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Abstract. A singular nonlinear second-order periodic boundary value problem is
studied and the uniqueness and existence of solutions are obtained by employing a priori
estimates, perturbation techniques and comparison principles.

1. Introduction and main results. During the last two decades, singular nonlinear
two-point boundary value problems, not including periodic ones, have been studied
extensively. For details, see, for instance, papers [1]-[20] and the references therein.
However, the works on singular nonlinear periodic boundary value problems are quite
rarely seen. It is well known that periodic boundary value problems have always been
attended to. So we study in this paper a singular nonlinear periodic boundary value
problem of the form

Q(t, w(ί)), 0</<2π,

3) = κ'(2π),

where p is a positive constant and the nonlinear function β(ί, u) =/(t, u) + h(t, u) is
assumed to be defined on [0, 2π] x (0, + oo) and satisfy the following assumptions:

(Aj) For each fixed we(0, + oo), /(£, u) is nonnegative integrable on [0, 2π].
(A2) For almost all f e[0, 2π], f(t, u) is nonincreasing in u>0 and

2π

/(ί,0 + )= lim f(t,u).

(A3) h(t, u) is a Caratheodory function defined on [0, 2π] x (0, oo), i.e., for each
fixed we(0, oo), the function h(t, u) is nonnegative integrable on [0, 2π] and for almost
all ίe[0, 2π], the function A(ί, M) is continuous in u>0.

(A4) There exists a nonnegative integrable function k(t) defined on [0, 2π] and
a nonnegative continuous increasing function H(u) defined on (0, +00) such that

h(t, M) < k(t)H(u) for almost all (ί, u) e [0, 2π] x (0, oo),
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where H(u) and k(t) respectively satisfy

(2) lim ——- = B
M-> + 00 U

and

Λ 2 π

(3) (7(0)5 k(s)ds<l.
Jo

Hence G(0) is the positive maximum of the Green function

eP(t~s) _^_ep(2π-t + s)

\ 2~^ ' 0<s<t<2π,

G(\t-s\): = G(ί, s):=) e^
P^p~2P-s + t}

] , 0<ί<.s'<2π.
I 2p(e2^-l)

A direct calculation shows that

* ',** on [0, 2π] x [0, 2π] .

The assumptions (Aj) and (A2) allow but not require f(t, u) to have singularity at
M = 0 and to be discontinuous with respect to u. For example, the function

V (l-Λ + irΛ
j - i Λ ; "/ /

satisfies (A^ and (A2). Here αe(0, 1), β>0, and η(s) is the Heaviside function

A function u(t) is said to be a solution to the problem (1), if

( i ) u e C1 [0, 2π] , w(0) - w(2π), M '(0) = w '(2π),
(ii) w"(0 exists almost everywhere and integrable on [0, 2π], and

-u"(t} + p2u(t)=Q(t, u(t)) a.e. on [0, 2π] .

Furthermore, if w(ί)>0 on [0, 2π], then it is called a positive solution.
The main results of this paper are as follows.

THEOREM 1. Let (A1)-(A4) hold. Then there exist two positive numbers δ and N
such that for all solutions u(t) to the problem (1)

δ<u(t)<N on [0,2π].

THEOREM 2. Assume that (A^^AJ are satisfied and f(t, u) is continuous in u>0.
Then the problem (1) has at least one positive solution.
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THEOREM 3. Assume that h(t, u) = 0 and /(ί, u) satisfies (A1)-(A2). Then the prob-
lem (1) has a unique positive solution.

Our arguments for establishing the existence and uniqueness of solutions to the
problem (1) involve only the positivity of the Green function, a priori estimates,
perturbation techniques, and comparison principles.

2. Proof of Theorem 1. It is readily verified that the problem (1) is equivalent
to the integral equation

Λ 2 π

(4) u(t) = G(ί, s)Q(s9 u(s}}ds , 0 < t < 2π .
Jo

Let u(t) be a solution to the problem (1) and let

m:=mm{u(t): 0<ί<2π} , M:=max{u(t): 0<ί<2π} .

Then, by (4), we obtain

ί
2π /*2π

Q(s, u(s))ds < m < M < G (0) Q(s, u(s))ds ,
3 Jo

where G(n) is the positive minimum of G(ί, 5). Consequently, we have

(5) M<mG(0)/G(π).

We now prove that there exists a δ>0 such that for all solutions u(t) to the prob-
lem (1)

(6) u(t)>δ on [0, 2π] .

If this is not the case, then there exists a sequence of solutions to the problem (1),

{uj(t)}9 such that

rrij :=mm{uj(t): 0<ί<2π} ->0 as y->oo.

From (AJ, (A2), (A3), (5) and (6), we have

f(s,u(s))ds
3

Γ2,

>G(π) f(s,Mj)ds
Jo

>G(π)\f(s,mjG(0)/G(π))dS,
Jo

where M} : =max{uj(t): 0<ί<2π}. Letting j-^co in the above, we lead to
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0>G(π)
Ό

a contradiction. This shows that (6) holds. Therefore, the condition (A2) excludes the
case when u(t) = 0 is a solution to the problem (1).

Next, we prove that there exists an TV>0 such that for all solution u(t) to the

problem (1)

(7) u(t)<N on [0,2π].

From (3), we choose an ε>0 such that

k(s)ds<\ .

It follows from (2) that there exists an TV*>(5 such that

H(u) <(B + ε)u for all u > TV* .

Let

Γ2π Γ'2π

TV* + G(0) f(s9 δ)ds + G(ΰ)H(N*) k(s)ds
yy JO JO

(̂l-G(0)(B + e) k(s)ds
Jo

and let

M:=max{u(t): 0<t<2π},

where u(t) is an arbitrary solution to the problem (1). Without loss of generality, we
may assume that M>TV*. From (4), we have

| 2π

M< G(0) [f(s, u(s)) + /z(s, u(s))~]ds
Jo

<G(0)
o

<TV* + G(0) I f(s, δ)ds + G(Q) I k(s)dsH(N*)
Jo

o
i.e., M<N. This shows that (7) holds. Theorem 1 is thus proved.

3. Proof of Theorem 2. Let δ and TV be two positive numbers determined by
Theorem 1. Consider the modified problem
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Q*(t,u(t)), 0<ί<2π,

if u < δ ,

if u > δ ,

(8)

where Q*(t, u): = /*(t, u) + h*(ί, u) and

It is clear that both /*(ί, w) and /z*(ί, w) satisfy (AJ-^AJ and hence Theorem 1 holds
for the problem (8).

We define a mapping Φ : D -> D by

where D: = (ue C[0, 2π]; κ(/)>0 on [0, 2π]}.
By the definition of Φ, it is readily verified that Φ is a compactly continuous mapping

from D into D. The Schauder fixed point theorem tells us that Φ has at least one fixed
point in D. Let u(i) be a fixed point in D. Then it is easy to check that u(t) is a solution
to the problem (8). Since δ<u(t}<N on [0, 2π], u(t) is also a positive solution to the
problem (1).

4. Proof of Theorem 3. When h(t, u) = 0, the following comparison principle
holds.

LEMMA 1. Let /}(ί, u), j= 1, 2, satisfy (AJ and (A2) 0m/ fe/ Wy(ί), j= 1, 2, te β
solution to the problem (1) vwYΛ / = /}. If f\(t, w)>/2(ί, w) 0.̂ . o« [0, 2π] x (0, + oo), ^Ae«
ui(t)>u2(t)for all ίe[0, 2π].

PROOF OF LEMMA 1 . Let w(£ ) : = w^ί ) — u2(t). If the lemma is not true, then w(t ) < 0
for some t e [0, 2π]. Without loss of generality, we can consider only the following three
cases.

Case I. w(ί)<0 on [0, 2π]. In this case, we have

(9) -

for almost all ίe[0, 2π], i.e.,

for almost all t e [0, 2π], which implies that w'(0)> vt/(2π). This contradicts the fact that

w'(0) = w'(2π).
Case II. w(0) = w(2π)>0 and w(t)<Q for some ίe(0, 2π). In this case, there exists

a subinterval (α, b) of [0, 2π] such that
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w(t)<0 in (α, b)9 w(a) = w(b) = 0, and hence w'(a)<0<w'(b).
By (9), we have

w"(t)<ρ2w(t)<0 for almost all f e(α, b),

which implies that w'(#)>v/(6). This is a contradiction.
Case III. w>(0) = w(2π)<0 and w(t)>Q for some ίe(0, 2π). In this case, there are

two points 0, be(0, 2π), α<ft, such that
κ<ί)<0 in [0, α)u(fe, 2π], \φ) = w(i) = 0, and hence w'(a)>Q>w'(b).
By (9), we have

w"(ί) <p2w(ί) <0 for almost all t e [0, α) u (6, 2π] ,

which implies that w'(0)>H/(α)>w/(Z?)>M/(2π). This is also a contradiction.
The Lemma is thus proved.

In very much the same way, we can prove the following statement.

LEMMA 2. Ifh(t, u) = 0, then the problem (1) has at most one solution.

When /(ί, w) is not continuous in u>0 (for almost all te[0, 2π]), we employ a
perturbation technique. We define

/(ί, tt, i;): = — \f*(t, s)ds , F(ί, t/, i;): =— f /*(ί, 5)rf5 ,

where v >0, /*(£, u) is defined as in the proof of Theorem 2, and

( ί\ ( l\f j ( t 9 u ) : = f[t9u9—}9 FJ(t9u):=F[t9u9—}9 7= 1,2, ....
\ J / \ J /

Then //ί, M) and ί}(ί, 11) satisfy (AJ, (A2),

fj(t, u)<fj+ί(t, u)<Fj+1(t, u)<Fj(t, u) on [0, 2π] x [0, + oo),

and

lim fj(t9 u) = lim F/ί, u) = /*(£, M) pointwise on [0, 2π] x [0, + oo),

since

<3/(f, u, v) dF(t, u, v) df(t, u, v) dF(t, u, v)^^-^<o, v: ; > o , yι: ; < o , l: ; > o ,
ow dw ov dv

a.e. on [0, 2π] x [0, + oo) x (0, 4- oo).

From Theorems 1 and 2, Lemmas 1 and 2, we conclude that the problem (1) with
f = fj (f = Fj) has a unique solution δ<Uj(t)<N (δ<Vj(t)<N) and

U j ( t ) < u j + i ( t ) < V j + i ( t ) < V j ( t ) on [0,2π] .

Consequently, we have
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(10) Uj(t)< lim Uj(t): = u*(t)< lim Vj(t): = v*(t)<Vj(t) on [0, 2π] .
J-+CQ j-*<x>

It follows by (4) that

u *(ί) > uj(t) = \ G(t, s)fj(s, uj(s))ds

G(ί, s)fj(s9 u*(s))ds on [0, 2π] .

Letting 7 —> oo in the above yields

2*
u *(ί ) > G(ί, s)/(s, u *(s))ds on [0, 2π] .

o

(Here we have used the fact that δ<u*(t)<N.) Similarly, we obtain

v*(t)< G(t,s)f(s,v*(s))ds
Jo

(ii) Γ2 π

< G(t,s)f(s9u*(s))ds
Jo

<u*(t) on [0,2π].

From (10) and (11), it follows that

G(t,s)f(s,u*(s))ds on [0, 2π] .
o

This shows that w*(ί) is a unique solution to problem (1).

This completes the proof of Theorem 3.
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