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Every teacher of linear algebra should be familiar with the matrix singular value 
deco~??positiolz(or SVD). It has interesting and attractive algebraic properties, and 
conveys important geometrical and theoretical insights about linear transformations. 
The close connection between the SVD and the well-known theo1-j~ of diagonalization 
for sylnmetric matrices makes the topic immediately accessible to linear algebra 
teachers and, indeed, a natural extension of what these teachers already know. At 
the same time, the SVD has fundamental importance in several different applications 
of linear algebra. 

Gilbert Strang was aware of these facts when he introduced the SVD in his now 
classical text [22, p. 1421, obselving that "it is not nearly as famous as it should 
be." Golub and Van Loan ascribe a central significance to the SVD in their defini- 
tive explication of numerical matrix methods [8, p,  xivl, stating that "perhaps the 
most recurring theme in the book is the practical and theoretical value" of the SVD. 
Additional evidence of the SVD's significance is its central role in a number of re- 
cent papers in :Matlgenzatics ivlagazine and the Atnericalz Mathematical ilironthly; for 
example, [2, 3, 17, 231. 

Although it is probably not feasible to include the SVD in the first linear algebra 
course, it definitely deselves a place in more advanced undergraduate courses, par- 
ticularly those with a numerical or applied emphasis. My primary goals in this article 
are to bring the topic to the attention of a broad audience, and to reveal some of 
the facets that give it both practical and theoretical significance. 

Theory 

The SVD is intimately related to the familiar theory of diagonalizing a symmetric 
matrix. Recall that if A is a symmetric real n x n matrix, there is an orthogonal 
matrix V and a diagonal D such that A = VDVT. Here the columns of V are 
eigenvectors for A and form an orthonormal basis for Rn;the diagonal entries of D 
are the eigenvalues of A. To emphasize the connection with the SVD, we will refer 
to V D V ~as the eigenvalzle deco~?zposition (EVD) for A. 

For the SVD we begin with an arbitrary real m x n matrix A. As we shall see, there 
are orthogonal matrices U and V and a diagonal matrix, this time denoted C, such 
that A = U C V ~ .In this case, U is m x nz and V is n x n, so that C is rectangular 
with the same dimensions as A. The diagonal entries of C, that is the Cii = oi, can 
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be arranged to be nonnegative and in order of decreasing magnitude; the positive 
ones are called the si?zgzllar values of A. The columns of U and V are called left 
and right singular vectors for A. 

The analogy between the EVD for a syinlnetric matrix and the SVD for an arbitrary 
matrix can be extended a little by thinking of matrices as linear transformations. For 
a symmetric matrix A, the transformation takes Rn to itself, and the columns of V 
define an especially nice basis. When vectors are expressed relative to this basis, we 
see that the transformation simply dilates soine colnponents and contracts others, 
according to the magnitudes of the eigenvalues (with a reflection through the origin 
tossed in for negative eigenvalues). Moreover, the basis is orthonormal, which is the 
best kind of basis to have. 

Now let's look at the SVD for an m x n matrix A. Here the transformation takes 
IRn to a different space, Rm, so it is reasonable to ask for a natural basis for each 
of domain and range. The columns of V and U provide these bases. When they are 
used to represent vectors in the domain and range of the transformation, the nature 
of the transforn~ation again becomes transparent: It simply dilates some components 
and contracts others, according to the magnitudes of the singular values, and pos- 
sibly discards components or appends zeros as needed to account for a change in 
dimension. From this perspective, the SVD tells us how to choose orthonormal bases 
so that the transformation is represented by a matrix with the simplest possible form, 
that is, diagonal. 

How do we choose the bases {vl:  112, .  . . ; v,) and {ul, u2, . . . : urn)for the domain 
and range? There is no difficulty in obtaining a diagonal representation. For that, 
we need only Avi = a,ui, which is easily arranged. Select an orthonormal basis 
{vl: v2: . . . : v,) for Rn SO that the first k elements span the row space of A and the 
remaining n - k elements span the null space of A, where k is the rank of A. Then 
for 1 5 i 5 k define u, to be a unit vector parallel to Avi, and extend this to a 
basis for Rm.Relative to these bases, A will have a diagonal representation. But in 
general, although the v's are orthogonal, there is no reason to expect the u's to be. 
The possibility of choosing the v-basis so that its ortllogonality is preselved under 
A is the key point. We show next that the EVD of the n x n syininetric matrix ATA 
provides just such a basis, namely, the eigenvectors of ATA. 

Let ATA = VDVT, with the diagonal entries Xi of D arranged in non-increasing 
order, and let the columns of V (which are eigenvectors of ATA) be the orthonormal 
basis {vl: v2:. . . : v,,). Then 

so the image set {Avl; Av2;. . . ; Av,) is orthogonal, and the nonzero vectors in this 
set form a basis for the range of A. Thus, the eigenvectors of ATA and their images 
under A provide orthogonal bases allowing A to be expressed in a diagonal form. 

To complete the construction, we normalize the vectors Avi. The eigenvalues of 
ATA again appear in this step. Taking i = j in the calculation above gives /Avi 1' = X i ,  

which means Xi 2 0.Since these eigenvalues were assunled to be arranged in non- 
increasing order, we conclude that X I  > X2 > . . . > X k  > 0and, since the rank of A 
is k ,  Xi = 0 for i > k .  The orthonormal basis for the range is therefore defined by 

If k < nz, we extend this to an orthonormal basis for IRm 
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This completes the construction of the desired orthonormal bases for IRn and EXm. 
Setting ai = fiwe have Avi = aiui for all i 5 k. Assembling the vi as the columns 
of a matrix V and the ui to form U, this shows that AV = UC, where C has the 
same dimensions as A, has the entries ai along the main diagonal, and has all other 
entries equal to zero. Hence, A = UCVT, which is the singular value decomposition 
of A. 

In summary, an m x n real matrix A can be expressed as the product UCVT, 
where V and U are orthogonal matrices and C is a diagonal matrix, as follows. The 
matrix V is obtained from the diagonal factorization ATA = V D V ~ ,in which the 
diagonal entries of D appear in non-increasing order; the columns of U come from 
normalizing the nonvanishing images under A of the colutnns of V, and extending 
if necessary to an orthonormal basis for Rm;the nonzero entries of C are the square 
roots of corresponding diagonal entries of D .  

The preceding construction demonstrates that the SVD exists, and gives some 
idea of what it tells about a matrix. There are a number of additional algebraic and 
geometric insights about the SVD that will be derived with equal ease. Before pro- 
ceeding to them, two remarks should be made. First, the SVD encapsulates the most 
appropriate bases for the domain and range of the linear transfortnation defined by 
the matrix A. A beautiful relationship exists between these bases and the four funda- 
mental subspaces associated with A: the range and nullspace, and their orthogonal 
complements. It is the full picture provided by the SVD and these subspaces that 
Strang has termed the filndamental theorem of linear algebra. He also invented a di- 
agram schematically illustrating the relationship of the bases and the four subspaces; 
see Figure 1. Strang's article [231 is recommended for a detailed discussion of this 
topic. 

Figure 1. Strang's diagram. 

The second remark concerns computation. There is often a gap between mathe- 
matical theory and computational practice. In theory, we envision arithmetic oper- 
ations being carried out on real numbers in infinite precision. But when we carry 
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out arithmetic on a digital computer we compute not with reals, but with a finite 
set of rationals, and the results can only approximate with limited precision the real 
computations. Procedures that seem elegant and direct in theory can sometimes be 
dramatically flawed as prescriptions for computational algorithms. The SVD illus- 
trates this point. Our construction appears to offer a straightforward algorithm for 
the SVD: Form ATA, compute its eigenvalues and eigenvectors, and then find the 
SVD as described above. Here practice and theory go their separate ways. As we 
shall see later, the computation using ATA can be subject to a serious loss of preci- 
sion. It turns out that direct methods exist for finding the SVD of A without forming 
ATA, and indeed in many applications the practical importance of the SVD is that it 
allows one to find the EVD of ATA without ever forming this numerically treacherous 
product. 

Let us now explore several additional aspects of the SVD. 

The SVD and the EVD. Our construction showed how to determine the SVD of 
A from the EVD of the symmetric matrix ATA. Conversely, it is easy to recover the 
EVD of ATA from the SVD of A. For suppose the singular value decomposition 
A = UCVT is given. Clearly, ATA = VCTCVT and AAT = UCCTUT. Now in 
either order the product of C and CT is a square diagonal matrix whose first k 
diagonal entries are the 03,with any remaining diagonal entries equal to 0. Thus, 
ATA = v C T C v T  is the EVD of ATA and AAT = UCCTUT is the EVD of AAT. Our 
argument also yields a uniqueness result for the singular value decomposition. In 
any SVD of A,  the right singular vectors (columns of V) must be the eigenvectors of 
ATA, the left singular vectors (columns of U) must be the eigenvectors of AAT, and 
the singular values must be the square roots of the nonzero eigenvalues common 
to these two symmetric matrices. Thus, up to possible orthogonal transformations 
in multidimensional eigenspaces of ATA and AAT, the matrices V and U in the 
SVD are uniquely determined. Finally, note that if A itself is square and symmetric, 
each eigenvector for A with eigenvalue X is an eigenvector for A2 = ATA = AAT 
with eigenvalue X2. Hence the left and right singular vectors for A are simply the 
eigenvectors for A, and the singular values for A are the absolute values of its 
eigenvalues. That is, the EVD and SVD essentially coincide for symmetric A and are 
actually identical if A has no negative eigenvalues. In particular, for any A,  the SVD 
and EVD of ATA are the same. 

A geometric interpretation of the SVD. One way to understand how A deforms 
space is to consider its action on the unit sphere in Rn.An arbitrary element x of 
this unit sphere can be represented by x = xlvl+ x2v2 +.. . +x,vn with Cy xz = 1. 
The image is Ax = ulxlul+.. . +crkxkuk.Letting yi = aixi,we see that the image 
of the unit sphere consists of the vectors ylul +y2u2 + . . . +ykuk,where 

If A has full column rank, so that k = n, the inequality is actually a strict equality. 
Otherwise, some of the xi are missing on the right, and the sum can be anything 
from 0 to 1. This shows that A maps the unit sphere of Rn to a k-dimensional 
ellipsoid with semi-axes in the directions ui and with the magnitudes ai.If k = n 
the image is just the surface of the ellipsoid, otherwise it is the solid ellipsoid. In 
summary, we can visualize the effect A as follows: It first collapses n - k dimensions 
of the domain, then distorts the remaining dimensions, stretching and squeezing the 
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unit k-sphere into an ellipsoid, and finally it embeds the ellipsoid in Rm. This is 
illustrated for n = m = 3 and k = 2 in Figure 2. 

Figure 2. How A deforms Rn. 

As an immediate consequence, we see that 1 1  All, the operator norm of A, defined 
as the maximum value of IAvl for v on the unit sphere, is simply al, the largest 
singular value of A. Put another way, we have the inequality lAxl < crllxl for all 
x cRn,  with equality only when x is a multiple of v l .  

Partitioned matrices and the outer product form of the SVD. When viewed in 
a purely algebraic sense, any zero rows and columns of the matrix C are superflu- 
ous. They can be eliminated if the matrix product A = U C V ~is expressed using 
partitioned matrices as follows: 

Although these partitions assume that k is strictly less than m and n, it should be 
clear how to modify the arguments if k is equal to m or n. When the partitioned 
matrices are multiplied, the result is 

From this last equation it is clear that only the first k of the u's and v's make any 
contribution to A. Indeed, we may as well shorten the equation to 
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Notice that in this form the matrices of u's and v's are now rectangular (m x k and 
k x n respectively), and the diagonal matrix is square. This is an alternative version 
of the SVD that is taken as the definition in some expositions: Any m x n matrix A 
of rank k can be expressed in the form A = U C v T  where U is an m x k matrix 
such that UTU = I,C is a k x k diagonal matrix with positive entries in decreasing 
order on the diagonal, and V is an n x k matrix such that VTV = I. 

The partitioned matrix formulation of the SVD is a little unusual in one respect. 
Usually in a matrix product XY,  we focus on the rows in X and on the columns in 
Y. Here, the factors are expressed in just the opposite way. This is the ideal situation 
to apply what is called an outerproduct expansion for the product of two matrices. 
In general, if X is an m x k matrix with columns xi and Y is a k x n matrix with 
rows yT, the matrix product X Y  can be expressed as 

Each of the terms xiy? is an outer product of vectors xi and yj. It is simply the 
standard matrix product of a column matrix and a row matrix. The result can be 
visualized in terms of a multiplication table, with the entries of xi listed along the 
left margin and those of yj across the top. The body of the table is the outer product 
of xi and yj.This idea is illustrated in Figure 3, showing the outer product of ( a ,b: c) 
and ( p ,  q ,  r ) .  Observe that in the figure, each column is a multiple of [ a b c I T  
and each row is a multiple of [ p q r 1 ,  so that the outer product is clearly of rank 
1.In just the same way, the outer product xiy: is a rank 1matrix with columns that 
are multiples of xi and rows that are multiples of y?, 

Figure 3. Outer product 
as multiplication table. 

We shall return to outer product expansions in one of the applications of the SVD. 
Here, we simply apply the notion to express the SVD of A in a different form. Let 

Then A = X Y  can be expressed as an outer product expansion, 
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This is yet another form of the SVD, and it provides an alternative way of expressing 
how A transforms an arbitrary vector x.Clearly, 

Since VTXis a scalar, we can rearrange the order of the factors to 

Now in this sum Ax is expressed as a linear combination of the vectors ui.Each 
coefficient is a product of two factors, VTXand ai.Of course, vTx = vi . x is just 
the ith component of x relative to the orthonormal basis {vl,.. . ,v,). Viewed in 
this light, the outer product expansion reconfirms what we already know: Under the 
action of A each v component of x becomes a u component after scaling by the 
appropriate a. 

Applications 

Generally, the SVD finds application in problems involving large matrices, with di- 
mensions that can reach into the thousands. It is the existence of efficient and ac- 
curate computer algorithms for its computation that makes the SVD so useful in 
these applications. There is beautiful mathematics involved in the derivation of the 
algorithms, and the subject is worth looking into. However, for this discussion I 
will treat the computation of the SVD as if performed by a black box. By way of 
analogy, consider any application of trigonometry. When we require the value of a 
sine or cosine, we simply push the buttons on a calculator with never a thought to 
the internal workings. We are confident that the calculator returns a close enough 
approximation to serve our purposes and think no more about it. So, too, we can 
be confident that computers will quickly and accurately approximate the SVD of 
arbitrary matrices, letting us concentrate on when and why to push the SVD button, 
and how to use the results. 

The SVD is an important tool in several different applications. I will briefly mention 
a few, then discuss in detail two samples that are apparently quite unrelated: linear 
least squares optimization and data compression with reduced rank approximations. 

Applications in brief. One of the most direct applications of the SVD is to the 
problem of computing the EVD of a matrix product ATA. This type of problem 
is encountered frequently under the name of principal component analysisland in 
connection with the statistical analysis of covariance matrices [9]As the discussion 
of least squares optimization will make clear, the computation of ATA can lead to 
a significant degradation of accuracy in the results. In contrast, the SVD can be 
computed by operating directly on the original matrix A. This gives the desired 
eigenvectors of ATA (the right singular vectors of A) and eigenvalues of ATA (the 
squares of the singular values of A) without ever explicitly computing ATA. 

An application to digital image processing is described in an introductory section of [15].Suc-
ceeding sections discuss the SVD and its other applications. A much more detailed presentation 
concerning image processing appears in [21]. 
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A second application of the SVD is as a numerically reliable estimate of the effective 
rank of a matrix. Often linear dependencies in data are masked by measurement 
error. Thus, although computationally speaking the columns of a data matrix appear 
to be linearly independent, with perfect measurement the dependencies would have 
been detected. Or, put another way, it may be possible to make the columns of the 
data matrix dependent by perturbing the entries by small amounts, on the same 
order as the measurement errors already present in the data. The way to find these 
dependencies is to focus on the singular values that are of a larger magnitude than 
the measurement error. If there are r such singular values, the effective rank of the 
matrix is found to be r .  This topic is closely related to the idea of selecting the closest 
rank r approximation to a matrix, which is considered below in the discussion of 
data compression. 

Another application of the SVD is to computing the generalized inverse of a matrix. 
This is very closely related to the linear least squares problem and will be mentioned 
again in the discussion of that topic. 

Linear least squares. The general context of a linear least squares problem is 
this: We have a set of vectors which we wish to combine linearly to provide the 
best possible approximation to a given vector. If the set of vectors is {all  az, . . . ,a,) 
and the given vector is b, we seek coefficients x l ,  xz, . . . ,x, that produce a minimal 
error 

The problem can arise naturally in any vector space, with elements that are se- 
quences, functions, solutions to differential equations, and so on. As long as we are 
interested only in linear combinations of a finite set {al,  aa, . . . , a,), it is possible to 
transform the problem into one involving finite columns of numbers. In that case, 
define a matrix A with columns given by the ail  and a vector x whose entries are the 
unknown coefficients xi. Our problem is then to choose x minimizing 1 b - Ax(.  As 
before, we denote the dimensions of A by m and n, meaning that the ai are vectors 
of length m. 

The general least squares problem has a geometric interpretation. We are seeking 
an element of the subspace S spanned by the ai that is closest to b. The solution is 
the projection of b on S,and it is characterized by the condition that the error vector 
(that is, the vector difference between b and its projection) should be orthogonal 
to S .  Orthogonality to S is equivalent to orthogonality to each of the ai. Thus, the 
optimal solution vector x must satisfy ai . (Ax - b) = 0 for all i. Equivalently, in 
matrix form, AT(Ax - b) = 0. 

Rewrite the equation as ATAx = ATb, a set of equations for the xi generally 
referred to as the normal equations for the linear squares problem. Observe that the 
independence of the columns of A implies the invertibility of ATA. Therefore, we 
have x = (ATA)-lATb. 

What a beautiful analysis! It is neat, it is elegant, it is clear. Unfortunately, it is also 
poorly behaved when implemented in approximate computer arithmetic. Indeed, 
this is the classic example of the gap between theory and practice mentioned earlier. 
Numerically, the formation of ATA can dramatically degrade the accuracy of a com- 
putation; it is a step to be avoided. A detailed discussion of the reasons for this poor 
performance is provided in [81. Here, I will be content to give some insight into the 
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problem, using both a heuristic analysis and a numerical example. First, though, let 
us see how the SVD solves the least squares problem. 

We are to choose the vector x so as to minimize lAx  - bl. Let the SVD of A be 
U C V T  (where U and V are square orthogonal matrices, and C is rectangular with 
the same dimensions as A ) .  Then we have 

where y = V T x  and c = u T b .  Now U is an orthogonal matrix, so preserves lengths. 
That is, IU(Cy - c ) / = ICy - c / ,hence / A x- b/ = ICy - c / .This suggests a method 
for solving the least squares problem. First, determine the SVD of A and calculate c 
as the product of uTand b. Next, solve the least squares problem for C and c. That 
is, find a vector y so that lCy - c /  is minimal. (We shall see in a moment that the 
diagonal nature of C makes this step trivial.) Now y = V T x , SO we can determine x 
as V y .That gives the solution vector x as well as the magnitude of the error, ICy - c / .  

In effect, the SVD has allowed us to make a change of variables so that the least 
squares problem is reduced to a diagonal form. In this special form, the solution 
is easily obtained. We seek y to minimize the norm of the vector C y  - c. Let the 
components of y, which is the unknown, be yi for 1 5 i 5 n. Then 

By inspection, when yi = c i /a i  for 1 5 i 5 k ,  C y  - c assumes its minimal length, 
which is given by 

Recall that k is the rank of A ,  and note that when k = m, the sum (1) is vacuous. 
In this case, the columns of A span Rm so the least squares problem can be solved 
with zero error. Also observe that when k is less than n, there is no constraint on 
the values of yk+l through y,. These components can be assigned arbitrary values 
with no effect on the length of C y  - c. 

As the preceding analysis shows, the SVD allows us to transform a general least 
squares problem into one that can be solved by inspection, with no restriction on 
the rank of the data matrix A .  Indeed, we can combine the transformation steps 
and the solution of the simplified problem as follows. First, we know that c = UTb.  
The calculation of y from c amounts to multiplying by the matrix C+ defined by 
transposing C and inverting the nonzero diagonal entries. Then y = C+c will have 
its first k entries equal to c, /a, ,  as required. Any remaining entries (which were 
previously unconstrained) all vanish. Finally, we compute x = V y .  This gives the 
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to flatten out completely and lie in an (n- 1)-dimensional hyperplane (Figure 4). 

Figure 4. Unit Sphere Deformed by ATA. 

Therefore, in the image under ATA of a random vector of unit length, the expected 
contribution of the v, component is essentially negligible. In this case, the effect of 
finite precision is to introduce a significant error in the contribution of v,. However, 
in solving the normal equations we are interested in the inverse mapping, (ATA)-l, 
which has the same eigenvectors as ATA, but whose eigenvalues are the reciprocals 
1/A,.Now it is A,, alone, that is significant, and the ellipsoid is essentially one 
dimensional; see Figure 5. In every direction except v,, the image of a random unit 
vector will have no noticable contribution. Arguing as before, significant errors are 
introduced in the contributions of all of the vi except v,. 

Figure 5. Unit Sphere Deformed by (ATA)-' 

Let us make this analysis more concrete. Select a particular vector x,with x = 

xlvl +xzvz + . . . +x,v,. Thinking of x as a column vector, consider a single entry, 
c of (x),and write c,for the corresponding entry of xivi.Then c = cl +c:!+ . . . +c,. 
In the image (ATA)-lx the corresponding entry will be cl/A1+c2/A2+ .. . +cn/'An. 
Now if the c, are all of roughly comparable magnitude, then the final term in this 
sum will dwarf all the rest. The situation illustrated above will occur. The c,/A, term 
will play the role of 12345678.9012345; every other term will be in the position of 
,123456789012345, In effect, several decimal digits of each term, save the last, are 
lost. Of course, the number of digits lost depends on the difference in magnitude 
between X1 and A,. If A1/X, is on the order of lo7,so X1 and A, differ by T orders 
of magnitude, then the inferior terms of the sum lose T digits of accuracy. If T is 
large enough, the contributions can be completely lost from every term except the 
last. 
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Does this loss of accuracy really matter? Isn't the value of y = (ATA)-lxstill 
correct to the accuracy of the computation? If y is really all we care about, yes. But 
y is supposed to be an approximate solution of ATAy = x , and we should judge 
the adequacy of this approximation by looking at the difference between ATAy and 
x. In exact arithmetic, the first n - 1 terms c,/X,,which were nearly negligible in 
the computation of y, regain their significance and make an essential contribution to 
the restoration of x. But the digits that were lost in the limited precision arithmetic 
cannot be recovered, so every component, except the last, is either corrupted or lost 
entirely. Thus, while y = (ATA)-lxmight be correct to the limits of computational 
precision, the computed value of ATAy can be incorrect in every decimal place. 

In the context of the normal equations, the computation of x = (ATA)-lATbis 
supposed to result in a product Ax close to b. This calculation is subject to the same 
errors described above. Small errors in the computation of (ATA)-I,inflated by the 
final multiplication by A,can severely degrade the accuracy of the final result. 

Based on the foregoing, it is the range of the magnitudes of the eigenvalues of 
ATA that determines the effects of limited precision in the computation of the least 
squares vector x ,  and these effects will be most severe when the ratio X1/X, is 
large. As many readers will have recognized, this ratio is the condition number of 
the matrix ATA.More generally, for any matrix, the condition number is the ratio of 
greatest to least singular values. For a square matrix A,the condition number can 
be interpreted as the reciprocal of the distance to the nearest singular matrix [8,p. 
261. A large condition number for a matrix is a sign that numerical instability may 
plague many types of calculations, particularly the solution of linear systems. 

Now all of this discussion applies equally to the SVD solution of the least squares 
problem. There too we have to invert a matrix, multiplying UTb by C+.  Indeed, 
the singular values are explicitly inverted, and we can see that a component in the 
direction of the smallest positive singular value gets inflated, in the nonsingular case 
by the factor l/a,.Arguing as before, the effects of truncation are felt when the 
condition number al/a, is large. So the benefit of the SVD solution is not that it 
avoids the effects of near dependence of the columns of A.But let us compare the 
two condition numbers. We know that the eigenvalues of ATA are the squares of the 
singular values of A.Thus X1/X, = that is, the condition number of ATA( ~ ~ / a , ) ~ ,  
is the square of the condition ~zurnber of A. In view of our heuristic error analysis, 
this relation between the condition numbers explains a rule of thumb for numerical 
computation: When computing with ATA you need roughly twice as many digits to 
be as accurate as when you compute with the SVD of A. 

The heuristic analysis is plausible, but by itself not completely convincing. As 
further support, I offer the following numerical example. Of course, there is no 
substitute for a careful mathematical analysis, and the interested reader is encouraged 
to consult [8]for a discussion of condition number. 

A numerical example. We will simulate a least squares analysis where experi- 
mental data have been gathered for four variables and we are attempting to estimate 
the dependent variable by a linear combination of the other three independent vari-
ables. For simplicity, suppose each variable is specified by just four data values, so 
the columns al, a2, a3 of A,as well as the dependent column b, lie in R4.We would 
like the columns of A to be nearly dependent, so that we can observe the situation 
described in the heuristic analysis. Thus we will make one column, say as,differ 
from a linear combination of the other two by a very small random vector. Similarly, 
we want the dependent vector b to be near, but not in, the range of A,so we will 
define it, too, as a linear combination of a1 and a2 plus a small random vector. We 
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then compute the least squares coefficients x = ( x l ,2 2 ,  x 3 )  by the two formulas 
x = vz+UTband x = (ATA)-I ATb, and we compare the errors by calculating the 
magnitude of the residual Ib - Ax1 in each case. 

In choosing the random vectors in a3 and b, we have different goals in mind. The 
random component of b will determine how far b is from the range of A, hence how 
large a residual the least squares solution should have. All our computations will be 
performed with 16 decimal place accuracy, so we will take the random component of 
b to be fairly small, on the order of In contrast, the goal in choosing the random 
component of a3 is to make the condition number of A on the order of los .  Then 
the condition number of ATA will be on the order of 1016,large enough to corrupt 
all 16 decimal digits of the solution produced by the normal equations. As will be 
shown in our later discussion of reduced rank approximations, the smallest singular 
value of A will be of about the same magnitude as the norm of the random vector 
used to define as.  If the norms of a1 and a2 are on the order of 10, then the largest 
singular value will be of this order as well. Thus, choosing the random component 
of a3 with norm on the order of loV7 should produce a condition number of about 
lo8,as desired. 

It is worth noting that the near dependence between the columns of A should not 
degrade the quality of the least squares solution. Using just the first two columns of 
A, we can approximate b to within an error of about The third column of A 
can only improve the approximation. So, the true least squares solution should be 
expected to produce a residual no greater than l o p 4 .The large error obtained using 
the normal equations is therefore attributable entirely to the numerical instability of 
the algorithm, not to any intrinsic limitations of the least squares problem. 

All of the computations in this example were performed using the computer soft- 
ware package MATLAB [IS]. Its simple procedures for defining and operating on 
matrices make this kind of exploration almost effortless. To help readers explore 
this topic further by using MATLAB to recreate and modify this example, I include 
the MATLAB commands. The actual program displays the results of each computation 
on the computer screen, but, to save space, I will show only the final results. 

First, define two data vectors: 

(The primes indicate the transpose operator, so that cl and c2 are defined as column 
vectors.) The third data vector is a combination of these, plus a very small random 
vector: 

and the matrix A is defined to have these three vectors as its columns: 

In defining c3 the command rand (4'1) returns a four-entry column vector with 
entries randomly chosen between 0 and 1. Subtracting 0.5 from each entry shifts 
them to between -$  and $. Thus, the length of the random component of c3 will 
be at most l o V 7 ,as stipulated above. 
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Next, we define the b vector in a similar way, by adding a small random vector to 
a specified linear combination of columns of A: 

This time the random vector will be no longer than again as desired. 
The SVD of A is quickly determined by MATLAB: 

The three matrices U,S (which represents C), and v are displayed on the screen 
and kept in the computer memory. When we ran the program, the singular values 
turned out to be 59.810, 2.5976, and 1.0578 x lo-'. Thus the condition number of 
A was about 6 . lo9, the desired magnitude. 

To compute the matrix C+ we need to transpose the diagonal matrix S and invert 
the nonzero diagonal entries. This matrix, denoted by G,is defined by the following 
MATUB commands: 

G = sr 
G(lrl) = 1/S(lrl) 
G(2,2) = 1/S(2,2) 
G(3,3) = 1/S(3,3) 

Now let's see how well the SVD solves the least squares problem. We multiply 
x = VC+UTb by the matrix A and see how far the result is from b. Upon receiving 
the commands 

rl = b - A*V*G*Ur*b 
el = sqrt(rlr*rl) 

MATLAB responds 

As desired, the computed magnitude of the residual b - Ax1 is a bit smaller than 
So the SVD provided a satisfactory solution of our least squares problem. 

The solution provided by the normal equations is x = (ATA)-lATb. We enter 

and M A W  responds 

which is of the same order of magnitude as I b ,  the distance from b to the origin! As 
we anticipated from our heuristic analysis, the solution to the least squares problem 
computed using the normal equations does a poor job of approximating b as a 
linear combination of the columns of A. What is more, the computed residual for 
this method is of no value as an estimate of the distance of b from the range of A. 

This completes our in-depth look at least squares problems. The next section 
examines another area of application: reduced rank approximation. 
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Data compression using reduced rank approximations. The expression of the 
SVD in terms of the outer product expansion was introduced earlier. This represen- 
tation emerges in a natural way in another application of the SVD: data compression, 
where we begin with an m x n matrix A of numerical data and try to describe a 
close approximation to A using far fewer numbers than the mn original entries. The 
matrix is not considered as a linear transformation, or indeed as an algebraic object 
at all. It is simply a table of mn numbers, and we want to find an approximation 
that captures the most significant features of the data. 

Because the rank of a matrix specifies the number of linearly independent columns 
(or rows), it is a measure of redundancy. A matrix of low rank has a large amount of 
redundancy, so can be expressed much more efficiently than simply by listing all the 
entries. As a graphic example, suppose a scanner is used to digitize a photograph, 
replacing the image by an m x n matrix of pixels, each assigned a gray level on a 
scale of 0 to 1.Any large-scale features in the image are reflected by redundancy in 
the columns or rows of pixels, thus we may hope to recapture these features in an 
approximation by a matrix of lower rank than min(m, n) .  

The extreme case is a matrix of rank one. If B is such a matrix, then the columns 
are all multiples of one another-the column space is one-dimensional. If u is the 
single element of a basis, then each column is a multiple of u.  We represent the 
coefficients as v,, meaning that the ith column of B is given by v,u, so that B = 

[vlu vzu . . . v,u] = uvT.Thus, any rank one matrix can be expressed as an outer 
product, that is, as the product of a column and row. The mn entries of the matrix 
are determined by the m entries of the column and the n entries of the row. For 
this reason, we can achieve a large compression of the data matrix A if it can be 
approximated by a rank one matrix. Instead of the mn entries of A, we need only 
m + n numbers to represent this rank one approximation to A. It is natural to seek 
the best rank one approximation. 

We will call B the best rank one approximation to A if the error matrix B -A has 
minimal norm, where now we define the (Frobenius) norm 1x1of a matrix X to be 
simply the square root of the sum of the squares of its entries. This norm is just the 
Euclidean norm of the matrix considered as a vector in Rmn.Thinking of matrices 
this way, we define the inner product of two matrices by X . Y = Cijxijyij and, 
as usual, IxI2= X . X .  Evidently this inner product of matrices can be thought of 
in three ways: as the sum of the inner products of corresponding rows, as the sum 
of the inner products of corresponding columns, or as the sum of the mn products 
of corresponding entries. 

There is a simple expression for the norm of a matrix product X Y  that is easily 
derived using the outer product expansion. First, note that for rank one matrices xyT 
and uvT, 

xyT .uvT = [xy1 . . . xy,] . [uvl . . . UV,] 

where we have computed the matrix inner product as the sum of vector inner prod- 
ucts of corresponding columns. In particular, xyT and uvT will be orthogonal with 
respect to the matrix inner product provided that either x and u or y and v are orthog- 
onal as vectors. Using equation (3) and the outer product expansion X Y  = CixiyT 
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Returning to the main thread of the argument, we now have /C  - a x y T / 2  > 
E l 2  + a2- 2aa1 = IEI2 + ( a  - 0 1 ) ~- a:. We immediately see that the right-hand 
side is minimized when a is taken to be al, so that IC - axyT 1' > ICI2 - a:. 
Moreover, if the ai are distinct, this minimum is actually obtained only when a = a1 

and x and y are of the form el  = ( 1 , 0 , .. . , 0 )  in Rm and Rn, respectively. Finally, 
Al = aUxyTVT = ~ ~ ( U e ~ ) ( v e ~ ) ~alulvT.  That is what we wished to show. (If = 
a1 is a repeated singular value, a slight modification of the argument is needed. It 
amounts to making an orthogonal change of basis in the subspace of right singular 
vectors corresponding to a1.I 

This result shows that the SVD can be used to find the best rank one approximation 
to a matrix. But in many cases, the approximation will be too crude for practical use 
in data compression. The obvious next step is to look for good rank r approximations 
for r > 1. In this regard, there is an attractive greedy algorithm. To begin, choose 
a rank one Al for which the error El = A - Al has minimal norm. Next choose a 
rank one matrix AZfor which the norm of E2= El -A2 is minimal. Then Al + A2 
is a rank two approximation to A with error E2.Continue in this fashion, each time 
choosing a best possible rank one approximation to the error remaining from the 
previous step. The procedure is a greedy algorithm because at each step we attempt 
to capture as large a piece of A as possible. After r steps, the sum Al + . . . + A, 
is a rank r approximation to A. The process can be repeated for k steps (where 
k is the rank of A), at which point the error is reduced to zero. This results in the 
decomposition 

which is none other than the SVD of A. To be more precise, each Ai can be expressed 
as the product of a positive scalar a' with an outer product uivT of unit vectors. Then 
A is given by 

which, true to the notation, is the SVD of A expressed in the form of the outer 
product expansion. 

This statement follows from the earlier result linking the best rank one approxi- 
mation of a matrix to its largest singular value and corresponding singular vectors. 

kAssuming the singular values are distinct, write A = x i = ,  aiuiv'. It is clear that Al 
must equal a lulvT and El = ~ f a i u i v r .= ~But that gives the SVD of El,from which 
we can instantly obtain the best rank one approximation A2 = Clearly, this 0 2 ~ 2 ~ ~ .  
argument can be repeated until the complete decomposition of A is obtained. (As 
before, if the singular values of A are not distinct, the argument must be modified 
slightly to take into account orthogonal changes of basis in the subspace of right 
singular vectors corresponding to a particular singular value.) 

The understanding we now have of the connection between successive best rank 
one estimates and the SVD can be summarized as follows. The outer product expan- 
sion form for the SVD, A = C aiuiv', expresses A as a sum of rank one matrices 
that are orthogonal with respect to the matrix inner product. Truncating the sum 
at r terms defines a rank r matrix S, = aiuiv'. Approximating A with S, 
leaves an error of E, = A - S, = c:=,+, oiuivT with EA2 = 

k a: and 
lAI2 = /S,I2+ I E,l2.The sum S, is the result of making successive best rank one 
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approximations. But there is a stronger result: Sr is actually the best rank r approx-
imation possible. Proofs of this assertion can be found in Lawson and Hanson [14, 
pp. 23-261 and Leon [161. 

The properties of reduced rank approximations can now be used to clarify a re- 
mark made earlier. In the example showing the advantage of the SVD in least squares 
problems, the matrix A had three independent columns, but the final column differed 
from a linear combination of the other two by a small random vector. Subtracting 
that small random vector from the third column produces a rank two matrix B that 
closely approximates A. In fact, IA - BI is equal to the norm of the random vector, 
expected to be about 5 x 10V8. Of course, the minimal error for a rank two approxi- 
mation to A must be precisely 03, so we can conclude that 03 5 IA -B = 5 x loV8. 
This shows that the magnitude of the random vector provides a bound on the least 
singular value of A. In particular, the order of magnitude of the least singular value 
can be controlled by choosing the random vector appropriately. This is what allowed 
us to construct A with a prescribed condition number in the least squares example. 

In practice, the SVD can be used to select the rank r and find the best rank 
r approximation to A. Note that with r terms, the SVD outer product expansion 
results in a relative error 

Typically, the value of r is chosen to reduce this relative error to some specified 
threshold. There is a nice visual example in [I71 of this idea, used to approximate an 
image of a surface in R3.Image processing is also discussed in [21 and [121, the latter 
including an interesting illustration involving fingerprints. A related discussion of the 
use of the SVD in cryptographic analysis appears in [191.For a completely different 
application of reduced rank approximations, see [61which employs the best rank 2 
approximation of a matrix in connection with a data visualization technique. 

We conclude this section with a detailed example of the SVD and reduced rank 
approximations. This example was developed by K. Kirby [131, based on a discussion 
in [201. 

The image shown in Figure 6 (page 20) represents a 24 x 24 matrix A whose 
entries are all either 0 or 1.The image is created using a rectangular grid of the same 
dimensions, with each cell in the grid colored black (if the corresponding matrix 
entry is 0) or white (if the entry is 1). Here are the first 16 singular values for this 
matrix shown to four decimal places: 

The remaining singular values were computed as zero to four decimal places. Now 
suppose we adopt an accuracy threshold of 90%. That would mean we wish to 
choose a reduced rank approximation with error no more than 10% of IA. Define 
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Figure 6. A 24 x 24 image. 

This gives the relative error for a sum of the first r terms of the SVD outer product 
expansion. Computing e(2) = 0.18 and e(3) = 0.09, we see that three terms of the 
expansion are needed to achieve an error of 10% or less. The result of using just 
three terms of the series is displayed as an image in Figure 7. Here the numerical 
entries of the matrix are displayed as gray levels. Similarly, setting a threshold of 95% 
would lead us to use a rank 5 approximation to the original matrix. That produces 
the image shown in Figure 8, in which one can recognize the main features of the 
original image. 

Figure 7. Rank 3 approximation. Figure 8. Rank 5 approximation. 

In fact, simply rounding the entries of the rank 5 approximation to the nearest 
integer restores the original image almost perfectly, as shown in Figure 9. Observe 
in this regard that the error matrix E5 has E5 1' = Ci>5 =022 16.7.Thus, the average 
value of the squares of the entries of E5 is 16.7124' = 0.029 and we might estimate 
the entries themselves to be around 0.17. Since this value is well below 0.5, it is not 
surprising that Figure 9 is nearly identical to the original image. 
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Figure 9. Rank 5 approximation, rounded to integers. 

There is an intriguing analogy between reduced rank approximations and Fourier 
analysis. Particularly in the discrete case, Fourier analysis can be viewed as repre- 
senting a data vector relative to a special orthogonal basis. The basis elements are 
envisioned as pure vibrations, that is, sine and cosine functions, at different frequen- 
cies. The Fourier decomposition thus represents the input data as a superposition 
of pure vibrations with the coefficients specifying the amplitude of each constituent 
frequency. Often, there are a few principal frequencies that account for most of the 
variability in the original data. The remaining frequencies can be discarded with lit- 
tle effect. The reduced rank approximations based on the SVD are very similar in 
intent. However, the SVD captures the best possible basis vectors for the particular 
data observed, rather than using one standard basis for all cases. For this reason, 
SVD-based reduced rank approximation can be thought of as an adaptive generaliza- 
tion of Fourier analysis. The most significant vibrations are adapted to the particular 
data that appear. 

A Computational Algorithm for the SVD 

The applicability of the SVD is a consequence of its theoretical properties. In practical 
applications, the software that calculates the SVD is treated as a black box: We are 
satisfied that the results are accurate and content to use them without worrying about 
how they were derived. However, peek into the box and you will be rewarded with 
a glimpse of an elegant and powerful idea: implicit matrix algorithms. The basic 
idea behind one of the standard algorithms for computing the SVD of A depends 
on the close connection to the EVD of ATA. As the algorithm proceeds, it generates 
a sequence of approximations Ai = to the correct SVD of A. The validity u ~ c ~ v , ~  
of the SVD algorithm can be established by showing that after each iteration, the 
product ATAi is just what would have been produced by the corresponding iteration 
of a well-known algorithm for the EVD of ATA. Thus, the convergence properties 
for the SVD algorithm are inferred from those of the EVD algorithm, although ATA is 
never computed and the EVD algorithm is never performed. From this perspective, 
the SVD algorithm can be viewed as an implicit algorithm for the EVD of ATA. It 
provides all the information needed to construct the EVD by operating directly on 
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A. Indeed, the operations on A are seen to implicitly perform the EVD algorithm for 
ATA, without ever explicitly forming ATA. 

Implicit algorithms are a topic of current research interest [lo]. References [ l l  
and [41describe some implicit algorithms for computations other than the SVD and 
suggest sources for further reading. A detailed account of the SVD algorithm is found 
in [8,Sec. 8.31,where additional citations and notes about the history of the algorithm 
are also given. In [71 there is a more compact (though less general) development 
that makes the connection to the QR algorithm more direct. It should also be noted 
that there are alternatives to the algorithm described above. One alternative that has 
significance in some kinds of parallel processing is due to Jacobi; see [8,Sec. 8.41. 
Another interesting alternative uses a rank 1 modification to split an SVD problem 
into two problems of lower dimension, the results of which can be used to find the 
SVD of the original problem. This method is described in [Ill. 

Conclusion 

The primary goal of this paper is to bring the SVD to the attention of a broad 
audience. The theoretical properties have been described, and close connections 
were revealed between the SVD and standard topics in the first linear algebra course. 
Several applications of the SVD were mentioned, with a detailed discussion of two: 
least squares problems and reduced rank estimation. The computational algorithm 
for the SVD was also briefly mentioned. 

Emphasizing the main themes of the subject has unfortunately meant omitting 
interesting details and limiting my presentation to general ideas. The reader is en- 
couraged to consult the references for a more thorough treatment of the many aspects 
of this singularly valuable decomposition. 

Acknowledgments. I thank Professor Kevin Kirby for Mathematica files used in the example of 
reduced rank approximation. 
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A Shortcut 

To the Editor: In H. Krishnapriyan's article [CMJ 26:2 (March 1995) 
118-1231, the proof of the main theorem uses Eulerian polynomials to 
prove that 

where Sk is the polynomial of degree k + 1 such that Sk(n) = lk+ 2k + 
... +nk  for positive integers n. Here is a short proof of (A) without 

Eulerian polynomials: By replacing n by -n in the equation Sk(n - 1) = 

Sl(n) - n4 we get 

Equation (A) easily follows from (B) by induction on n, starting with 
n = 0; the details are easy to fill in. 

-David M.Bloom, Brooklyn College of CUNY 

Editor'snore. Krishnapriyan suggests that our readers may find interesting a recent paper by 

Donald Knuth, "Johann Faulhaber and Sums of Powers" [Mathematics of Computation 

61:203 (July 1993) 277-2941, 
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