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Another approach is developed for generating two-wing hyperchaotic attractor, four-wing chaotic attractor, and high periodic
orbits such as period-14 from a sinusoidally driven based canonical Lorenz system. A sinusoidal function controller is introduced
into a 3D autonomous Lorenz system, so that the abovementioned various hyperchaotic attractors, chaotic attractors, and high
periodic orbits can be obtained, respectively, by adjusting the frequency of the sine function. In addition, an analog circuit and a
digital circuit are also designed and implemented, with experimental results demonstrated. Both numerical simulations and circuit
implementation together show the e
ectiveness of the proposed systematic methodology.

1. Introduction

In recent years, chaos has been widely studied in various
�elds, including mathematics, physics, biology, and engi-
neering sciences. In retrospect, in 1963, Lorenz found the
�rst numerical chaotic system with a clear physical meaning
[1]. In 1979, Rössler found the �rst chaotic system with
two positive Lyapunov exponents, referred to as the Rössler
hyperchaotic system [2]. Comparing with a chaotic attractor
with one positive Lyapunov exponent, the hyperchaotic
attractor expands in two or more directions simultaneously
[3–5]. Itmeans that the hyperchaotic attractor hasmuchmore
complex topological structure and therefore has much better
performances in many real-world applications such as secure
communication and encryption. Moreover, synchronization
of the fractional order hyperchaos Lorenz systems with
activation feedback control, projective synchronization of
fractional order chaotic system based on linear separation,
observer-based decentralized fuzzy neural sliding mode con-
trol for interconnected unknown chaotic systems via network
structure adaptation, and so on have been deeply investigated
[6–8]. �ese new chaotic systems are superior in encryption

and can enhance security for multimedia chaotic secure
communications.

Based on the 3D autonomous Lorenz system, consid-
erable e
orts have been devoted to constructing various
hyperchaotic Lorenz systems with two positive Lyapunov
exponents [9–17]. �e related proposed methods mainly
involve two aspects: one is with respect to the 4D autonomous
Lorenz system based on state feedback control approach
[9–13] and another is related to the 3D nonautonomous-
based Lorenz systemwith parameters perturbation or control
term by using continuously di
erentiable periodic functions,
such as sine and cosine functions [14–16]. In addition, a
4D nonautonomous-based Lorenz system is also proposed
for generating hyperchaos with two positive Lyapunov expo-
nents [17]. Using a sinusoidally driven chaotic system to
generate hyperchaos is a simple e
ective approach. Recently,
it is shown that when a sinusoidal voltage stimulus is applied
to a memristor-based Chua’s circuit, the memristive Chua’s
circuit can exhibit hyperchaotic attractor [18].

Moving forward from the abovementioned accomplished
works and taking into account the actual circuit implemen-
tation, in this paper, another approach is further developed
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for generating two-wing hyperchaotic attractor, four-wing
chaotic attractor, and high periodic orbits such as period-
14, from a sinusoidally driven Lorenz system. More precisely,
a sinusoidal function controller is introduced into the �rst
equation of 3D autonomous Lorenz system, which is di
er-
ent from the proposed parameters perturbation or control
term [14–16], or 4D nonautonomous-based approach [17].
Comparing the abovementioned existing reports with our
proposed method, the main di
erences lie in the following
two di
erent ways. (i) Our proposed controlled system can
be considered and constructed not only for generating two-
wing hyperchaotic attractor, which is also reported in the
existing literatures [14–17], but also for four-wing chaotic
attractor and high periodic orbits such as period-14, through
adjusting the frequency of the sine function. (ii) From
the viewpoint of circuit implementation, the accuracy of
frequency adjustment is usually higher than that of parameter
control, and it is more convenient for circuit parameter
adjustment a�er considering the variable proportion com-
pression transformation and time scaling. Because of this,
the abovementioned various hyperchaotic attractors, chaotic
attractors, and high periodic orbits can be easily observed
from designed circuit experiment. As a comparison, for
4D autonomous-based state feedback control approach [9–
13], circuit experimental results have shown that it is more
di�cult for generating high periodic orbits such as period-
14 from circuit implementation, since it belongs to param-
eter control instead of frequency adjustment. Furthermore,
a module-based uni�ed circuit diagram is also designed
for implementing the abovementioned various hyperchaotic
attractors, chaotic attractors, and periodic orbits as several
typical examples for illustration and demonstration.

�e rest of the paper is organized as follows. Design of a
sinusoidally driven Lorenz system is introduced in Section 2.
�e basic dynamic behaviors are analyzed in Section 3. A
module-based uni�ed circuit diagram is designed for imple-
menting various hyperchaotic attractors, chaotic attractors,
and periodic orbits in Section 4. Finally, Section 5 concludes
the paper.

2. Design of a Sinusoidally Driven
Lorenz System

Lorenz system is described as follows:

�̇ = −� (� −�) ,
̇� = ��−�	−�
	̇ = ��−
	,

(1)

where �, �, and 
 are parameters of Lorenz system. By
introducing a sinusoidal function controller into the �rst
equation of system (1), one gets a sinusoidally driven Lorenz
system, given by

�̇ = −� (�−�− � sin�) ,
̇� = ��−�	−�,
	̇ = ��−
	,

(2)
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Figure 1: �e two-wing hyperchaotic attractor.
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Figure 2: �e four-wing chaotic attractor with � = 10, � = 30,

 = 8/3, � = 17, and � = 0.5.

where � sin� is the sinusoidal function controller and �
and � are the amplitude and frequency of the sine function
controller, respectively.

According to (2) and letting � = �, the corresponding
4D autonomous Lorenz system is given by

�̇ = −� (�−�− � sin �) ,
̇� = ��−�	−�,
	̇ = ��−
	,
�̇ = �.

(3)

(i) Let � = 8, � = 35, 
 = 8/3, � = 6, and � =
4.5. System (3) generates a two-wing hyperchaotic
attractor, as shown in Figure 1.

(ii) Let � = 10, � = 30, 
 = 8/3, � = 17, and � = 0.5.
System (3) generates a four-wing chaotic attractor, as
shown in Figure 2.
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(iii) Let � = 10, � = 30, 
 = 8/3, � = 17, and � =
1.03, 1.47, 2.5, 3.8, 7.6. System (3) generates period-14,
period-10, period-6, period-4, and period-2 orbits,
respectively, as shown in Figure 3.

3. Analysis of Basic Dynamical Behaviors

In this subsection, the basic dynamic behaviors of the
proposed sinusoidally driven Lorenz system are analyzed,
including equilibrium points with time evolution, Lyapunov
exponents, and bifurcation with the frequency variation of
the sine function controller.

3.1. Equilibrium Points with Time Evolution. According to
system (2), the equilibrium point equation is given by

�3� + ��2� + ��� +� = 0,
�� = �� + �,
	� = (�2� + ���)


 ,
(4)

where � = −�sin�, � = 
(1 − �), and � = −
�sin�.
Letting �� = �� − �/3 and substituting it into the �rst

equation of (4), one gets

�3

� +��� + � = 0, (5)

where � = � − �2/3 and � = 2�3/27 − ��/3 + �.
According to Cardan discriminant Δ = (�/2)2 + (�/3)3,

when Δ > 0, there exist a real root and two complex roots in
(5). Since the equilibriumpoints cannot be complex numbers,
this means that the system does not have equilibrium points
since Δ > 0.

Similarly, when Δ ≤ 0, there exist three real roots in (5),
and this means that the system has three equilibrium points
since Δ ≤ 0, given by

�1� = �2 × 3√−�
2
+ √Δ+�1 × 3√−�

2
− √Δ− �

3
,

�1� = �1� + �,
	1� = (�2

1� + ��1�)

 ,

�2� = 3√−�
2
+ √Δ+ 3√−�

2
− √Δ− �

3
,

�2� = �2� + �,
	2� = (�2

2� + ��2�)

 ,

�3� = �1 × 3√−�
2
+ √Δ+�2 × 3√−�

2
− √Δ− �

3
,

�3� = �3� + �,
	3� = (�2

3� + ��3�)

 ,

(6)

where �1 = (−1 + �√3)/2 and �1 = (−1 − �√3)/2.

For two-wing hyperchaotic attractor, let � = 8, � = 35,

 = 8/3, � = 6, and � = 4.5. According to Cardan’s

discriminant Δ = (�/2)2 + (�/3)3, the simulation result
of Δ with time evolution is shown in Figure 4. One can
see that Δ is a periodic function with time, and Δ < 0
is always satis�ed. According to (5)-(6), there exist three
trajectories of saddle focus equilibrium points with time
evolution, as shown in Figure 5, where the centers (denoted
by two red hollow circles) of two wings are located on the
trajectories.

Similarly, as for four-wing chaotic attractor, let � = 10,
� = 30, 
 = 8/3, � = 17, and � = 0.5. According to Cardan’s
discriminant Δ = (�/2)2 + (�/3)3, one gets the simulation
result ofΔwith time evolution, as shown in Figure 6. One can
see that Δ is also a periodic function with time, and Δ < 0 is
always satis�ed. According to (5)-(6), there exist three trajec-
tories of saddle focus equilibrium points with time evolution,
as shown in Figure 7.�e centers (denoted by four red hollow
circles) of four wings are located on the trajectories, alter-
nately switching among these four equilibrium points with
time evolution, so that a four-wing chaotic attractor can be
created.

3.2. Lyapunov Dimension. When parameters � = 8, � = 35,

 = 8/3, � = 6, and � = 4.5, the corresponding Lyapunov
exponents of this hyperchaotic attractor are

LE1 = 0.8058,
LE2 = 0.1216,
LE3 ≈ 0,
LE4 = − 12.5986.

(7)

�e Lyapunov dimension of an attractor is de�ned by its
Lyapunov exponents; that is,


� = � + ∑
�
�=1 LE������LE�+1�����

, (8)

where � is an integer which satis�es ∑��=1 LE� ≥ 0 and

∑�+1�=1 LE� < 0.
With the Lyapunov dimension of the above hyperchaotic

attractor being
� = 3.0740, thismeans that the hyperchaotic
attractor has fractal dimension.

3.3. Lyapunov Exponent and Bifurcation versus Frequency and
Amplitude. Let � = 8, � = 35, 
 = 8/3, and � = 6.
According to system (3), the Lyapunov exponent spectrum
LE versus frequency � is obtained, as shown in Figure 8.
When 1.1 < � < 5.9, LE1 > 0, LE2 > 0, LE3 = 0, and
LE4 < 0, system (3) is hyperchaotic while in the parameter
intervals 0 < � < 1.1 and 5.9 < � < 10 this system maintains
chaotic characteristics of Lorenz system. By choosing� = 4.5,
a two-wing hyperchaotic attractor is generated, as shown in
Figure 1.

When� = 8,� = 35,
 = 8/3, and� = 4.5, the Lyapunov
exponent spectrum with respect to amplitude � is shown in
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(a) Period-14 orbit with � = 1.03
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(b) Period-10 orbit with � = 1.47
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(e) Period-2 orbit with � = 7.6

Figure 3: �e period-14, period-10, period-6, period-4, and period-2 orbits.
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Figure 4: Δ < 0 with time evolution for two-wing hyperchaotic
attractor.
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(b) Equilibrium points of two-wing hyperchaotic attractor

Figure 5: �ree trajectories of equilibrium point corresponding to
two-wing hyperchaotic attractor with time evolution.
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Figure 6: Δ < 0 with time evolution for four-wing chaotic attractor.

Figure 9, from which we can see that this system has also
a hyperchaotic attractor in the parameter interval 1.11 < � <
8.81.

Now we give the dynamical map of system (3) for
simultaneously observing the bifurcation of � with fre-
quency � and amplitude � as shown in Figure 10, in which
the blue region with the label h denotes hyperchaotic
state, while the yellow region with the label c denotes
the chaotic state and the red one denotes the periodic
state. From Figure 10 we can see that this system exhibits
hyperchaotic behaviour in a large region of parameters �
and �, and it is good for generating more complex chaotic
signals.

Let � = 10, � = 30, 
 = 8/3, and � = 17. Accord-
ing to system (3), the Lyapunov exponent spectrum LE and
bifurcation versus frequency� are drawn, as shown in Figures
11(a) and 11(b), respectively. When � = 0.5, LE1 > 0, LE2 < 0,
LE3 = 0, and LE4 < 0, system (3) is chaotic, and a four-
wing chaotic attractor is generated, as shown in Figure 2.
It is noticed that there exist many periodic windows in the
chaotic region, switching between chaotic state and periodic
orbit with the increasing of frequency �. For example, by
choosing � = 1.03, 1.47, 2.5, 3.8, 7.6, system (3) generates
period-14, period-10, period-6, period-4, and period-2 orbits,
respectively, as shown in Figure 3.

To observe the periodic behaviors, the periodic window
is expanded in the parameter interval 2.5 < � < 4,
as shown in Figure 12. Obviously, there are three kinds of
bifurcation in the periodic window, including a period-
doubling bifurcation when � ≅ 3.45, a pitchfork bifur-
cation when � ≅ 3.68, and a tangent bifurcation when
� ≅ 3.74.

4. Circuit Design and Implementation

In this subsection, a module-based circuit design approach
is proposed for realizing two-wing hyperchaotic attractor,
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Figure 7: �ree trajectories of equilibrium point corresponding to four-wing chaotic attractor with time evolution.
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four-wing chaotic attractor, and period-14, period-10,
period-6, period-4, and period-2 orbits, respectively, and
the corresponding experimental observations are also
given.

4.1. Analog Circuit Design and Implementation. According to
system (2), a circuit diagram for sinusoidally driven Lorenz
system is designed, as shown in Figure 13. �e circuit is
mainly composed of integrator, adder, multiplier, inverter,
and function signal generator.
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Figure 9: �e diagram of LE versus � (� = 8, � = 35,
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According to Figure 13, one gets the state equations as
follows:

��
�" = 1

#$ (− #
#1

�+ #
#2

�+ #
#3

� sin (Ω)) ,

��
�" = 1

#$ ( #
#4

�− #
10#5

�	− #
#6

�) ,

�	
�" = 1

#$ ( #
10#7

��− #
#8

	) .

(9)
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Doing the variable proportion compression transformation
� → 0.1�, � → 0.1�, and 	 → 0.1	 and the time scale
transformation " = 10#$ on (9), respectively, one gets

� (0.1�)
10#$�
= 1

#$ (− #
#1

0.1�+ #
#2

0.1�+ #
#3

� sin (10#$Ω)) ,
� (0.1�)
10#$� =

1

#$ ( #
#4

0.1�− #
10#5

0.12�	− #
#6

0.1�) ,
� (0.1	)
10#$� =

1

#$ ( #
10#7

0.12��− #
#8

0.1	) .

(10)

Let #1 = #2. �erefore, (10) can be simpli�ed, given by

��
� = 10

#
#1

(� − �) + 100 ##3

� sin (10#$Ω) ,
��
� =

10#
#4

�− #
10#5

�	− 10#
#6

�,
�	
� =

#
10#7

��− 10#
#8

	.

(11)

Comparing (11) with (2), one gets � = 10#/#1 = 100#/#3,� = 10#/#4, 
 = 10#/#8, 1 = #/(10#5), 1 = 10#/#6,
1 = #/(10#7), and � = 10#$Ω. �en all parameters can be
determined as follows: #1 = #2 = 10#/�, #3 = 100#/�,
#4 = 10#/�, #8 = 10#/
, #5 = #7 = #/10, #6 = 10#, and
Ω = �/(10#$).

Choose# = 10 kΩ and$ = 4.7 nF.�en one obtains#1 =#2 = 100/� (kΩ), #3 = 1000/� (kΩ), #4 = 100/� (kΩ), #8 =
100/
 (kΩ), #5 = #7 = 1 kΩ, #6 = 100 kΩ,Ω = �/(10#$) =
2.13 × 103�, and - = Ω/(20) = 2.13 × 103�/(20).
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Figure 13: A module-based circuit diagram design according to (2).

Figure 14: Circuit implementation result of two-wing hyperchaotic
attractor.

(i) Let � = 8, � = 35, 
 = 8/3, � = 6, and � = 4.5.
�en one has #1 = #2 = 12.5 kΩ, #3 = 125 kΩ,
#4 = 2.86 kΩ, #8 = 37.5 kΩ, #5 = #7 = 1 kΩ,
#6 = 100 kΩ, and - = 1.53 kHz. According to
Figure 13, the circuit implementation result of two-
wing hyperchaotic attractor is shown in Figure 14.

(ii) Let � = 10, � = 30, 
 = 8/3, and � = 17. �en one
has #1 = #2 = 10 kΩ, #3 = 100 kΩ, #4 = 3.33 kΩ,

#5 = #7 = 1 kΩ, #8 = 37.5 kΩ, and #6 = 100 kΩ.
Denote

- = Ω
20 = 2.13 × 103�

20 =

{{{{{{{{{{{{{
{{{{{{{{{{{{{{

169.5Hz (� = 0.5)
349.17Hz (� = 1.03)
498.33Hz (� = 1.47)
847.5Hz (� = 2.5)
1288.2Hz (� = 3.8)
2576.39Hz (� = 7.6) .

(12)

According to Figure 13, the circuit implementation results of
four-wing chaotic attractor and period-14, period-10, period-
6, period-4, and period-2 orbits are shown in Figures 15(a)–
15(f), respectively.

From Figures 8 and 9, obviously, the proposed system
can generate the hyperchaotic attractor by adjusting the
frequency � of the sine function when � = 8, � = 35,

 = 8/3, and � = 6 or by adjusting the amplitude � of the sine
function when� = 8, � = 35,
 = 8/3, and � = 4.5. Simulta-
neously, from Section 4.1, one can see that the relation of the
sinusoidal signal frequency- in the circuit and the frequency
� in system (2) is - = 2.13 × 103�/(20) a�er the variable
proportion compression transformation and time scaling. It
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(a) Four-wing chaotic attractor (b) Period-14 orbit

(c) Period-10 orbit (d) Period-6 orbit

(e) Period-4 orbit (f) Period-2 orbit

Figure 15: Circuit implementation results of four-wing chaotic attractor and period-14, period-10, period-6, period-4, and period-2 orbits.

means that the accuracy of frequency adjustment in the actual
circuit can be increased- = 2.13×103�/(20) times.However,
comparing with the amplitude of the sine function in system
(2), the amplitude of the sinusoidal signal in the circuit did
not change a�er the variable proportion compression trans-
formation and time scaling. So, the accuracy of amplitude
adjustment was not improved. For these reasons, we select
the sinusoidal signal frequency - as adjusting parameters of
hyperchaos.

4.2. Digital Circuit Implementation. Analog chaotic circuit
and its synchronization are easily a
ected by precisions

of the devices, interference of environment, and matching
of circuit parameters. �is is not conducive to engineer-
ing applications of chaos, but digital signal process tech-
nique can overcome these problems. �erefore, the digital
implementation of the proposed nonautonomous system
will be given in the following section based on the DSP
technology.

�e DSP technology is used for realizing this hyper-
chaotic or chaotic system, since DSP is one of themainstream
techniques for information processing at present. Moreover,
the implementation of this system using DSP technology
is more e
ective to practical applications of both chaotic
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(a) Hyperchaotic attractor (b) Chaotic attractor

(c) Hyperchaotic binary sequence (d) Experimental facility

Figure 16: Experimental results and experimental facility.

PN sequence generation and chaotic information encryp-
tion/decryption processing. To this end, the iterative form of
the system is given by applying Euler’s method to (2):

��+1 = �� − "� (�� −�� − � sin��) ,
��+1 = �� + " (��� −��	� −��) ,
	�+1 = 	� + " (���� −
	�) .

(13)

Based on the DSP evaluation board (ICETEK-VC5509-
AE) and the so�ware environment platform, CCStudio v3.3,
system (2) is experimentally implemented. Figure 16 shows
the experimental hyperchaotic attractor, chaotic attractor,
hyperchaotic digital sequence, and the experimental facility.
It is noticed that Figure 16(c) shows the hyperchaotic binary
sequence generated by experimental DSP evaluation board
and observed by a digital oscilloscope. �e digital binary
sequence can be used in various applications of information
safety.

It is again noticed that rate of generated binary sequence
relates to frequency of chaotic analog signals, operating
frequency of digital system, quantizationmethods, and so on.
When operating frequency of digital system and quantization
method are �xed, the rate of binary sequence is also �xed.
�erefore, digital implementation of chaotic system has some
distinct advantages over analog circuit implementation.

5. Conclusions

�e proposed sinusoidally driven Lorenz system can be
constructed not only for generating two-wing hyperchaotic
attractor, but also for four-wing chaotic attractor and high

periodic orbits, through adjusting the frequency of the sine
function. From the viewpoint of circuit implementation, the

accuracy of frequency adjustment is usually higher than
that of parameter control, and it is more convenient for
circuit parameter adjustment a�er considering the variable
proportion compression transformation and time scaling. A
module-based uni�ed circuit diagram is designed for imple-
menting the abovementioned various hyperchaotic attrac-
tors, chaotic attractors, and periodic orbits as several typical
examples for illustration and demonstration. �e proposed
system can generate more complex hyperchaotic signals,
which can be used in the �elds of various information encryp-
tions such as secret communications and chaos cryptography
as a pseudorandom signal source. �e DSP implementation
for the proposed system can adapt to practical applications of
both chaotic pseudorandom sequence generation and chaotic
information encryption/decryption processing.
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