = 1, ..., N,

J i = J i
0 + εJ i

1 + ... , i = 1, ..., N,

wi = εwi
1 + ε2wi

2 + ... , i = 1, ..., N

such that
∑N

i=1 ui
0 = 1 and

∑N
i=1 ui

k = 0, k = 1, 2, .... At O(1), for i =
1, ..., N

0 = −
(
n · J i

0

)
,ρ

, (8)

n · J i
0 = −

N∑
j=1

Lij(u0)w
j
1,ρ , (9)

0 = DiΨ(u0) − 1
N (DΨ(u0) · e) − ui

0,ρρ (10)

where n denotes the unit normal to the interface and the notation v,ρ indi-
cates the derivative of a function v with respect to the variable ρ. Integrating
(8) yields the existence of a function gi which is independent of ρ such that

n · J i
0 = gi(s, t), (11)

and matching of the normal components of the fluxes with the fluxes in the
outer region shows that

gi(s, t) = T.S.T., (12)

where T.S.T. denote terms which are transcendentally small in ε (cf. [26]).
Equation (10) with boundary conditions dictated by the outer expansions,
has a stationary wave connecting the minima of Ψ as its solution (cf. Stern-
berg [30]). We shall assume that the stationary wave solution has only two
non–trivial components which we denote by k1, k2; i.e.,

ui
0 = T.S.T. for i 	= k1, k2. (13)

This implies that

Lij(u0) = T.S.T. for i, j /∈ {k1, k2}. (14)
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Neglecting transcendentally small terms

Lk1k2(u0) = −Lk1k1(u0) = −Lk2k2(u0) = Lk2k1(u0) (15)

and these terms are different from zero. Thus there are effectively only four
non-trivial entries in Lij(u0), i, j = 1, ..., N . From here on we employ the
notation Lij

0 := Lij(u0), i, j = 1, ..., N .
From (9), (11), (14), and (15) it follows that there exists a function g̃(s, t)

which is transcendentally small, such that on the interface between k1 and
k2,

n · Jk1
0 = −

[
Lk1k2

0 wk2
1,ρ + Lk1k1

0 wk1
1,ρ + g̃(s, t)

]
=

= −Lk1k2
0

[
wk2

1,ρ − wk1
1,ρ

]
+ g̃(s, t) = gk1(s, t). (16)

From (16), since Lk1k2
0 	= 0 it follows that

[
wk2

1 − wk1
1

]
,ρ

=
g̃ − gk1

Lk1k2
0

. (17)

By our assumptions on Lk1k2
0 and on the normal fluxes in the outer regions,

g̃ − gk1

Lk1k2
0

= O(1) .

Hence, matching the chemical potentials in the inner region with the chem-
ical potentials in the outer region yields

g̃ − gk1 = O
(
e−

C
ε

)
(18)

and

wk1
1 − wk2

1 = h(s, t), (19)

where h(s, t) is not necessarily T.S.T.. At O(ε):

0 =
(
n · J i

1

)
,ρ

+
(
τ · J i

0

)
,s

, (20)

wi
1 =

N∑
j=1

DijΨ · uj
1 − 1

N

(
u1 · D2Ψe

)
− ui

1,ρρ − κk1,k2
0 ui

0,ρ , (21)
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where the sign convention is used that the curvature κk1,k2
0 is computed

with respect to the normal pointing into the k2 phase and κk1,k2
0 denotes

the first term in a regular perturbation expansion in ε for κk1,k2 . Since
employing the Frenet formulas τs · J i

0 = κk1,k2n · J i
0, we conclude from (11)

that τs · J i
0 = T.S.T. and therefore (20) simplifies to

0 =
(
n · J i

1

)
,ρ

+
(
τ · J i

0,s

)
+ T.S.T. .

By matching with the outer solution, it follows that n · J i
1 = T.S.T.. Mul-

tiplying (21) by ui
0,ρ, integrating over (−∞,∞) with respect to the variable

ρ, and summing over i gives
∫ ∞

−∞

N∑
i=1

wi
1 ui

0,ρ =
∫ ∞

−∞

N∑
i,j=1

DijΨuj
1 ui

0,ρ −
∫ ∞

−∞

N∑
i=1

1
N

(
D2Ψu1 · e

)
· ui

0,ρ

(22)

−
∫ ∞

−∞

N∑
i=1

ui
1,ρρ ui

0,ρ −
∫ ∞

−∞

N∑
i=1

κk1,k2
0

(
ui

0,ρ

)2
.

Integrating by parts and employing (10) yields
∫ ∞

−∞

N∑
i=1

wi
1 ui

0,ρ = −κk1,k2
0

∫ ∞

−∞

N∑
i=1

(
ui

0,ρ

)2
dρ + T.S.T.. (23)

Now we define σk1k2 to be the surface energy of the interface between the k1

phase and the k2 phase; i.e.,

σk1k2 :=
∫ ∞

−∞

N∑
i=1

(
ui

0,ρ

)2
dρ

where ui
0 is the connecting orbit between the minima of Ψ corresponding

to the k1 and k2 phases (cf. Sternberg [30]). From the above discussion,
ui

0 = T.S.T. for i 	= k1, k2, hence:

σk1k2 :=
∫ ∞

−∞

{(
uk1

0,ρ

)2
+

(
uk2

0,ρ

)2
}

dρ + T.S.T.. (24)

Since the k1 and k2 phases are assumed to be distinct, σk1k2 > 0. By
construction

∑N
i=1 ui

0 = 1. This implies now that

uk1
0 + uk2

0 = 1 + T.S.T.. (25)
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Employing (24) and (25) in (23) yields
(
wk1

1 − wk2
1

) ∫ ∞

−∞
uk1

0,ρdρ + T.S.T. = −κk1,k2
0 σk1k2 , (26)

and this implies that to lowest order
(
wk1

1 − wk2
1

) [
uk1

0

]k2

k1

= −κk1,k2
0 σk1k2 . (27)

Here [v]k2
k1

denotes the jump of a function v across the interface between the
k2 and k1 phases with the sign convention that we subtract the value in the
k1 phase from the value in the k2 phase.

At O(ε2), for i = 1, ..., N ,

−V0u
i
0,ρ = −

(
n · J i

2

)
,ρ
−

(
τ · J i

1

)
,s

. (28)

At this level, the equation of conservation of mass alone is needed. Inte-
grating (28) between −∞ and ∞, using the fact that τ,s · J i

1 is T.S.T., and
matching with the normal fluxes in the outer region

−V0

[
ui

0

]k2

k1
= −

∫ ∞

−∞

(
τ · J i

1,s

)
+ T.S.T. . (29)

Taking i = k1 (or k2), to lowest order

−V0

[
uk1

0

]k2

k1

=
∫ ∞

−∞
Lk1k2

0 wk2
1,ssdρ +

∫ ∞

−∞
Lk1k1

0 wk1
1,ssdρ + T.S.T.,

and thus

V0

[
uk1

0

]k2

k1

=
(
wk1

1,ss − wk2
1,ss

) ∫ ∞

−∞
Lk1k2

0 dρ . (30)

Defining

lk1k2 :=
∫ ∞

−∞
Lk1k2

0 dρ (31)

which is a positive constant, we can rewrite (30) as

V0 =
lk1k2[
uk1

0

]k2

k1

(
wk1

1,ss − wk2
1,ss

)
. (32)



degenerate cahn-hilliard equations 411

Employing (27) in (32) and using the fact that
[
uk1

0

]k2

k1

= −1 yields

V k1k2 = −lk1k2σk1k2κk1k2
,ss . (33)

Here, the upper indices in V k1k2 and κk1k2 indicate that the velocity and
curvature are evaluated at the interface between k1 and k2. Additionally,
the subscript 0 indicating the order of the expansion has been omitted.

2.3. Expansion near the intersection with the external bound-
ary. Let the interface between the k1 phase and the k2 phase be denoted
by Γk1k2 . At the intersections of Γk1k2 with the external boundary three
conditions must hold.

(i) Attachment: An isolated interface Γk1k2 does not detach from the
boundary ∂Ω. The rational for the attachment constraint arises from the
physical interpretation of the partitioning of the phases.

(ii) A Neumann boundary condition: Let m(t) denote the point of inter-
section of the interface Γk1k2 with ∂Ω. Following the arguments of Rubin-
stein, Sternberg and Keller [28], Cahn and Novick–Cohen [12] and Novick–
Cohen [26] we introduce a rectangle Rε whose sides are proportional to ε

1
2 .

Let m(t) be located at the midpoint of one of the sides of the rectangle and
let that side be tangent to ∂Ω at m(t). To obtain the Neumann boundary
condition, we introduce the variables η = x−m(t)

ε = (τ, n) where (τ, n) are
orthogonal coordinates and τ is a variable which is tangent to ∂Ω at m(t).
We now multiply the equations for the modified chemical potentials by ui

,τ ,
integrate over the rectangle Rε, and sum over the components i = 1, ..., N .
This gives to leading order

0 =
∫

Rε

N∑
i=1

ui
0,τ

{
DiΨ(u0) −

1
N

((
DΨ(u0)

)
· e

)
− Δηu

i
0

}

=
∫

Rε

{ ∂

∂τ
(Ψ(u0)) −

∂

∂τ

( N∑
i=1

ui
0

)( 1
N

(
DΨ(u0)

)
· e

)
−

N∑
i=1

ui
0,τ · Δηu

i
0

}
.

Since
∑N

i=1 ui
0 = 1, the middle term in the above equation term vanishes.

Hence,

0 =
∫

Rε

{ ∂

∂τ
(Ψ(u0)) −

N∑
i=1

ui
0,τΔηu

i
0

}
.
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This identical form appeared also in [26] and the same arguments may now
be employed to deduce that the contact angle with the external boundary is
π
2 up to O(ε) accuracy.

(iii) The no flux condition: Integration of the balance of mass equation
for component k1 over the rectangle Rε gives

∫
Rε

ε3uk1
t = −ε

∫
Rε

∇ · Jk1 .

It is easy to see that

I := ε3

∫
Rε

uk1
t = O(ε2vol(Rε)) = O(ε3) .

Defining

II := ε

∫
Rε

∇ · Jk1 ,

we can argue as in Novick–Cohen [26] to obtain II = O(ε vol(Rε)) = O(ε2).
In particular, I = o(II), and to leading order from the balance of flux
condition, Gauß’ identity, and matching with the outer solution

0 = II =
∫

∂Rε

ν · Jk1 == −ε

∫ ∞

−∞
ν ·

(
Lk1k2

{
wk2

,s − wk1
,s

})
endτ + O(ε2)

= −ε(ν · en)
(
wk2

,s − wk1
,s

) ∫ ∞

−∞
Lk1k2dρ + O(ε2) ,

where ν denotes the exterior normal to ∂Ω and en denotes the unit vector
pointing in direction of the coordinate n. Here we have used the fact that
across the interface Γk1k2 only quantities involving k1 and k2 give contribu-
tions to leading order. Since

∫ ∞
−∞Lk1k2dρ 	= 0 and since the contact angle is

π
2 (which implies that ν ·en 	= 0), we conclude that wk2

,s −wk1
,s = 0 . Matching

with the inner solution and noting (27), then gives κk1,k2
0,s = 0.

2.4. Conditions at the triple junction. Four different types of con-
ditions must hold at any triple junction. The first condition is a persistence
condition; i.e., the condition three interfaces which meet at an isolated triple
junction remain together. The second condition is Young’s law; i.e., a con-
dition which determines the angles between the interfaces which meet at
the triple junction which results from a balance of mechanical forces. The
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remaining two conditions consist of a balance of flux condition and a conti-
nuity condition resulting from imposing continuity of the chemical potentials
across the triple junction. Since the derivation of the first two conditions
is similar to the analysis which appears in the treatment of other problems
which include triple junctions we do not present the details here. Instead we
refer to the works of Bronsard and Reitich [8] and Novick–Cohen [26].

Without loss of generality, it is assumed that phases 1, 2 and 3 meet at
the triple junction under consideration. Let i, j, k ∈ {1, 2, 3} be mutually
different. Let the interface between i and j be denoted by Γk. The same
convention is employed for σk and lk.

(i) Persistence: A single isolated triple junction does not pull apart.
(ii) Young’s law: Following the arguments in Bronsard and Reitich [8]

and Novick–Cohen [26] and our discussion of the Neumann condition, it is
easy to demonstrate that Young’s law holds at any triple junction (see also
Bronsard, Gui and Schatzman [7]). This condition may be written as:

σ1

sin θ1
=

σ2

sin θ2
=

σ3

sin θ3

where θk represents the angle of the k phase at the triple junction and
σk := σij where σij is as defined in Subsection 2.2.

(iii) A balance of flux condition: To proceed, let us integrate the mass
balance equation over a triangle Tε which is constructed so that its midpoint

coincides with the triple junction m(t), its sides are proportional to ε
1
2 , and

each of its sides is intersected by one of the three interfaces. Employing
the stretched variable η = x−m(t)

ε , and defining Ii :=
∫
Tε

ε3ui
t and IIi :=∫

Tε
∇η · J i, it is easy to check that Ii = O

(
ε3

)
and IIi = O(ε). More

precisely, we may conclude that that Ii = o(IIi) and may therefore be
neglected. Thus, using Gauß’ theorem, matching with the outer and inner
solutions, and employing the structure of the inner solutions (cf. [12] and
[26]), we obtain to leading order:

0=
∫

Tε

∇η · J i =ε

∫
∂Tε

ν · J ids= −
3∑

k=1

ε

∫
(∂Tε)k

νk

{ N∑
j=1

Lijwj
,s

}
· eζk

ds, (34)

where ds refers to integration with respect to arc–length. Here, (∂Tε)k,
k = 1, 2, 3, refer to the edge of the triangle Tε which intersects the k’th
interface, νk denotes the exterior normal to Tε on (∂Tε)k, and eζk

is the unit
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tangent along the k’th interface pointing away from the triple junction. By
matching with the appropriate inner solutions, we see that along each of
the 3 interfaces only two of the N chemical potentials vary to leading order.
Hence, in total, at any given triple–junction only three chemical potentials
denoted here as w1, w2 and w3, enter significantly.

Let us choose three mutually distinct numbers p, q, r ∈ {1, 2, 3}. Assum-
ing that we are in the non-degenerate case in which 0 < θi < π, i = 1, 2, 3, a
triangle Tε may be constructed such that νp · eζp = 0. Since the component
p varies only along interfaces q and r, we obtain from (34) taking i = p that
to lowest order

0 = ε

∫
(∂Tε)q

{(
νq · eζq

)
Lpr

(
wr

,s − wp
,s

)}
+ ε

∫
(∂Tε)r

{
(νr · eζr) Lpq

(
wq

,s − wp
,s

)}
.

(35)

Evaluating the integrals in (35), we conclude from (31) that at the triple
junction

lpr
(
wr

,s − wp
,s

)
q
+ lpq (wq

s − wp
s)r = 0. (36)

Here the notation (.)i indicates that the expression in brackets is evaluated
at the interface i. Matching with the inner solutions and employing equation
(27), gives that the above equation may be written as:

lqσqκrp
,s + lrσrκqp

,s = 0 .

Defining κ1 := κ23, κ2 := κ31 and κ3 := κ12, and noting that κij = −κji, we
conclude that

l1σ1κ1
,s = l2σ2κ2

,s = l3σ3κ3
,s .

(iv) Continuity of the chemical potentials: It follows from (27), using the
notation from above that(

w2 − w3
)
1

= κ1σ1 ,
(
w3 − w1

)
2

= κ2σ2 ,
(
w1 − w2

)
3

= κ3σ3 .

Under the assumption that each of the three chemical potentials are contin-
uous across the triple junction, it follows that(

w1
)
2

=
(
w1

)
3
,

(
w2

)
1

=
(
w2

)
3
,

(
w3

)
1

=
(
w3

)
2
,

and we may sum the above equations to obtain:

κ1σ1 + κ2σ2 + κ3σ3 = 0 . (37)
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3. The limiting motion and geometric properties of the evolu-
tion. Let us formulate the limiting motion for a three phase system. Gen-
eralization to more phases may be obtained in a straightforward manner.
The interfaces shall be denoted by Γi(t), i = 1, 2, 3. The quantities σi, li

and κi will be defined as in subsection 2.4. Furthermore, we set V 1 := V 23,
V 2 := V 31, V 3 := V 12. We remark that the velocities V ij are antisymmetric
in i and j; i.e., V ij = −V ji.

The free boundary problem for the interfaces may now be stated as

(A) Along each interface Γi, V i = −liσiκi
,ss.

(B) At each intersection of Γi with the external boundary, the following
conditions hold

(i) an attachment condition,
(ii) the contact angle is π

2 ,
(iii) a no–flux condition κ,s = 0.

(C) At each triple junction
(i) the triple junction does not pull apart,
(ii) the angles of the phases at the triple junction fulfill Young’s law [34];

i.e.,

σ1

sin θ1
=

σ2

sin θ2
=

σ3

sin θ3
, (38)

which may also be written as a balance of mechanical forces (cf. [23])

3∑
i=1

σiτ i = 0 (39)

where τ i denotes a unit tangent to the interface Γi pointing away from the
triple junction.

(iii) A balance of fluxes condition holds:

l1σ1κ1
,s = l2σ2κ2

,s = l3σ3κ3
,s .

(iv) The chemical potentials are continuous across a triple junction; this
implies that

κ1σ1 + κ2σ2 + κ3σ3 = 0 . (40)
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Let us now state some geometric properties. It is easy to demonstrate
that the total area occupied by each of the different phases is preserved. We
leave the simple proof to the reader.

A further property which we wish to show is that the energy

E(t) =
3∑

i=1

σiLi(t)

is non–increasing. Here by Li(t) we denote the length of Γi(t). In this con-
text we remark that Baldo ([2]) has been proven that the weighted sum of
lengths E is the Γ–limit as ε → 0 of the free energy E . For simplicity we
state the property for three curves which each intersect the external bound-
ary at one endpoint and which all meet at a single triple junction at their
other endpoint. A generalization to more complex networks of interfaces is
straightforward.

Claim. The total energy is a non-increasing function of time; moreover,

d

dt
E(t) = −

3∑
i=1

(
σi

)2
li

∫
Γi(t)

(
κi

,s

)2
ds,

where ds denotes integration with respect to arc–length.

Proof. By the transport theorem for evolving curves (see for example Gurtin
[23] Section I.2):

d

dt
Li(t) = −

∫
Γi(t)

κiV ids −
∫

∂Γi(t)
τ i · Ṙi (41)

where τ i denotes the unit tangent to Γi(t) pointing into the interfaces at their
endpoints and Ṙi is the velocity of the endpoint. For an endpoint of ∂Γi(t)
lying on the exterior boundary ∂Ω, we conclude from the angle condition
that τ i · Ṙi = 0. Therefore, only triple points can contribute to the bound-
ary integral. Summing (41) over the three interfaces each weighted with
the appropriate interfacial energy, and employing the law (A) of interfacial
motion yields

d

dt
E(t) =

3∑
i=1

σi

∫
Γi(t)

κiliσiκi
,ssds −

3∑
i=1

σiτ i · ṁ(t) . (42)
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Here, m(t) denotes the location of the triple junction. By (39) the last term
in (42) vanishes. Integration by parts and using the no–flux condition κi

,s = 0
at the external boundary gives

d

dt
E(t) = −

3∑
i=1

(σi)2li
∫

Γi(t)

(
κi

,s

)2
ds +

3∑
i=1

(
σi

)2
li

(
κiκi

,s

)
m(t)

(43)

where the notation (.)m(t) indicates that the term in the bracket has been
evaluated at the point m(t). Employing (iii) and (iv) in (C), the last term
in (43) can be seen to vanish which proves the claim.

4. A local existence theorem for the limiting evolution prob-
lem. In what follows we restrict ourselves to a situation in which three
phases are present which meet at exactly one triple junction. The study of
more complex geometries can be treated in a similar manner. We describe
the three interfaces Γi, i = 1, 2, 3, by functions

Xi : [0, T ] × [0, 1] → R
2, (t, p) → Xi(t, p)

such that for t ∈ [0, T ], Xi(t, ·) is a parameterization of Γi(t) whose prop-
erties will be specified in the discussion below, and we formulate an initial
boundary value problem in terms of the parameterizations (Xi)i=1,2,3 whose
solution will parameterize curves that solve the evolution problem (A)–(C)
derived in section 3. We then prove local existence within the framework of
the parabolic Hölder spaces C

1+α
4

, 4+α
t, p , 0 < α < 1 relying on the results of

Solonnikov [29].
First we derive a partial differential equation for Xi such that the evo-

lutionary curves parameterized by Xi fulfill the law of motion

V i = −liσiκi
,ss ,

which may be written equivalently as

Xi
t · N i = −liσiκi

,ss .

Here, N i is the unit normal to Γi(t). We use the convention that the sign of

N i is chosen so that (T i, N i) is positively oriented, where T i = Xi
,p

|Xi
,p|

is a unit

tangent. The Frenet formulas imply that Xi
,ss = κiN i, where the index s

indicates as before differentiation with respect to arc–length; i.e., for a given
function f(p) defined on the curve, f,s = f,p

|X,p| .
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Setting αi := T i · Xi
,pp

|Xi
,p|2

and

βi := −3κiκi
,s + αi

,ss − αi
(
κi

)2
, (44)

we obtain, omitting the index i for convenience

κ,ssN + βT =
X,pppp

|X,p|4
− 5α

X,ppp

|X,p|3
− 2α,sκN − ακ,sN

− 2α,s
X,pp

|X,p|2
+ κ3N − 2α2 X,pp

|X,p|2
.

The last equality implies that a solution of the partial differential equation

1
σili

Xi
t = −

Xi
,pppp

|Xi
,p|4

+ 5αi
Xi

,ppp

|Xi
,p|3

+ 2αi
,sκ

iN i + αiκi
,sN

i (45)

+ 2αi
,s

Xi
,pp

|Xi
,p|2

− (κi)3N i + 2(αi)2
Xi

,pp

|Xi
,p|2

fulfills V i = −σiliκi
,ss , since (45) may also be written as

1
σili

Xi
t = −κi

,ssN
i − βiT i. (46)

To keep the presentation simple, we define a R
2–valued function G such that

(45) is equivalent to

Xi
t = −σili

Xi
,pppp

|Xi
,p|4

+ G(Xi
,p, X

i
,pp, X

i
,ppp) i = 1, 2, 3. (PDE)

We remark that G is smooth as long as its first variable is bounded away
from zero.

There is some degree of freedom in specifying the parameterization of
the evolutionary curves (see the next section), and we find it convenient to
make the following choice at the endpoints p = 0, 1

|Xi
,p(t, 0)| = |Xi

,p(t, 1)| = 1, i = 1, 2, 3 .
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This choice yields the following formulation of the boundary condition at
the triple junction (cf. (C) in Section 3):

X1(t, 0) = X2(t, 0) = X3(t, 0), (I)

|Xi
,p(t, 0)|2 = 1, i = 1, 2, 3, (II)

3∑
i=1

σiXi
,p(t, 0) = 0, (III)

3∑
i=1

σiXi
,pp(t, 0) · N i(t, 0) = 0, (IV)

σ1l1κ1
,s = σ2l2κ2

,s = σ3l3κ3
,s. (V)

Assuming that ∂Ω is described as the 0–level set of a smooth function b :
R

2 → R such that 0 is a regular value, we obtain as boundary conditions at
the external boundary that for i = 1, 2, 3 (cf. (B) in Section 3)

b(Xi(t, 1)) = 0, (VI)

Xi
1,p b,x2(X

i)(t, 1) − Xi
2,p b,x1(X

i)(t, 1) = 0 , (VII)

κi
,s(t, 1) = 0 , (VIII)

|Xi
,p(t, 1)|2 = 1. (IX)

Altogether this yields 12 boundary conditions at p = 0 and p = 1 for a
system of fourth order parabolic equation which contains six equations. This
is precisely the number of conditions which one would expect for this type
of system.

To show local in time existence we follow the approach of Bronsard and
Reitich [8] where a second order system was studied arising in the context
of motion by mean curvature. But since our system is of fourth order the
analysis here is more complicated. In order to solve the system of equations
(PDE) together with the boundary conditions (I)–(IX) and given initial con-
ditions, we choose parameterizations Xi

0 ∈ C4+α
p ([0, 1], R2), i = 1, 2, 3, of the

initial curve which satisfy

|Xi
0,p(0)| = |Xi

0,p(1)| = 1 for i = 1, 2, 3. (47)

The existence proof will be carried out by a contraction argument on the set

Ξ(T, M) = {(X1, X2, X3) ∈ C
1+α

4
,4+α

t,p

(
[0, T ] × [0, 1], R2

)3 |
Xi(0, ·) = Xi

0 and | Xi |1+α
4

,4+α≤ M for i = 1, 2, 3 }.
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The numbers T and M will be chosen later. Here, C
1+α

4
,4+α

t,p ([0, T ]×[0, 1], R2)
is defined as a parabolic Hölder space (cf. Solonnikov [29], Chapter IV) with
the norm | . |1+α

4
,4+α, and the space Ξ(T, M) is taken to inherit this norm.

Assume (X̄1, X̄2, X̄3) ∈ Ξ(T, M) is given. Then linearizing equation
(PDE) gives

Xi
t + σili

Xi
,pppp

|Xi
0,p|4

= σili
X̄i

,pppp

|Xi
0,p|4

− σili
X̄i

,pppp

|X̄i
p|4

+ G(X̄i
,p, X̄

i
,pp, X̄

i
,ppp). (PDEL)

This equation is to be solved in conjunction with linearized versions of the
boundary conditions (I)–(IX) which we shall denote by (IL)–(IXL). The
conditions (I) and (III) are already linear. The linearized boundary condi-
tions (IIL) and (IVL) are

Xi
0,p(0)Xi

,p(t, 0) = Xi
0,p(0)X̄i

,p(t, 0) − 1
2

(
1 − |X̄i

,p(t, 0)|2
)
, (IIL)

3∑
i=1

σiXi
,pp(t, 0)N i

0(0) =
3∑

i=1

σiX̄i
,pp(t, 0)N i

0(0) −
3∑

i=1

σiX̄i
,pp(t, 0)N̄ i(t, 0)

(IVL)

where N i
0 is the unit normal to the parameterization of the initial curve Xi

0

and N̄ i is the unit normal to X̄i. Using the identity

κi
,s =

Xi
,ppp

|Xi
,p|3

· N i − 3αiκi,

we can linearize the boundary condition (V) as

σiliXi
,ppp(t, 0)N i

0(0) − σjljXj
,ppp(t, 0)N j

0 (0) = σiliX̄i
,ppp(t, 0)N i

0(0)

− σjljX̄j
,ppp(t, 0)N j

0 (0) − σiliκ̄i
,s(t, 0) + σjlj κ̄j

,s(t, 0) (VL)

for (i, j) = (1, 2) and (i, j) = (2, 3). The boundary conditions at the point
p = 1 can be linearized similarly to give linear conditions (V IL)–(IXL).

We now demonstrate that the boundary conditions (IL)–(IXL) together
with equation (PDEL) fulfill the complementary conditions in the sense of
Solonnikov (cf. [29]). This will allow us to apply the Cα–theory for linear
parabolic systems. Introducing the notation

(u1, ..., u6) := (X1
1 , X1

2 , X2
1 , X2

2 , X3
1 , X3

2 ),
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the boundary conditions (IL)–(IXL) may be written in the form
6∑

j=1

Bqj

(
p,

∂

∂p

)
uj(t, p) = Φq(t, p) for q = 1, ..., 12, and p = 0, 1,

(cf. Solonnikov [29], Bronsard and Reitich [8]). Here, the Φq are defined to
be the right hand sides of equations (IL)–(IXL). The Bqj ’s are polynomials
with respect to ∂

∂p , and here each Bqj is homogeneous of a degree that is
denoted here by δ0

q which does not depend on j. The index 0 indicates that
this is the degree at the point p = 0. We use the notation δ1

q to indicate
the degree of the polynomial Bqj at the point p = 1. Therefore, using the
notation of Solonnikov [29], we obtain that Bqj = B0

qj where B0
qj is the

principal part of Bqj . Below we discuss only the boundary condition at the
point p = 0, as the analysis for p = 1 is similar but simpler. Defining

(X1,X2,Y1,Y2,Z1,Z2) :=

(X1
1,p(0, 0), X1

2,p(0, 0), X2
1,p(0, 0), X2

2,p(0, 0), X3
1,p(0, 0), X3

2,p(0, 0)),

we get

(B0
qj(0, iτ))j=1,...,6

= (1, 0,−1, 0, 0, 0) for q = 1,
= (0, 1, 0,−1, 0, 0) for q = 2,
= (0, 0, 1, 0,−1, 0) for q = 3,
= (0, 0, 0, 1, 0,−1) for q = 4,
= (X1iτ,X2iτ, 0, 0, 0, 0) for q = 5,
= (0, 0,Y1iτ,Y2iτ, 0, 0) for q = 6,
= (0, 0, 0, 0,Z1iτ,Z2iτ) for q = 7,
= (σ1iτ, 0, σ2iτ, 0, σ3iτ, 0) for q = 8,
= (0, σ1iτ, 0, σ2iτ, 0, σ3iτ) for q = 9,
= (σ1X2τ

2,−σ1X1τ
2, σ2Y2τ

2,−σ2Y1τ
2, σ3Z2τ

2,−σ3Z1τ
2) for q = 10,

= (σ1l1X2iτ3,−σ1l1X1iτ3,−σ2l2Y2iτ3, σ2l2Y1iτ3, 0, 0) for q = 11,
= (0, 0, σ2l2Y2iτ3,−σ2l2Y1iτ3,−σ3l3Z2iτ3, σ3l3Z1iτ3) for q = 12,

where i =
√
−1. The principal part of the equation (PDEL) is described by

the matrix L0(t, p, ∂
∂t ,

∂
∂p) = (l0kj)k,j=1,...,6 where

l0kj = 0 if k 	= j ,

l0kk =
(
σili

1
|Xi

0,p|4
( ∂

∂p

)4 +
∂

∂t

)
if i =

[k + 1
2

]
,
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where [.] is the Gauß bracket and indicates the integer part. To formulate
the complementary condition we define

L := detL0(t, p, r, iτ) =
3∏

j=1

(
σjlj

1

|Xj
0,p|4

τ4 + r
)2

,

L̂0 =
(
l̂0kj

)
:= L

(
L0

)−1 ;

i.e., for p = 0, 1, we get

l̂0kj = 0 if k 	= j,

l̂0kk =
3∏

j=1

(
σjljτ4 + r

) 3∏
j=1, j �=i

(
σjljτ4 + r

)
if i =

[
k + 1

2

]
.

The complementary condition at the point p = 0 as formulated by Solonnikov
[29] requires that the rows of the matrix A(t, p, r, iτ) := B0L̂0 are linearly
independent for all r ∈ C and Re r > 0, modulo the polynomial

M+(r, τ) =
3∏

j=1

(
τ − τ j

1 (r)
)2 (

τ − τ j
2 (r)

)2
.

All functions here are to be interpreted as polynomials in τ , and by τ j
l

(l = 1, 2 and j = 1, 2, 3) we denote those roots of L(t, 0, r, iτ) which have
positive imaginary part. To determine the roots τ j

l we must calculate the
roots of r + σjljτ4. Therefore writing r in polar coordinates; i.e., r = |r|eiφ

with φ ∈ (−π
2 , π

2 ), we find that for each j = 1, 2, 3 there are precisely two
roots with positive imaginary part, namely

τ j
1 = 4

√
|r| 4

√
1

σjlj
ei(φ

4
+π

4 ), τ j
2 = 4

√
|r| 4

√
1

σjlj
ei(φ

4
+ 3π

4 ).

To decide whether or not the complementary condition is satisfied, we must
determine whether there exists a nontrivial vector (ωq)q=1,...,12 such that

12∑
q=1

ωqB
0
qj(τ)l̂0jj(τ) ≡ 0 mod

3∏
l=1

(
τ − τ l

1

)2 (
τ − τ l

2

)2
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for j = 1, ..., 6, or equivalently whether there exists a nontrivial vector
(ωq)q=1,...,12 such that

12∑
q=1

ωqB
0
qj(τ) ≡ 0 mod

(
τ − τk

1

) (
τ − τk

2

)

where k =
[

j+1
2

]
and j = 1, ..., 6. Thus we must decide whether the set of

twelve linear equations

12∑
q=1

ωqB
0
qj(τ

k
1 ) = 0 ,

12∑
q=1

ωqB
0
qj(τ

k
2 ) = 0,

where k = [ j+1
2 ] and j = 1, ..., 6, has a nontrivial solution (ωq)q=1,...,12.

To derive a more practical version of the complementary condition, we
calculate the determinant of the matrix which corresponds to the linear sys-
tem from above and check the conditions at which the determinant vanishes.
Using the property that determinants are multilinear, up to a non-zero factor
we must calculate the determinant of the matrix D =

1 0 0 0 λ1X1 0 0 σ1λ1 0 σ1λ1λ1X2
X2
λ1 0

0 1 0 0 λ1X2 0 0 0 σ1λ1 −σ1λ1λ1X1 −X1
λ1 0

a 0 1 0 0 λ2Y1 0 σ2λ2 0 σ2λ2λ2Y2 −Y2
λ2

Y2
λ2

0 a 0 1 0 λ2Y2 0 0 σ2λ2 −σ2λ2λ2Y1
Y1
λ2 −Y1

λ2

0 0 a 0 0 0 λ3Z1 σ3λ3 0 σ3λ3λ3Z2 0 −Z2
λ3

0 0 0 a 0 0 λ3Z2 0 σ3λ3 −σ3λ3λ3Z1 0 Z1
λ3

1 0 0 0 iλ1X1 0 0 iσ1λ1 0 −σ1λ1λ1X2 −iX2
λ1 0

0 1 0 0 iλ1X2 0 0 0 iσ1λ1 σ1λ1λ1X1 iX1
λ1 0

a 0 1 0 0 iλ2Y1 0 iσ2λ2 0 −σ2λ2λ2Y2 iY2
λ2 −iY2

λ2

0 a 0 1 0 iλ2Y2 0 0 iσ2λ2 σ2λ2λ2Y1 −iY1
λ2 iY1

λ2

0 0 a 0 0 0 iλ3Z1 iσ3λ3 0 −σ3λ3λ3Z2 0 iZ2
λ3

0 0 0 a 0 0 iλ3Z2 0 iσ3λ3 σ3λ3λ3Z1 0 −iZ1
λ3

where we have employed the notation λj =
(
σjlj

)− 1
4 , a = −1. Assuming

that the interfaces are labeled sequentially and counterclockwise, it is easily
seen that sin θ1 = Y1Z2 − Y2Z1 , sin θ2 = Z1X2 − Z2X1 , sin θ3 = X1Y2 −
X2Y1 , where θj denotes the angle opposite Γj , the j’th interface, at the
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triple junction. Employing the above identities and the symbolic calculation
routines of MAPLE, we find

detD = −8(1+i)
3∏

j=1

σjλj
[( 3∑

j=1

σj(λj)3
)( 3∑

j=1

1
σjλj

sin2 θj
)
+

( 3∑
j=1

λj sin θj
)2]

.

Therefore, the determinant can only vanish if sin θj = 0 for j = 1, 2, 3. This
condition is fulfilled if

0 < θj < π for j = 1, 2 and 3. (48)

Other cases are not possible. If one angle is zero then by Young’s law and
the positivity of the surface energies σj , the two others have to be π and
this would imply that the determinant is zero. The case in which one angle
is π can also not occur. This can be seen as follows. Assume without loss
of generality that θ3 = π. It then follows that T 1 = −T 2 and therefore
the balance of tensions (39) implies that (σ1 − σ2)T 1 + σ3T 3 = 0 ; hence,
σ3 = 0. This, however, cannot be admitted within the framework of our
analysis because it would imply degeneracy of the equation of evolution for
X3. To check the complementary condition at p = 1 is less complicated and
no additional conditions arise.

Remark. It is easy to check that angles θ1, θ2, θ3 satisfying Young’s law (38)
satisfy condition (48) if and only if the positive surface tensions σ1, σ2, σ3

fulfill

σi < σj + σk (Partial)

for all permutations (i, j, k) of (1, 2, 3). This condition is referred to in the
literature as a partial wetting condition on the surface tensions (cf. de Gennes
[15]) and we will henceforth impose this condition on our system.

We shall assume, moreover, that Xi
0 ∈ C4+α

p ([0, 1]) fulfill the compatibil-
ity condition of order 0 for the initial boundary value problem to ((PDEL),
(IL)–(IXL)); this means that the initial condition satisfy (IL)–(IXL) as well
as further compatibility conditions which formally are derived by differen-
tiating conditions (IL) and (V IL) with respect to time (see Solonnikov [29]
for details). The compatibility condition for (IL) implies that at the point
p = 0 (

−σ1l1X1
0,pppp + G(X1

0,p, X
1
0,pp, X

1
0,ppp)

)
=

(
−σ2l2X2

0,pppp + G(X2
0,p, X

2
0,pp, X

2
0,ppp)

)
, (CI1)
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and
(
−σ2l2X2

0,pppp + G(X2
0,p, X

2
0,pp, X

2
0,ppp)

)
=

(
−σ3l3X3

0,pppp + G(X3
0,p, X

3
0,pp, X

3
0,ppp)

)
. (CI2)

The compatibility condition for (V IL) at the point p = 1 reduces to
(
−σiliXi

0,pppp + G(Xi
0,p, X

i
0,pp, X

i
0,ppp)

)
· Xi

0,p = 0 i = 1, 2, 3. (CV Ii)

Finally, we assume that the Xi
0, i = 1, 2, 3, are proper parameterizations;

i.e., that |Xi
0,p(p)| is uniformly bounded away from zero for p ∈ [0, 1] and i =

1, 2, 3. If in addition the (σi)i=1,2,3 are positive and fulfill the partial wetting
conditions (Partial) we obtain

Lemma 4.1. Let X̄ ∈ Ξ(T, M), and let Xi
0 ∈ C4+α

p ([0, 1], R2), i = 1, 2, 3,
satisfy the compatibility conditions of order 0. Then there exists a unique
solution Xi ∈ C

1+α
4

,4+α
t,p , i = 1, 2, 3 of ((PDEL), (IL)–(IXL)), such that

Xi(0) = Xi
0. Moreover, there exists a constant C > 0, such that the inequal-

ity

| Xi |1+α
4

,4+α≤ C
3∑

j=1

(
| (X̄j

,p, X̄
j
,pp, X̄

j
,ppp, X̄

j
,pppp) |α

4
,α + | Xj

0 |4+α

)

+ C
12∑

q=1

(
| Φq(., 0) |

1+
α−δ0q

4

+ | Φq(., 1) |
1+

α−δ1q
4

)

is valid.

Proof. The lemma follows from Theorem 4.9 of Solonnikov [29]. �
To prove local existence for the nonlinear problem it suffices to demon-

strate that the operator which maps (X̄1, X̄2, X̄3) to a solution (X1, X2, X3)
of ((PDEL), (IL)–(IXL)) maps the set Ξ(T, M) into itself and is a con-
traction for T sufficiently small and M sufficiently large. This however is
straightforward employing the a priori estimates given in Lemma 4.1 (see
Bronsard and Reitich [8] for the details in the second order case). Therefore
we can conclude that under the assumption that the (σi)i=1,2,3 are positive
and fulfill the partial wetting conditions (Partial) the following local existence
result holds.
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Theorem 4.2. Let Xi
0 ∈ C4+α

p ([0, 1], R2), i = 1, 2, 3, satisfy the compat-
ibility conditions of order 0. Then there is a time T > 0 and a positive
real number M0 such that there exists a unique solution X ∈ Ξ(T, M0) of
((PDE), (I)–(IX)).

Remark. We conjecture that a configuration of three curves where each
curve has constant curvature, which meet at a triple junction with angles
which fulfill Young’s law and the condition of continuity of chemical poten-
tials and which intersect the external boundary with a right angle condition
is asymptotically stable. This is meant in the sense that a sufficiently small
perturbation of the initial curves would lead to solutions which exist for all
times and which converge to the unperturbed configuration which is a sta-
tionary solution of the geometric motion. But a careful study of this issue
would most seemingly constitute a rather lengthly addition of the paper.

In the next section we see what geometric constraints on the initial curves
are implied by the above compatibility conditions.

5. Uniqueness and the geometric evolution problem. Although
the contraction argument in the preceding section gives existence and unique-
ness for the initial boundary value problem ((PDE), (I)–(IX)), there remains
the question of identifying geometrically admissible initial data (curves) and
resolving the possibility of non–uniqueness for the geometric evolution prob-
lem. We amplify this issue as follows.

A given set of three curves in the plane which we wish to take as initial
data or a set of three evolving curves which we envision as a possible solution
to the evolution problem (A)–(C) formulated in Section 3 may be described
by a family of smooth parameterizations. This is due to possible reparam-
eterization of the curves. Thus any such set of curves can be equated with
an equivalence class of parameterizations which may be used to describe it.
Therefore, the first question to resolve is to determine which initial data
(curves) are geometrically admissible in the sense that they admit a smooth
solution in the following sense:

Definition 5.1. The geometric evolution problem (A)–(C) with initial curv-
es parameterized by functions Xi

0 ∈ C4+α
p ([0, 1], R2), i = 1, 2, 3, has a smooth

solution on the time interval [0, T ] if and only if there exist parameteriza-
tions Y i : [0, T ] × [0, 1] → R

2, i = 1, 2, 3, and functions ξi
0 : [0, 1] → [0, 1],

i = 1, 2, 3, such that
i) Y i ∈ C

1+α
4

,4+α
t,p

(
[0, T ] × [0, 1], R2

)
, ξi

0 ∈ C4+α
p ([0, 1]),



degenerate cahn-hilliard equations 427

ii) Y i
t · N i = −σiliκi

,ss,
iii) the curves parameterized by Y i(t, ·), 0 ≤ t ≤ T , fulfill

– the persistence conditions,
– the angle conditions,
– the balance of fluxes
both at the points of intersection with the exterior boundary and

at the triple junction as well as the condition of continuity of the chemical
potentials at the triple junction; i.e., the conditions (B) and (C) of Section
3 are satisfied.

iv) Y i(0, ξi
0(p)) = Xi

0(p),
v) ξi

0(0) = 0, ξi
0(1) = 1, and d

dp

(
ξi
0

)
(p) > 0 for all p ∈ [0, 1].

We shall see that the initial curves need to fulfill in addition to (B) and
(C) only a single geometric compatibility condition in order to guarantee
that there exists parameterizations of these initial curves which fulfill the
compatibility conditions of order 0 which are needed to apply the existence
theorem of Section 4.

Another issue we want to address is to verify uniqueness of the flow
within the equivalence class of possible reparameterizations. In the discus-
sion which follows, we take into account the variability in the prescription of
the tangential velocity along the interfaces – to be more precise: any veloc-
ity is permissible which guarantees that the resulting evolution satisfies the
geometric conditions (A)–(C) as well as the regularity requirements of Def-
inition 5.1. We remark that the geometric conditions (A)–(C) do not allow
for an arbitrary prescription of the tangential velocities, as the attachment
condition and the persistence condition partially determine the tangential
velocity at the external boundary and at the triple junction (see (52) and
(50) below).

Throughout the remainder of this section we assume that the surface ten-
sions (σi)i=1,2,3 are positive and fulfill the partial wetting condition (Partial).
In addition, we use a subscript 0 to indicate that a term is evaluated at
time zero. The following theorem makes precise our claim that it is possi-
ble to obtain a smooth solution of the geometric evolution problem (A)–(C)
provided the initial data fulfill a geometric compatibility condition.

Theorem 5.2. Suppose the initial curves are parameterized by functions
Xi

0 ∈ C4+α
p ([0, 1], R2), i = 1, 2, 3, and assume that the initial curves fulfill
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(B), (C) and the geometric compatibility condition

(σ1)2l1κ1
0,ss + (σ2)2l2κ2

0,ss + (σ3)2l3κ3
0,ss = 0, (Geom)

where κi
0 indicates the curvatures of the initial curves. Then there exists a

time T > 0 such that the geometric evolution problem (A)–(C) with initial
data parameterized by Xi

0, i = 1, 2, 3, has a solution on the time interval
[0, T ] in the sense of Definition 5.1.

Remark. i) The geometric compatibility condition (Geom) formally follows
from the fact that if the evolution is smooth the velocity ṁ(t) of the triple
junction m(t) has to satisfy

ṁ(0) · N i
0 = σiliκi

0,ss , i = 1, 2, 3.

This, however, is only possible if (Geom) is fulfilled.
ii) A similar such theorem may be stated for triple junction motion within
the context of motion by mean curvature (see Bronsard and Reitich [8]).
The analogous geometric compatibility condition would be then

σ1κ1
0 + σ2κ2

0 + σ3κ3
0 = 0,

and a proof of the sufficiency of such a condition can be given following
closely the arguments of the proof of Theorem 5.2 given below.

Proof of Theorem 5.2. To apply the local existence theorem of the
preceding section, the parameterization of the initial curves need to fulfill
the compatibility conditions of order 0 of the initial boundary value prob-
lem ((PDEL), (IL)–(IXL)). Since the initial curves fulfill (B) and (C)
the remaining compatibility conditions are (47), (CI1), (CI2) and (CV Ii),
i = 1, 2, 3. In the terminology of (44)–(46), the compatibility conditions
(CI1) and (CI2) at the triple junction can be stated as

σ1l1
(
κ1

0,ssN
1
0 + β1

0T 1
0

)
= σ2l2

(
κ2

0,ssN
2
0 + β2

0T 2
0

)
= σ3l3

(
κ3

0,ssN
3
0 + β3

0T 3
0

)
,

(49)

where the subscript 0 has been used to indicate that the quantities have
been evaluated at time t = 0. Using the geometric compatibility condition
(Geom), it is possible to check that in order to fulfill (CI1) and (CI2) the βi

0,
i = 1, 2, 3, must be given by

βi
0 = − 1

(σi)2li
[
(σj)2ljκj

0,ss

T i
0 · T k

0

N i
0 · T k

0

+ (σk)2lkκk
0,ss

T i
0 · T j

0

N i
0 · T

j
0

]
(50)
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for permutations (i, j, k) of (1, 2, 3). We remark that the right hand side of
(50) is invariant under reparameterization. Similarly at points of intersec-
tion of an interface with the external boundary the compatibility conditions
(CV Ii), i = 1, 2, 3 may be written as

σili
(
κi

0,ss N i
0 + βi

0T
i
0

)
· T i

0 = 0, (51)

i.e., we must require that

βi
0 = 0, i = 1, 2, 3, (52)

at points of intersection of an initial interface with the external boundary.
Let us now choose a sufficiently smooth reparameterization

X̃i
0(p) = Xi

0(ξ
i(p))

of the initial curves in such a way that the X̃i
0, i = 1, 2, 3, fulfill (47), (50)

and (51) at the end points. Noting the definition (44) of βi, it is easy to see
that a prescription of βi at p = 0 or p = 1 via (50) or (51) and the fulfillment
of condition (47) can be achieved by solving a fourth order ODE for ξi locally
near the ends of [0, 1]. In this manner, the initial parameterization may be
redefined to yield a parameterization fulfilling the compatibility conditions
of order 0. The statement of the theorem now follows from Theorem 4.2.

In terms of uniqueness for the geometric problem, our results may be
stated as follows

Theorem 5.3. Assume C4+α–initial curves which fulfill the boundary con-
ditions (B), (C), and the geometric compatibility condition (Geom) are given.
Let Xi

0∈C4+α
p ([0, 1], R2), i = 1, 2, 3, be parameterizations of the initial curves

which fulfill the compatibility conditions of order 0 and let (X1, X2, X3) ∈
Ξ(T, M) be the solution of ((PDE), (I)–(IX)) for the initial data (Xi

0)i=1,2,3

which was obtained in Theorem 4.2. Furthermore, assume that (Y 1, Y 2, Y 3)
is a solution of the geometric evolution problem (for the same initial curves)
in the sense of Definition 5.1. Then there exists a time T1 > 0 and functions
ξi ∈ C

1+α
4

,4+α
t,p ([0, T1] × [0, 1], [0, 1]) which satisfy ξi(t, 0) = 0, ξi(t, 1) = 1

and ∂
∂p

(
ξi

)
(t, p) > 0 for all p ∈ [0, 1], t ∈ [0, T1] such that

Xi(t, p) = Y i(t, ξi(t, p)).
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Remark. i) In the proof of Theorem 5.2 we demonstrated that C4+α–initial
curves which satisfy (B), (C) and (Geom) can be parameterized by functions
Xi

0 ∈ C4+α
p ([0, 1], R2), i = 1, 2, 3, such that the compatibility conditions of

order zero are satisfied.
ii) Theorem 5.3 shows that the geometric evolution problem defined by

(A)–(C) in Section 3 has only one geometrically distinct smooth solution in
the sense that two smooth parameterizations of evolving curves which fulfill
(A)–(C) and which parameterize the same curves at the initial time, param-
eterize the same curves at later times throughout their common interval of
existence. The maximal interval of existence may depend on the parameter-
ization, though it is possible to formulate a maximal “geometric” interval of
existence if one allows for reparameterizations.

Proof of Theorem 5.3. Our approach is to derive an initial boundary
value problem for reparameterizations (ξi)i=1,2,3 such that

Zi(t, p) := Y i(t, ξi(t, p)) (53)

is a solution of ((PDE), (I)–(IX)) whenever ξi is a sufficiently smooth so-
lution of this initial boundary value problem. The uniqueness statement in
Theorem 4.2 then implies that Xi = Zi, i = 1, 2, 3, and proves the theorem.

Let us formally derive an initial boundary value problem which should
be satisfied by the functions ξi. Our goal is to find functions ξi such that
Zi, i = 1, 2, 3, satisfies

Zi
t = −σili

(
κi

,ssN
i + βiT i

)
, (54)

where βi is defined as in (44) in terms of the parameterization Zi. Noting
(44) through (46), we observe that equation (54) is equivalent to the equation
(PDE). For Zi, the following identities hold:

Zi
t(t, p) = Y i

t (t, ξi(t, p)) + Y i
,p(t, ξ

i(t, p))ξi
t(t, p) ,

Zi
,p = Y i

,pξ
i
,p,

Zi
,pp = Y i

,pp(ξ
i
,p)

2 + Y i
,pξ

i
,pp,

Zi
,ppp = Y i

,ppp(ξ
i
,p)

3 + 3Y i
,ppξ

i
,pξ

i
,pp + Y i

,pξ
i
,ppp,

Zi
,pppp = Y i

,pppp(ξ
i
,p)

4+6Y i
,ppp(ξ

i
,p)

2ξi
,pp+3Y i

,pp(ξ
i
,pp)

2+4Y i
,ppξ

i
,pξ

i
,ppp+Y i

,pξ
i
,pppp,

where the arguments in the last four lines have been omitted for simplicity.
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Since

Zi
t = Y i

t + Y i
,pξ

i
t =

(
Y i

t · N i
)
N i +

(
Y i

t · T i
)
T i + Y i

,pξ
i
t

= −σiliκi
,ssN

i +
(
Y i

t · T i
)
T i + Y i

,pξ
i
t ,

equation (54) is fulfilled if 0 = |Y i
,p|ξi

t + σili
(
βi − β̄i

)
, where we defined

β̄i := − 1
σili

Y i
t · T i which is given in terms of Y i. The term βi can be

expressed in terms of Y i and ξi. In fact it is easy to check that

βi = T i ·
Zi

,pppp

|Zi
,p|4

+ β̃(Zi
,p, Z

i
,pp, Z

i
,ppp)

=
Y i

,pξ
i
,p

|Y i
,pξ

i
,p|

·
Y i

,pξ
i
,pppp

|Y i
,pξ

i
,p|4

+ β̂(Y i
,p, Y

i
,pp, Y

i
,ppp, Y

i
,pppp, ξ

i
,p, ξ

i
,pp, ξ

i
,ppp)

for suitable functions β̃ and β̂. Hence, it is sufficient to require that ξi,
i = 1, 2, 3, satisfy the initial boundary value problem

ξi
t +

σili

|Y i
,p|4

ξi
,pppp

(ξi
,p)4

+
σili

|Y i
,p|

(
β̂(Y i

,p, Y
i
,pp, Y

i
,ppp, Y

i
,pppp, ξ

i
,p, ξ

i
,pp, ξ

i
,ppp) − β̄i

)
= 0,

(55)

ξi(t, 0) = 0, ξi(t, 1) = 1, and ξi
,p(t, p) =

1
|Y i

,p(t, p)| , p = 0, 1 and t ∈ [0, T ],

(56)

ξi(0, p) = ξi
0(p) for p ∈ [0, 1]. (57)

Either by noting the geometric nature of the conditions (B) and (C) which
implies invariance under reparameterization or by direct verification, it is
easy to see that the boundary conditions (B) and (C) are satisfied by Zi,
i = 1, 2, 3. This and the third equation in (56) imply that the boundary
conditions (I)–(IX) are satisfied by Zi, i = 1, 2, 3. Hence, Xi = Zi on
[0, T1] × [0, 1] provided we can show the existence of a solution

ξi ∈ C
1+α

4
,4+α

t,p ([0, T1] × [0, 1], [0, 1])

of the initial boundary value problem (55)–(57). However, this initial bound-
ary value problem can be solved locally in time by using the same meth-
ods as in Section 4. We do not go through the details of the proof, but
we demonstrate that the compatibility conditions of order 0 are satisfied
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and that the data are regular enough to apply the contraction argument.
Since formally ξi

t(0, p) = 0 has to hold for p = 0, 1, one must guarantee
that βi(0, p) = β̄i(0, p) for p = 0, 1. But this follows for p = 1 since the
regularity of Y i(0, p) and the complementary condition for Xi

0 imply that
βi(0, 1) and β̄i(0, 1) are given by the right hand side of (50). Similarly
we get that βi(0, 0) = 0 = β̄i(0, 0). The other compatibility conditions are
easy to verify. We remark that i) and ii) in Definition 5.1 guarantee that
β̄i ∈ C

α
4

,α([0, T ] × [0, 1], R). This ensures that we can prove the existence
of a unique solution to (55)–(57) on a time interval [0, T1] provided T1 is
sufficiently small.

6. Conclusions. Employing formal asymptotic expansions we deter-
mined the asymptotic limit (γ = ε2, t → ε2t, θ = O(ε), ε ↘ 0) of a Cahn–
Hilliard system with a degenerate mobility matrix. The limiting motion is a
sharp interface model where the evolution of interfaces is governed by motion
by surface diffusion. At triple junctions Young’s law, a condition required by
the continuity of the chemical potentials and mass balance conditions hold.
At points of an intersection with the external boundary, a Neumann type
right angle condition and a no flux condition have been derived.

For this limiting system we prove local in time existence and uniqueness
in the Hölder space C

1+α
4

,4+α
t,p . The existence result is obtained by solving

a nonlinear parabolic boundary value problem for parameterizations of the
interfaces via linearization and a contraction argument. To demonstrate
uniqueness of a solution of the geometric problem the contraction argument
alone did not suffice; we also needed to show uniqueness under admissible
reparameterizations. We remark that in general one cannot expect to es-
tablish results on long time existence with our approach since topological
changes might occur; e.g., the length of one of the interfaces may converge
to zero.
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