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Abstract. The transient temperature field resulting from a constant and uniform
temperature T, (or time-dependent heat flux H = ht~1/2) imposed at the surface of a
halfspace initially at uniform temperature T0 is considered. A temperature-dependent
thermal conductivity variation, k(T) = k0 exp [X(T — T0)/To], and a constant product
of density and specific heat, pC, are assumed to be accurate models for the halfspace for
some useful temperature range. The problem is initially formulated in terms of the
dimensionless conductivity 4> = k(T)/k0 . Attention is then focused on the singular
problem resulting from the limits <£s = 4>(T,) J, 0 and <p, —* °°. This work considers the
use of matched asymptotic expansions to solve the problem under the first of these
limits. In particular, Fraenkel's interpretation [5] of Van Dyke's method of inner and
outer expansions [6] is carefully applied to the problem under consideration. Besides
obtaining a uniformly valid solution to the problem, a particularly interesting explicit
result is deduced, namely

lim h = -(1.182754 • • ■)(T0A)[pCfc0/2]1/2 + 0(4>, In *.).
■MO

1. Introduction.
1.1 The problem. This work is concerned with the solution for the transient temper-

ature field T(x, t) in a halfspace initially at uniform temperature T0 , where at time
t = 0 a temperature Ts T0 is imposed and maintained at the free surface x = 0.
As in the example problem of [1], a temperature-dependent thermal conductivity varia-
tion,

k = k(T) = fc„ exp [X(T - T0)/To], (1)

and a constant product of density and specific heat, pC, are assumed as accurate models
for the halfspace for some useful temperature range. X may be positive or negative.
This problem (with different interpretations for T, k, etc.) has also been studied in
[2], [3] and [4]. In those works results of the solution field for several values of k(Ts)/k0
have been obtained.

In [1] we considered the use of regular perturbation expansions of the temperature
(or conductivity) field about its initial state. Here we are concerned with a singular
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perturbation solution to the problem when arbitrarily small or large surface conductiv-
ities (i.e. when arbitrarily large (hot) or small (cold) surface temperatures) are imposed.
After formulating the problem under such limiting conditions we will study the solution
under the former small-surface-conductivity limit. Results from [1] for moderate surface
conductivity (i.e., moderate \(Ta — T0)/T„) and from the present work for arbitrarily
small k(T,) will be seen to have common regions of applicability.

The boundary condition on surface temperature could be replaced by an appropriate
boundary condition on surface heat transfer rate, Hit). As pointed out in [1], such a
(presumably unique) boundary condition is

H{t) = -k(T) dT/dx = ht~1/2, x = 0, (2)

where h, a constant, is a measure of the "amplitude" of the heat transfer rate to the
material halfspace. This proportionality of H to t~1/2 is, in fact, valid for any tempera-
ture-dependent conductivity material (with pC constant).

1.2 The governing equations and some remarks on the solution. It is convenient to
study the problem in dimensionless variables. Furthermore, for our assumed conductivity
variation with temperature, a dimensionless conductivity <£ is a convenient dependent
variable. Thus we define

V = \(T - T0)/T0 ; 4> = k{T)/k0 = exp V. (3)

We also define a dimensionless independent (similarity) variable 17, the dimensionless
("amplitude" of heat transfer) parameter f, and the dimensionless surface conductivity
4>, , by

v = x[2 tkJpC]-1'2,

r = -\h[pCk0/2Y1/2/Ta , (4)

4>, = exp V, = exp [X(T. — T0)/T0].

In line with earlier remarks, the variable </> = 0(7/) can be considered as having para-
metric dependence on 4>, or on f with some a priori unknown functional relationship
between these two parameters. Indeed, obtaining this relationship for any <j>, > 0 will
be one of the most significant results of this investigation.

The boundary-value problem governing 4> is [1]

fyd?<&/d"t]~ -f- r\d(f>/dr) — 0;
d<f>(0)/dri = f or <t>(0) = <t>, , and <£(°°) = 1. (5)

In [1] different expansions of <£ about the <p = 1 state were considered. It was concluded
that the f expansion of 4> given by

0 = 1+2^ t"4>n'3\v), (6)
n=l

where in actual computation the above series was truncated after three terms, gave a
useful analytic approximation to the solution function over a significant range of the
f or 0, parameter.

As mentioned earlier, we will presently concern ourselves with the problem for
limiting small and large values of <£„ , i.e. arbitrarily large values of |F,| . Using the
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solution to such a problem together with the results from [1] given, say, by using the
three-term approximation to the series of Eq. (6), one would hope to deduce a useful
representation of the solution to our problem for arbitrary positive values of <f>, .

1.3 Restatement of the boundary-value problem. For the present purpose it is con-
venient to change our two-point boundary-value problem into an initial-value problem.
This can be accomplished by considering the solution to the one-parameter problem

ipd2\p/dz2 + zd\p/dz = 0, — °° < z < &, (7)

d\p/dz = 1 and \p = \p, at z = 0. (8)

We assume the solution, \p(z\ \pa), to the above problem has been obtained for all z
and for arbitrary positive \ps . Consistently with the above statement of the problem
for ip, we also assume that such a solution has positive asymptotic values \p( , ip„) > \p,
and \p(— &>, \p,) < \p, as z —> <» and z —*• — respectively. Then the solution can be
transformed to our desired <j> solution to Eqs. (5) as follows:

For f > 0 or </>„ < 1 define

f = \p'1/2(°°; ips); v = zf; 4> = ^0; , z > 0. (9)

For f < 0 or <£„ > 1 define

f = -4/~U2(—co, <W; v = <t> = <Kz; <A«)r2, z < 0. (10)

We will concern ourselves in what follows with the solution to the problem for ip
as stated in Eqs. (7) and (8).

1.4 Solution for \p for large \ps . A careful study of Eqs. (7) and (8) reveals that in
the limit \p, —> c° our problem is identical to the regular perturbation problem treated
in [1]. In fact, considering the transformation

<t> = i/is + X) fV3>(0), f = ±1Pb~W2 , v = d=z\p~1/2 (11)
n = 1

where top and bottom signs are for z > 0 and z < 0 respectively and where the functions
<^n($>(v) have been reintroduced from [1] in our present Eq. (6), we find that the problem
for 4> is given by

<f>d 2/dfj 2+ rjd$/drj = 0, 7/ > 0;
CD

d<j>/dfi = 4> = 1 + fW3>(0) at v — 0. (12)
n = 1

Here the limit \p, —> <» corresponds to the limit f —> 0. But the f expansion representation
for 4) of Eq. (6) which has been studied in [1] satisfies both the differential equation and
the boundary conditions of Eqs. (12). If we assume that the solution to our problem is
unique and that the expansion has a finite radius of convergence |fB| (for all nonnegative
r\) in the complex ^ plane, then within that radius of convergence the solution for $
is identical to the solution for 4>. Moreover, the f expansion solution for 4>, i.e. the 4>n(3) (77),
has been obtained in [1], an explicit analytic representation for the first three of these
functions being given in Eqs. (33), (35), and (36) of that work.

In view of the above discussion we can dismiss the limit 1ps —* m for now and con-
centrate on the limit yp, J. 0.

1.5 Solution for 1p for limiting small \p, ; some observations. In this and later sections
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we will be considering solutions for \p when \p, J, 0. To follow the development more
easily we introduce the small parameter designation e and use it interchangeably with
\p3 , i.e., e = \p, .

An investigation of the initial-value problem for \p given by Eqs. (7) and (8) reveals
that for the limit e = \ps j. 0 the solution involves a singular perturbation in the neigh-
borhood of z = 0. In other words, in the sense discussed by Fraenkel [5] there is no
single asymptotic expansion of the form

n = 0

where Gn+l = o(Gn) for e j 0, which describes \p with an error which is o(GN) in the entire
interval — °° < z < 03 or even in some fixed, bounded neighborhood of z = 0. That
this is so becomes obvious, for example, from the following considerations.

Assume that \p can indeed be described by an expansion of the above form in some
fixed, bounded neighborhood of z = 0. If we use this expansion in Eq. (7), impose the
initial conditions of Eq. (8) and take the limit as e J, 0, it becomes apparent that we
could take Ga = 1 without loss of generality. Then \p0 = z + 0(z2). Now, for a nontrivial
\pi and in order that the condition \p(0; t) = e of Eq. (8) be satisfied we can, again without
loss of generality, choose Gt = e. Then

d2 \p 1/dz2 + (z/\p0)[d\pjdz — (l/\p0){d\pjdz)4/l\ = 0,

tp! = 1, d\pi/dz = 0 at z = 0-

Using the above result for \p0 and the boundary conditions for \pt in the above equation
for ipi reveals that lim d2/\pl/dz2 = \/z + 0(1/2), as z —> 0. Without proceeding further
or in greater depth it is apparent that this last result is inconsistent with the boundary
condition, d\pjdz = 0 at z = 0. The problem is that if our earlier expansion form for
1p is taken as valid for arbitrarily small t then it is not uniformly valid for 2 —> 0. It is
for this reason that we cannot freely require boundary conditions at z = 0 to be satisfied
by the assumed asymptotic representation for \p even though for fixed nonzero z the
expansion may be a suitable representation of our solution function for limiting small
values of e. The actual boundary conditions for the 1pn(z) and the proper choices for the
(?„(«) must be deduced from a solution representation which is uniformly valid at 2 = 0.
Such a solution representation can be obtained in the stretched variable z = z/t. As
we will see, considerations of tp = e\p(z; e) together with \p(z\ e) will allow for a 1p solution
uniformly valid for limiting small positive values of e and for fixed z/e > —1. A uni-
formly valid solution for small positive e and for arbitrary z < 0 will require further
coordinate expansion considerations. Such a solution will be the objective of another
investigation.

2. Solution for \p in the limit e [ 0 for z > — e.
2.1 Some assumptions and the matching principle. In view of the concluding remarks

of the last section we define

I = y — 1 = z/e, \p = p/e. (13)

We designate z as our inner variable and z as our outer variable, and rewrite the initial-
value problem for \p in the 1p, y variables. Thus

ipd~t/df + e(y - 1 )d\p/dy = 0, \p( 1) = chp(l)/dy = 1. (14)
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Assumption 1. We now assume that under the inner limiting process

e I 0 with y fixed in an interval y0 < y < (15)

(for some fixed y0 < 1 and > 1, both independent of e), \p has an inner expansion to
M + 1 terms of the form

M

\p = e\p = E gm{i)4/m{y) + 0[gM+1(e)]. (16)
m = 0

We allow M to be any nonnegative integer and the {gm} (m = 0,1, • • • , M + 1) to be
an appropriate sequence of gauge functions such that gm+i = o(gm) as t J, 0. We further
denote the series in Eq. (16) as H M(\p). Thus

M

HmH) = ]£ (17)
m = 0

Assumption 2. In a way similar to the above we assume that under the outer
limiting process

t J. 0 with z fixed in the interval 0 < 20 < £ < 00 (18)

(where z0 is an arbitrarily small positive number, but independent of e), \p has an outer
expansion to N + 1 terms of the form

* = E Gn(e)Uz) + 0[(?„+1(e)]. (19)
n — 0

We allow N to be any nonnegative integer and the {G„| (n = 0, 1, • • • , N + 1) to be
an appropriate sequence of gauge functions such that Gn+l = o(Gn) as e J, 0. Finally,
we denote the series of Eq. (19) as EN(\p). Thus

EnW = 2 Gn(t)^n(z). (20)
n = 0

Note that whereas the gauge functions {gm\ and {(?„} introduced in the above
assumptions are not unique, neither are they arbitrary. In fact, they must be complete
enough to allow Eqs. (16) and (19) to be valid. As we will see, we can develop both an
appropriate sequence {gm\ and the corresponding ipm(y), compatible with Eq. (16),
directly from the initial-value problem as stated in Eq. (14). As for obtaining a sequence
\On) and corresponding 4/n(z) compatible with Eq. (19), these must be deduced from
Eq. (7) with the use of some valid principle for matching the inner and outer expansions
of ip. Such a matching principle will supply the conditions (lacking for want of the usual
initial or boundary conditions) required to solve for ip in outer variables (i.e., required
to solve Eq. (7)). Here we will assume Van Dyke's matching principle [6] to be valid.
We utilize Fraenkel's interpretation of this principle [5] which, for our unknown function
ip, we state as follows:

Matching principle. If assumptions 1 and 2 are correct for some sequence \gn)
(n = 0,1, ■ • • , N + 1) and some sequence {Gm} (m = 0, 1, • • • , M + 1) then: (a) under
the outer limiting process defined in (18) the function HM(\p) has an outer expansion
to N + 1 terms of the form

HmW = E G„(e)X„(M)(z) + 0(Gn+1) (21)
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where we denote the series of Eq. (21) as En[H m (\p)]- Thus

EN[HMm = E Gn(e)KniM\z). (22)
n = 0

(b) Under the inner limiting process defined in (15) the function EN(\p) has an inner
expansion to M + 1 terms of the form

M

E„(i) = E + 0(gM+i) (23)
TO = 0

where we denote the series of Eq. (23) as HM[EN(\p)]. Thus
M

HM[EN{i)\ = E g^)&JN\y). (24)
m = 0

(c) The following equation is valid:

EN[HMm = HM[EN{i)}. (25)

In practice, for a given N and M, EN[HM(\p)] would be obtained by taking the
function H of Eq. (17), rewriting the ipn in the outer variable and expanding them
on the basis of the outer limit, regrouping the terms according to the {G„j sequence,
eliminating all terms of o(GN) and obtaining (if our above matching principle along with
its assumptions are correct) and expression of the form given on the right-hand side
of Eq. (22). Hm[En(i//)] would be obtained in an analogous way.

2.2 The inner expansion. Accepting the above assumptions 1 and 2 and assuming
the validity of the matching principle, we proceed to seek solutions for the terms of the
inner and outer expansions.

Setting M = 0 in the inner expansion of (16), we insert it in Eqs. (14), take the
inner limit and with full generality find that

S'o(e) = e, ^o = ^ = l+2- (26)

The above procedure continued sequentially for subsequent M > 0 results in the
following conclusions.

The inner expansion of ip to M + 1 terms, relative to the sequence of gauge functions

|^(e)} = {em+1}, (m = 1, 2, ••• ,M+ 1), (27)

is given by Eq. (16) if \p0 is given as in Eq. (26) and if subsequent ^„s, obtained sequen-
tially, satisfy

d2ii/dy2 = (l/y - 1) = h^y), &(1) = ,(l)/c$ = 0;

d2im/df = -(1 /y)
m-1 'I

(y - 1) di^Jdy + X) h d2im-v/df = hm{y),
p=l J

\Ul) = dt(l)/dy = 0, m> 1; (28)

provided the inner limit of (15) is restricted to y0 > 0. In other words, Eq. (16) is valid
for all bounded y > 0 (z > —1).

Besides the above solution for ip0, three more of the \pm have been obtained. They are

f = f/2 + y In y + 1/2, (29)
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h = i£3/12 - 302/4 + (3/2)0 In 0 - 30/4 + (1/2) In 0 + 17/12, (30)
h = ^/144 - (1/12)03 In 0 + 703/72 + (3/4)02 In 0 - 202 - (1/2)0 ln20

+ (47/12)0 In 0 - 220/9 + (5/3) In 0 + 607/144 + 1/(80). (31)
These 4>n , n = 0, 1, 2, 3, will be eventually utilized in the determination of the first
few terms of our outer expansion. With more work, any arbitrary number of subsequent
ipn could also be obtained at this point. As pointed out by Van Dyke [6], this is the nature
of singular perturbation solutions to initial-value problems. Without further effort
it is apparent that all h„(y) and therefore all t£„ are analytic functions of 0 in the entire
complex 0 plane save for 0 = 0, at which point some and probably all \pn , n > 0 have
an essential singularity. It is for this reason that we must restrict the inner limit, as
stated below Eqs. (28), to 0O > 0. Furthermore, this singularity at 0O = 0 indicates that
in the inner variables, and in the limit e j 0, the study of \p will require other singular
perturbation expansions in the neighborhood of 0 = 0. As indicated earlier, such a study
will not be reported in the present paper.

In view of the essentially complete state of our inner expansion for ip, we now turn
our attention to the problem of determining the outer expansion.

2.3 The first term of the outer expansion. Using the outer expansion of (19) with
N = 0 in Eq. (7), we take the outer limit, and find that without loss of generality three
possibilities exist for an admissible G0 and \pQ , viz. (i) 1 /(?„ = o(l) as e J, 0 and \p0 =
Ci + C2z, where at least one of C, and C2 is nonzero; (ii) G0 = 1 and \p0 is a nontrivial
solution of \p0d2\p0/dz2 + z\p0 = 0; and (iii) G0 = o( 1) as e J, 0 and \p0 = Ci 9^ 0. In order
to deduce the correct result from these possibilities we use our matching principle for
M = N = 0. From (b) of this principle we immediately find that (i) is not a solution.
From (b) and (c) we find that (iii) can also be dismissed. We therefore focus our attention
on (ii) and we require \p0 to be a nontrivial solution of

iod2\p0/dz2 + zd\p0/dz = 0. (32)

Assuming \pa to be an analytic function of z in some fixed neighborhood of z = 0, we
can write E0(\p) = ip0 = 23»=o" o,nzn. Rewriting E0(\p) in the inner variable, taking the
inner limit and eliminating all terms of o(gM) for arbitrary M, we find HM[E0(\p)] =
o0 + 0" <3mam+iZm*\ Comparing to the required form of HM[E0(\p)] as per Eq. (24),
it becomes clear that we must take a0 = 0. Thus, for any nonnegative M we have

M M

Hu[E0m = £9ma„+ir+1 = Ea»+.2w+l- (33)
m = 0 m = 0

Taking M = 0 in Eq. (17) and using our results for \p0 as given in Eq. (26), we find
H0(\p) = e0 = e(! + 1). Rewriting H0(\p) in outer variables, taking the outer limit and
eliminating all terms of o(G0), we find

E0[H0m = 2. (34)

Applying Eq. (25) of our matching principle for M = N = 0 and using Eqs. (33) and
(34), we conclude that ax = I. With a0 and ai in hand we finally summarize and establish
the following results for G0(e) and \p0(z).

It is consistent with our matching principle to take

G0(e) = 1 (35)
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and to take t^o(z) as satisfying

^0d24/o/dz2 + zd\p0/dz = 0, <A«(0) = 0, d\[/o(0)/dz = 1, (36)

where, in some neighborhood of z = 0,

Uz) = E «»z". (37)
n= 1

Using Eq. (37) in Eqs. (36) yields the result

d\ = lj CI2 = 1 /2,
n-2

a- = ~[n(n - l)]_1[(n - l)a„-i + X) in - wi)(n — m - 1 )a„+1a„_J. (28)
m=l

Besides obtaining these latter analytic results for , we have also found \p„ from a
numerical integration of Eqs. (36). From this we specifically find the result

co )= 0.714844- •• . (39)

A plot of \p0 (z) is presented in Fig. 1.
Before leaving the G0, \[/0 results, it is interesting to point out that with ^ , and

1^3 in hand, our matching principle can be immediately invoked in the form E0[HM(f)] =
HM[E„(ip)], M = 1, 2, and 3. In each of these three applications we obtain, happily,
verification of our solutions for a, , a2, and a3 as given in Eq. (38).

2.4 Governing equations for subsequent terms of the outer expansion and their homo-
geneous solution. With the results for G0 and \p0 we can now proceed to study higlier-

<J/0(oo) = 0.71484 4.

W, (0O) = 1.42969..
W2(oo) r 0.753173..

3.0
Z

Fig. 1. Plots of \f<0(z), Wi(z) and Wi(z).



A SINGULAR PERTURBATION SOLUTION 435

order terms in our outer expansions. Using the outer expansion of (19) in Eq. (7) se-
quentially with N = 1, 2, etc., we find that

£{fa} = d2ipn/dz2 + {z/i0) dfa/dz - (z df0/dz)fa/fa2

= vn{z), n > 0. (40)

where p, = 0 and where, for example, the first three nonzero p„ and corresponding Gn
will be given by

Pm = -{iJia) d2ii/dz2, Gm = G2)

pm+a = — [fa d2fa/dz2 + fa a iy/dz2]/\pa , Gm+q = GiG2 ;

pm+a+r = ~[ii d2yp3/dz + 3 d2\pl/dz2]/\f/0 , Gm+t+r = Gfi3 , (41)

if G22/(G1G3) = o(l) as e 10,

= —(4/2/4/o)d2\p2/dz2, Gm + a+r = G2

if G1G3/G22 = o(l) as e|0, or

= -[fa d2fa/dz2 + fa d2fa/dz2 + fa d2fa/dz2]/fa , Gm+a+r = G2.
Here, m > 1, q > 1 and r > 1 are (presently unknown) integers.

To study solutions for the \f/n we must first investigate solutions to' the homogeneous
equation

£{W(z)} = 0. (42)

According to our above knowledge of \f/n, this linear homogeneous, second-order dif-
ferential equation for W(z) possesses a regular singular point at z = 0. Moreover, using
the well-known theory of such differential equations [7], we can find that independent
solutions iv,(z) and w2(z) to Eq. (42) are given by

wa(z) = E W+1 (43)
n = 0

w2(z) = tt'j(z) In z + h(z) (44)

where Wi{z) and h(z) are analytic functions of z in a neighborhood of z = 0 (the same
neighborhood of analyticity as i/'o), i.e.

Kz) = S c«2" (45)
71 = 0

and where, specifically, the first few bn and c„ have been found to be

b0 =1, b, = 0, b2 = -1/12, b3 = -1/72, , .

c0 =1, Ci = 0, c2 = —1/2, c3 = 1/24, ••• .

We have incorporated the above analytic results for wx(z) and w2(z) in obtaining these
functions from numerical integrations. In particular, since wt(z) is analytic at z = 0 and
since, according to our results of Eq. (46), it has known initial conditions, there was no
particular difficulty in numerically integrating

= 0, Wi(0) = 0, dwi(Q)/dz = 1 (47)
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simultaneously with the integration of the governing initial-value problem of Eqs. (36)
for i/'o. Furthermore, the function w2, although poorly behaved at z = 0, can easily be
formed as per Eq. (44) from the analytic function wl and h. Indeed, from £{w2] =0, and
from Eqs. (44)-(47) we find that h satisfies

£{h] = w^l/z2 - 1/fo) - (2/«) dwjdz, ^

h( 0) = 1, dh(0)/dz = 0.
^>1(2), h(z) and, as a consequence, w2(z) have been found (simultaneously with \pn(z)) by a
numerical integration of the initial-value problems of Eqs. (36), (47) and (48). From this
effort we specifically obtain the results

W\(°°) = 1.42969 • • ■ , t«2(oo) = 0.753172 • • • . (49)
The functions (^1(2) and w2(z) are plotted in Fig. 1. h(z) is plotted in Fig. 2.

In view of all the above we conclude that
Uz) = C^w^z) + C2(n)w2(z) + ¥,(2), (50)

where the Ci<n) and C2n) are constants to be determined (by our matching principle) and
where ¥,,(2), a particular solution to £ {^„(z)) = pn(z) can be explicitly written as [7]

^„(z) = -w,(z) J w2(Qp„(Q c^/A[w,(0, w2(0]

+ w2{z) J w,(Z)pn(0 <%/A[w^), w2(0] (51)

where A[wx(2), w2(z)] = u\ dwjdz — iv2 dw2/dz = Wronskian. From the governing

1.1 

- O H 1 1 1—t—H
.2

w2 (00)- w, (00) ln(z )

Fio. 2. Plot of h(z).



A SINGULAR PERTURBATION SOLUTION 437

equation (42) for wl and iv2 it is a simple matter to deduce an explicit result for A and its
reciprocal. Thus we have found

A = —dyf/o/dz = — T. naS~l, 1/A = X 5nz"
(52)

n

So = — 1, S„ = - XI (m + l)a».+i 5„_„, , n> 1.
m=l

0.5 A solution attempt for \p1 (z). Since Pi = 0, it is clear that i/'! is given by Eq. (50)
where ^ = 0. With this knowledge we can now proceed to invoke our matching principle
in order to establish both an appropriate Gx and the values of Cx(1> and C2U).

From our above results we can write Ex(\p) = \pa + GxlCi^Wi + C2l)w2}. In an
attempt to form HM[Ey{4i)\, we proceed to rewrite E^) in the inner variable, and take
the inner limit. Then item (b) of our matching principle requires C2U) = 0, and, with
full generality, allows us to take Gj = e" where q > 1 is an integer.

We now proceed to study the various matchings E^HM(^)] = HM[^(^)] in order to
determine q and CxC1). Starting with M — 0 we take H0{\p) as seen above Eq. (34),
rewrite it in the outer variable and take the outer limit. It then becomes apparent that
q = 1 if item (a) of our matching principle is to be valid for M = 0, N = 1. Finally,
in an attempt to impose item (c) of the matching principle we find that it is impossible to
complete the match E,[Ha(yp)} = HolE^xp)]!

In a development similar to the above we have found that the various matchings
involving EX[H= HM[Ex(\p)] are also not possible for M = 1 and 2, and are not
likely for larger M. We therefore conclude that the matching principle is not valid for the
combination Ar = 1 and M arbitrary. In this regard it is timely to mention that the suc-
cess of the Van Dyke matching principle in every application for arbitrary M and N has
been noted by Fraenkel to be less than universal [5].

2.6 The solution for \pi{z) and \p2(z). As mentioned earlier, our selection G0 = 1 was
with complete generality and, indeed, we still anticipate the possibility of evaluating
higher-order terms of the outer expansion by using our matching principle. Since the
principle was not applicable for N = 1, we proceed to the case N = 2, disregarding all
tentative results mentioned in Sec. 2.5.

Whatever the correct order of Gi(e), we tentatively assume that G2(e) is such that

(V(e) = o[G,(«)] as € | 0. (53)

Then, as per Eqs. (41), p2 = 0 and \pL and \p2 are given by Eq. (50) where ^ = 0.
Thus

E2W = *» + G1(€)[(71<1,Wl(z) + C2n\v2{z)) + G2{t)\C Wi(z) + C22)w2{z)]. (54)

To form H 2(^^)1 we rewrite Ezi}//) ^ the inner variable, take the inner limit and
obtain the expression

E gmam+1zm+1 + CiW ± g&bjr*1 + C/2' i gmG2bmzm+1
m = 0 m= 1 m = 0

+ C2C1>PGi + X QmGi(bm In z + cm+i)zm+1 + X (QmGi In e)bmzm+1
I  m — 0 m = 0 J

+ G2(2Tc?2 + i; gmG2(bm In z + cm+1)zm+> + f) (gmG2 In e)bjm+11 •
L m = 0 m = 0 J



438 L. Y. COOPER

We now assume, for the moment, that e = ofG^e)] and, of course, Gt(e) = o[G0(e)] =
o(l). Then, since Ca0)(?i(e), the largest term of the above expression, cannot be canceled
by any other terms, and since it also cannot be ordered according to the gm (as would be
required by (b) of our matching principle), it is clear that we must require C2U' = 0.
Furthermore, the terms of the coefficient of C/", which clearly cannot be ordered
according to the gm , can be canceled so as to give proper form as per (b) if we take
Gi = G2 In e and C2<2) = —Ci(1). Consistent with our original assumption of Eq. (53),
further application of item (b) of the matching principle allows us to take G2 = e with-
out loss in generality and finally to take C1/1' and Ci<2> to be arbitrary constants.

In view of the above, we have

HM[E2(t)] = G0z - C1(1)G2 , M = 0;

= G0(Zam+lzm+l) + gIc^ £ bm.lZm)
= 0 ' \ m=\ '

+ gI-CS" + £ - CV(1)(Cra + bmInz)]z"y , M > 0;
V m = 0 J

Ci(1>, Cr are arbitrary constants, Gi(«) = e In e, G2(e) = e. (55)

With G0, G! and G2 we are now able to form

EK[H„m =z + e = G0(e)z + (?2(e), N > 2. (56)

Then, using Eqs. (55) and (56) and requiring (c) of our matching principle to be satisfied
for M = 0, N - 2, we obtain

CS" = -1. (57)
Similarly, with M = 1, N = 2 we find

i)] = G0(e)[z - z2/2] - zG^e) + Cr2(«)[l - z + zinz]. (58)

We can, happily, complete the match E2[Hi(\p)] = //1[£,2('A)] with the use of Eqs. (55),
(57) and (58) provided that

C2<n = -1. (59)

Since //2(\p) and H3(ip) are also at our disposal, it has been verified that, when taking
M = 1 and N = 2 or 3, our matching principle is entirely consistent with the above
results of this section which can be summarized as

(?i(e) = t In «, G2(e) = e ^

tAi(z) = -Wx (z), \p2{z) = -Wiiz) + w2(z),

where ii\ and w2 were determined in Sec. 2.4.
Although the presently available three-term outer expansion for ^ (along with the

inner expansion results of Sec. 2.2) will be adequate in studying the significant singular
phenomenon under consideration, it would be an attractive feature of this investigation
if further results could be obtained. In lieu of a general solution to the apparently in-
tractable problem of obtaining results for all terms of the outer expansion, any indication,
heuristic or otherwise, of answers to the following questions would be of interest in this
regard: (i) What is the order of error in the available three-term outer expansion, i.e.,
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what is 0(Ga)? (ii) Will the matching principle continue to have application when non-
zero particular solutions are engaged in the determination of subsequent \pn ? (iii) If
the matching principle continues to have utility in the determination of any number of
higher-order terms in the outer expansion of \l/, what general rule of application must be
followed?

In the next section question (i) will be precisely answered and question (ii) will be
partially answered (i.e., for the first three nonzero ^(z)). A heuristic answer to the last
question will finally be presented.

2.7 Higher-order terms of the outer expansion. Having obtained the \pn and appropriate
Gn for n - 0,1, and 2, we now turn our attention to obtaining these functions for n = 3.
As it turns out, attempts to deduce such results by using the matching principle are futile
in a sense similar to that discussed in Sec. 2.5. In particular, if we assume that G* =
i In2 a = o(G3), G3 = o(G2) = o(e) (i.e., that p3 = ^ = 0), then one can show that no
nontrivial solution for \p3 (as per Eq. (50)) which satisfies (b) of our matching principle is
possible. If, alternatively, we assume, with complete generality, that G3 = Of = e2 In2 t
(recall from Eq. (41) that G3 can be no smaller) then, after deducing the appropriate
particular solution , one can again find, in a similar way, that no solution for \p3
(as per Eq. (50)) will satisfy our matching principle.

In view of the above we conclude that the matching principle is not valid for N = 3.
If it is to be valid at all for determining subsequent terms in the outer expansion then it
is clear from the above paragraph that some grouping of the next few terms must be
determined together (e.g., as in our determination of Gl and tpi together with G2 and \f/2).
It has been noted by Van Dyke ([6], p. 201) that logarithmic terms in e multiplied by
algebraic terms involving some power of e, in the type of expansions that are being
considered here, are intimately related to purely algebraic terms containing the same
power of the perturbation quantity, and that they must be regarded as together con-
stituting a single step in the process of successive approximation. For the matching
principle of Sec. 2.1 to be generally valid in our problem it appears that this may indeed
be a strict requirement. Again, this was seen to be the case in our earlier determination of
Gi = e In e, ^ and G2 = e, \p2 ■ Moreover, as indicated in Eq. (41), we are certain that
terms of order G2 = i In2 e, GXG2 = e2 In e and G2 = e2 must eventually enter our outer
expansion.

The above ideas suggest that we seek \p3 , , and i/-5 together under the following
assumptions:

G2(s) = e2 In2 €, Gt(e) = e2 In e, Gs(e) = e2. (61)

Then \p3(z), \pi(z), and 1/^(2) are given by Eqs. (50) and (51) where, according to Eqs. (41),

Ps(z) = ~lii d2ijdz2]/i0 = — [wx d2wl/dz2]/\pa ,

P*(z) = -[<Ai d2\p2/dz2 + \p2 d2t1/dz2]/\p0 ^

= 2p3(z) + [wi d2w2/dz2 + w2 d2Wi/dz2\/\l/0 ,

p5(z) = — O2 d2i2/dz2]/i0 = -p3(z) + P&) - [w2 d2w2/dz2]/io •

In order to establish the validity of our matching principle for N = 5 we will require
the result of imposing the inner limit on the sum of the particular solutions, G^3 +
(+ G^5. To find this result we write this last expression with the in their integral
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representations as per Eq. (51). We then rewrite the entire expression in the inner
variable. Finally, with full use of the analytic results for \p0, wx , and h (i.e. their ex-
pansions about z = 0) we perform the integrations and eventually establish the result:
Under the inner limiting process,

E = hJ E gviO
n=3 \n=3 /

+ 0(gM+l) (63)

where HGn\p„) is the inner expansion to (arbitrary) order M of E Gn\pn, and is
given by

= E
\ n = 3 / m = 0

gm(e)Bm(iyr~l (64)

where d0(z) = 0; dm(z) — am + ft In z + ym In2 z, m > 0, and where the following am ,
ft , and yrn have been determined:

a, = ft = 1, a2 = 7i = 72 = 73 = 0,

«3 = -7/4, ft = 3/2, ft = 1/2.
In view of the above result we can now write Eb(\p) in the inner variable, take the

inner limit, and establish that item (b) of our matching principle requires

C/3' = C2<3) = C2<4) = 0, C\<4) = — C2<5). (65)

Using these results, we can now form explicit expressions for all the HM[E5(\p)]. We are
now in a position to invoke item (c) of our matching principle for arbitrary M and N = 5.
Taking M = 0 results in an identity. Taking M = 1 and then M — 2 yields the results

C/4' = 0, C,<5) = -2. (66)

Finally, a partial check of our results and of the validity of our matching principle for
N = 5 is in evidence when the condition //3[£'5(^')] = is invoked and is found
to yield an identity.

Having obtained the above results, it would be a straightforward task to complete
the \p3 > > *p5 solutions as per Eq. (50) by evaluating the ,{,3 , , say, by a numer-
ical integration of their governing equations. The initial conditions of these functions
along with their general behavior near z = 0 would be required in order to proceed with
such integrations. These could be obtained from the solution forms of Eq. (51) with the
use of the known behavior of \p0 , wx , iv2 and A near z = 0.

In summary, the first two of the questions posed at the end of Sec. 2.6 have been
answered to the pledged degree of fullness. In answer to the last of these questions, it
appears that our matching principle may be valid for every N such that

N = M + M(M + l)/2 M = 0, 1, • • • (67)

where for every such N and corresponding M the generated Gn s to be used in the match
can be taken as

ew lnM (e), eM InM~l (e), • • • , eM. (68)

2.8 Composite expansions for At this point we are in possession of early terms
of expansions for \p which are valid either under the inner limit or the outer limit. A
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single expansion, or sequence of expansions of increasing accuracy, valid under both the
inner and outer limit, would be of considerable value in the actual representation and
computation of this function. Such expansions, constructed from our EN(\p), Hand
En[HmWI, can be conveniently given by [6]

i[N'm = EN(i)HM{t)/EN[HMm (69)

for every N where our matching principle was applicable. Indeed, from all that has
preceded it follows that for every such N

^ = ^N.m + jO(Sfj/+i) under the inner limit, ^

'0(6',v+i) under the outer limit.

In view of the above we can construct the following two successively more accurate
uniform approximations for ip:

Hz, e)10'0' = Mz)Wz + 1]

\f/(z, e)12,11 = [^0(2) + e In eipj_(z) + eip2(z)]

[z ~ z /2 + e(l — z) + e2(l + z/e) In (1 + z/t)\
[z — z /2 + e(l — 2 + z In 2) — ze In e]

In the next section two uniformly valid successive approximations for <j> will be obtained
from the above composite expansion estimates for \p by using the transformation of (9).

3. The solution for <£(77), 0 < 4>t < 1.
3.1 The relationship between <t>, and f. From (9) it is clear that e = 0S^(°° ; e). Using

this and Eq. (70), it is possible to determine the existence of functions e1 'v'M1 such that

lim e = ew'MI + Ofo&M]; = £ KnGN+MJ- (72)
^,10 n = 0

By using the results of Sec. 2 it follows that

e[0'01/^ = *„(»); (73)

«I2,11/0» = ^o(°°){l 4- iAi(00)<#>a In 4>, + [^i(00) In iAo(c°) + ^(oo)]^, j.

Furthermore, since f = [<j>s/e]'/2 we can use the above to obtain the following <f>B
relationships:

lim f = S. + 0(4, In 4>s), = ^„"1/2(co) = 1.182754... ; (74)

lim 2[1 — f/f,,] = ^1(00)^, In <f>, + [i^i(°°) In ^o(°°) + "W00)]^
WO

+ 0(4>s2 \n4>s)

= (-1.42969...)4>s In <f>s + (-.19659...)<*>,
+ 0($„2 In2 <£„). (75)

Thus, the dramatic result is obtained that arbitrarily small imposed surface conductivity
results in a dimensionless amplitude of heat transfer which approaches a fixed bounded
value, . By using Eq. (75), <j>, has been plotted as a function of 1 — in Fig. 3.
Included in Fig. 3 is, further, a similar plot determined from several numerical in-
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.001
.01

Fig. 3. The relationship between 0 and f.

tegrations of the exact initial-value problem, Eqs. (7)-(8). A final estimate for the <t>, , f
dependence, also plotted in Fig. 3, has been obtained from the four-term regular per-
turbation solution approximation of Eq. (6) (i.e., where the series has been truncated
after three terms [1]).

The data presented in Fig. 3 illustrate the dependence of on f for all 0 < </>, < 1 or
0 < f < . While this figure can be considered to be a working plot, data of particular
interest may be reproduced from the most judicious calculation indicated. In this regard
it is of interest to note that the one-term estimate for [1 — f/fe], available from Eq. (75)
and accurate to always appears to be superior to the two-term estimate.

8.2 The solution for <£(?,; <f>s). From (9) it follows that <j> = ^>,/e. Using (70) and
(72) in this, and defining (since 1/f = (e/<£„)1/2 and z = r//f)

zlN'M] = ni*1"-"1/*.)1'\ (76)

we can show that

«(>,; 0.) = . (77)
|o[ln 0,Gjv+1(0,)]
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Here upper and lower error estimates are for the inner and outer limit, respectively
(where vl/oU2(co) and <^>s>Ao(00) replace e and z, respectively, in our previous definitions of
these limits). Setting N = M = 0 in Eq. (77) and using Eq. (71), we obtain

4>(v, <t>») = *oh*o1/,(»)][*.*o1/s(»)/i! + l]/*o(») + oK ln4>'- (78)
W>, In2 <f>s

A more refined estimate for </> is also available to us by setting N = 2, M = 1 in Eq. (77)
and using our result for \pl2tl] of Eq. (71).

The tj> field has been computed and compared for different values of <j>, using the two
available estimates of Eq. (77), numerical integrations of the exact equations for \p and,
finally, the available four-term approximation of the regular perturbation solution for 0.
The results are presented in Fig. 4.

From Fig. 4 it appears that there is no practical advantage in using the composite
expansion estimate which uses i/-12,11 over the much simpler estimate of Eq. (78). Using
this latter estimate, an error of less than 5% in <j> is guaranteed for 4>, < .0243 throughout
the entire range 0 < ?j < . (The error is reduced to a maximum of 0.5% with the <pl2,u
estimate.) For 1 ></>»> .0243 the four-term regular perturbation approximation yields a
solution with an error of less than 3% in <f> for all 0 < ij < °o. It has been finally, and
most dramatically, deduced that this latter regular perturbation approximation yields an
estimate which has an error of less than 8 percent in <f> for all 0 < <£„ < 1 in the entire

V

Fig. 4. Plot of 0 as a function of m with <j>s as a parameter.
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range 0 < rj < m. We have therefore shown that this estimate together with the pre-
viously deduced <j>s , f relationship comprises a useful complete solution to the boundary-
value problem that has been considered in this investigation.

4. Summary and conclusions. An approximate solution to the heated halfspace
problem introduced in Sec. 1.1 and 1.2 has been obtained. In particular, this work, which
has studied the behavior of <f> under the surface conductivity limit </>„ J, 0, has resulted in
a solution for the relationship between 4>, and f (see Sec. 3.1). Such a result was obtained
by solving an auxiliary problem for \p, introduced in Sec. 1.3, by Van Dyke's method of
matched asymptotic solutions. It was concluded that the limit <j>, J, 0 corresponds to the
limit f | = 1.182754 • ■ ■ . Further, a solution for <p uniformly valid for all 0 < tj as
<p, I 0 has been obtained from the above-mentioned solution for \p (see Sec. 3.2). By
using this solution, it has finally been shown that (for calculating the </> field, given </>.,) the
range of utility of a four-term truncated regular perturbation solution for 4> can be
extended to 0 < <t>, < 3.70 [1] provided 8% errors in <£ are acceptable. (The accuracy of
this representation in the range 1 < <ps < 3.70 was shown in [1].)

For materials with essentially constant pC and a conductivity variation which can be
accurately modeled as per Eq. (1) within a useful temperature range, the results obtained
here and in [1] allow for simple estimates of the solution to the heating problem con-
sidered. When this temperature range includes the point of material melting or sub-
limation, etc., the results of our solution would yield a bound on the "amplitude" of
H = ht~1/2 type of surface heating within which the integrity of the surface woul i be
assured and outside of which the degradation of the material surface would be guar-
anteed. The results of this work would also provide useful temperature or heat-transfer
bounds in heated, variable-conductivity material types other than those considered here.
It is finally anticipated that the solution provided herein will find appropriate application
in understanding other concentration-dependent diffusion phenomena.
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