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ABSTRACT Iterative deadlock prevention strategies based on siphons have drawn increasing attention. For

iterative strategies, selecting which siphon to control at each iteration has an influence on the final supervisor

in structural complexity, computational complexity, and behavioral permissiveness. In this paper, we define

two kinds of emptiable siphons and provide twomodifiedmixed-integer programming (MIP) formulations to

compute such siphons. On the basis of them, a three-stage iterative deadlock prevention policy that specifies

the siphon control order is proposed. The experimental results show that a supervisor with a simpler structure,

higher behavioral permissiveness, and lower computational complexity can be obtained by the proposed

strategy since neither the exhaustive siphon enumeration nor the reachability analysis is required.

INDEX TERMS Deadlock prevention, discrete event systems, mixed integer programming, Petri nets.

I. INTRODUCTION

The occurrence of deadlocks in Flexible Manufacturing Sys-

tems (FMSs) [1]–[5] implies a local or the whole stoppage of

normal system operation, which may reduce the system pro-

ductivity, increase unnecessary costs, and even result in disas-

trous consequences. Hence, growing attention has been paid

on deadlock problems in academic and industrial circles. Petri

nets (PNs) are considered to be one of the suitable mathemat-

ical models for handling deadlocks in FMSs due to their pow-

erful capabilities of intuitively and compactly characterizing

discrete processes. There are a wide variety of methods in

the literature dealing with deadlocks based on PNs [6]–[37].

These methods mainly fall into three categories: deadlock

prevention [13]–[33], deadlock avoidance [34]–[36], and

deadlock detection and recovery [37]. Among the above

categories, deadlock prevention strategies have the advan-

tage that they rule out the possibility of deadlock occur-

rences at the off-line stage. Furthermore, they are generally

classified into two types: siphon-based policies [13]–[27]

and reachability-graph-based policies [30]–[33]. The latter

rely on the reachability analysis and thus suffer from the

state explosion problem if applied to large-scale systems.

The associate editor coordinating the review of this manuscript and
approving it for publication was Xiaoou Li.

In contrast, siphon-based policies do not require reachabil-

ity analysis but control deadlocks by structural analysis.

In this paper, we focus on siphon-based policies. Specifically,

a siphon is a set of places in a PN with a certain prop-

erty. In particular, whether a siphon is sufficiently marked

is closely related to the occurrence of deadlocks. Siphon-

based policies prevent a system from reaching deadlocks

by controlling siphons, i.e., by making siphons sufficiently

marked.

Ezpeleta et al. [17] are among the first batch of researchers

to deal with deadlock problems. They propose a class of

PNs called Systems of Simple Sequential Processes with

Resources (S3PR) that models a class of FMSs and develop a

monitor-based liveness-enforcing supervisor for an S3PR by

making every siphon not emptied. Since then, a great many

deadlock prevention strategies [13], [14], [31] have been pro-

posed for S3PR, aiming to solve problems of computational

complexity, behavioral permissiveness and structural com-

plexity that exist in the method proposed by Ezpeleta et al.

It is worth noting that the number of siphons in a PN grows

exponentially with respect to the net size. Hence, the com-

plete siphon enumeration is time-consuming. In order to

reduce the computation complexity of siphon-based policies,

some researchers investigate effective siphon enumeration

methods [38]–[41]. Li and Zhou [16] consider the possibility
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of controlling part of siphons in a PN rather than all siphons

when designing policies and thus present a deadlock pre-

vention strategy by controlling elementary siphons only,

which is more efficient and obtains a supervisor with lower

structural complexity. Also, Abdul-Hussin [18] proposes a

deadlock prevention policy based on elementary siphons.

Furthermore, some work considers iterative siphon control to

avoid the complete siphon enumeration. Huang [15] propose

a two-stage deadlock prevention strategy that proceeds in an

iterative way. At each iteration, a maximal emptiable siphon

is obtained based on the mixed integer programming (MIP)

method, which is firstly proposed by Chu and Xie [22].

In addition, Wang et al. [24] present a deadlock prevention

strategy based on three-stage siphon control. However, these

strategies still suffer from the drawbacks of losing some good

states as well as a complicated structure of the supervisor.

Some work also deals with interesting situations that may

appear in application scenarios, such as topics of deadlock

control in the presence of uncontrollable and/or unobservable

transitions [42], [43] and robust deadlock control with unre-

liable resources [28], [29].

This work develops a novel iterative method to synthesize

a liveness-enforcing supervisor for an S3PR. Note that we

consider the case that all transitions are controllable and

observable and all resources are reliable. As the existing

iterative methods, the proposed method computes a siphon

and makes it controlled by adding a control place at each

iteration. It is observed that different siphon control orders

may lead to supervisors with different structural complexity,

computational complexity and behavioral permissiveness.

Hence, it is important to decide which siphon is selected

to be controlled at each iteration in order to guarantee the

good performance of the synthesized supervisor. In this paper,

we divide the iterative process into three stages. At each stage,

siphons with specific features are controlled. Specifically,

we firstly control emptiable siphons containing no control

place in Stage 1, then emptiable siphons containing control

places in Stage 2, and finally bad siphons in Stage 3. More-

over, roughly speaking, we compute a minimal emptiable

siphon with minimal resource places at each iteration in both

Stages 1 and 2. Two modified MIP methods are developed

respectively to compute such an emptiable siphon at each

iteration of Stages 1 and 2. Besides, emptiable siphons in

Stages 1 and 2 are all controlled by the invariant-based

method [1], which does not remove any good state of the

plant system. Concerning Stage 3, a bad siphon is computed

and controlled at each iteration by the method proposed by

Tricas et al. [19].

It is proven that the liveness of the resultant net derived

by the proposed three-stage policy is guaranteed. Com-

pared with previous work, the proposed policy usually ter-

minates in fewer iterations and devises a supervisor with

lower computational and structural complexities. However,

the proposed policy is not necessarily maximally permis-

sive because some good states may be removed in Stage 3.

Fortunately, experimental results show that it derives a

supervisor introducing no monitor by Stage 3 in most

cases, which implies that the supervisor is maximally

permissive.

The rest of the paper is organized as follows. Section II

reviews basic definitions of PNs, S3PR and S4PR. Section III

outlines some concepts about siphons and several meth-

ods to compute siphons and monitors. An iterative dead-

lock prevention strategy consisting of three stages is given

in section IV. Section V provides the experimental results

of the proposed method. Finally, section VI concludes this

paper.

II. PRELIMINARIES

A. PETRI NETS [44]

Ageneralized PN is a four-tuple N = (P, T , F , W ) where P

is the set of places and T is the set of transitions. P and T are

finite, nonempty, and disjoint sets. F ⊆ (P × T )∪ (T × P)

is the set of flow relation represented by directed arcs from

places to transitions or from transitions to places.W : (P×T )∪

(T ×P) → N = {0, 1, 2, . . . } assigns a weight to an arc such

that W (x,y) > 0 if (x, y) ∈ F and W (x, y) = 0 otherwise,

where x, y ∈ P ∪ T . Given a node x ∈ P ∪ T , the preset of x

is •x ={y ∈ P ∪ T |(y, x) ∈ F} and the post-set of x is x• =

{y ∈ P ∪ T |(x, y) ∈ F}. ∀X ⊆ P ∪ T , •X = ∪x∈X
•x and

X• = ∪x∈X x•. N is called ordinary, denoted as N = (P, T ,

F), ifW (x,y) = 1, ∀(x, y) ∈ F . A state machine is an ordinary

net such that |•t| = |t•| = 1, ∀t ∈ T . NX = (PX , TX , FX ,WX )

is said to be a subnet of N generated by PX ⊆ P and TX ⊆ T

if FX = F∩[(PX × TX )∪ (TX × PX )] and WX (f ) = W (f ),

∀f ∈ FX .

A marking of N is a mapping M : P → N. The sum of

tokens in a place set S ⊆ P at a marking M is denoted

as M (S), i.e. M (S) =
∑

p∈S M (p). A PN N with its initial

markingM0 is said to be a net system, denoted by (N ,M0). The

incidence matrix of N is a matrix [N ]: P × T → Z indexed

by P and T such that [N ] (p, t) = W (t ,p) −W (p, t).

A transition t is enabled at marking M , denoted by M [t〉,

if M (p) ≥ W (p,t), ∀p∈•t . t can fire at M if it is enabled at

M . The firing of t at M reaching a marking M ′ is denoted

as M [t〉M ′, where M ′(p) = M (p) − W (p,t) + W (t ,p), ∀p ∈

P. Furthermore, a transition sequence σ = t1t2. . . tk is said

to be enabled at M , denoted as M [σ 〉, if M [t1〉M1[t2〉M2[t3〉

. . .Mk−1[tk 〉. We use M [σ 〉Mk to denote that marking Mk is

reached after the firing of σ fromM . The set of all reachable

markings of N from M0 is denoted by R(N ,M0).

A transition t is live at a marking M if ∀M ′ ∈ R(N ,M ),

∃M ′′ ∈ R(N ,M ′), M ′′[t〉. A transition t is dead at a marking

M if ∀M ′ ∈ R(N ,M ), t is disabled atM ′. A net system (N ,M0)

is live if ∀t ∈ T , t is live at M0.

B. S4PR AND S3PR

Definition 1 [26]: A generalized connected self-loop free

PN N = (P, T , F , W ) is called a sequential system with

shared resources (S4PR) if all the following conditions are

true:
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1. P = PA ∪ P0 ∪ PR is a partition such that

(a) PA = ∪n
i=1PAi is the set of activity places, where

∀i, j ∈{1, 2, . . . , n}, i 6= j, PAi 6= Ø, PAj 6= Ø and

PAi ∩ PAj = Ø;

(b) P0 = ∪n
i=1

{

pio
}

is the set of idle places;

(c) PR = {r1,r2, . . . , rm} is the set of resource places

where m > 0.

2. T = ∪n
i=1Ti, where ∀i, j ∈{1, 2, . . . , n}, i 6= j, Ti 6= Ø,

Tj 6= Ø and Ti ∩ Tj = Ø.

3. ∀i ∈{1, 2, . . . , n}, the subnet Ni composed by PAi ∪
{

pi0
}

∪ Ti is a strongly connected state machine such

that every circuit of contains idle place pi0.

4. ∀r ∈ PR, there exists a unique minimal P-semiflow,

Ir ∈ N |P| such that {r} = ||Ir || ∩ PR, P0 ∩ ||Ir || = Ø,

PA ∩ ||Ir || 6= Ø, and Ir (r) = 1. H (r) = ||Ir ||\{r},

named the holders of r , is the set of activity places that

use r . The set of holders of a subset of resources � ⊆

PR is defined as H (�) = ∪r∈�H (r).

5. PA = ∪x∈PR (||Ir ||\{r}).

Definition2: Let N = (P0∪PA∪ PR, T , F ,W ) be an S4PR.

An initial marking M0 is called acceptable for N if 1) ∀p ∈

P0, M0(p) ≥ 1; 2) ∀p ∈ PA, M0(p) = 0; and 3) ∀r ∈ PR,

M0(r) ≥ max{Ir (p)| p ∈ PA}.

A System of Simple Sequential Process with Resources

(S3PR) proposed by Ezpeleta et al. [17] is actually a subclass

of S4PR. In more detail, given an S4PRN = (PA ∪ P0 ∪ PR,

T , F , W ), N is an S3PR if 1) N is an ordinary net; and

2) ∀p ∈ PA,
••p ∩ PR = p•• ∩ PR 6= Ø and |P•• ∩ PR| = 1.

III. SIPHON COMPUTATION AND CONTROL

In this section, we firstly introduce notions about siphons.

Next, we review the MIP-based method proposed by Chu

and Xie [22] that computes a maximal emptiable siphon in

a PN system, and the siphon control method based on place

invariants [1]. Finally, the notion of bad siphons and their

control method are presented.

A. BASIC NOTIONS ABOUT SIPHONS

Given a PN N = (P, T , F , W ) and a place set S ⊆ P with

S 6= Ø, S is called a siphon if S• ⊇• S. We use 5 to denote

the set of all siphons in N .

A siphon S is said to be minimal if ∄S ′ ∈ 5 such that

S ′ ⊂ S, and said to be maximal if ∄S ′ ∈ 5 such that S ′ ⊃ S.

Consider the PN shown in Fig 1. We can see that 5 =

{S1 ={p2, p4- p6}, S2 ={p1, p2, p4- p6}, S3 ={p2, p3, p6},

S4 ={p1- p6}, S5 ={p1, p4, p5}, S6 ={p2- p6}}. Clearly, S1,

S3, and S5 are minimal, and S4 is maximal.

A siphon S is said to be marked at a markingM ifM (S) >

0, and otherwise is said to be unmarked at M .

Given a PN system (N , M0), a siphon S is said to be an

emptiable siphon if ∃M ∈ R(N , M0) such that M (S) = 0.

Otherwise, S is said to be a non-emptiable siphon.

We note that once a siphon is emptied at a reachable

marking of a net system, the deadlock arises. Thus, to avoid

deadlocks, it is important to compute emptiable siphons in a

FIGURE 1. A PN system.

net system andmake them controlled, i.e., make themmarked

at all reachable states.

Theorem 1 [19]: An ordinary S4PR is live iff there is no

emptiable siphon in the net system.

B. EMPTIABLE SIPHON COMPUTATION BY MIP [22]

In this subsection, we review the approach in [22] that

computes a maximal emptiable siphon from a bounded net

system.

Let (N , M0) be a bounded net system where N = (P, T ,

F , W ). The approach is based on two main indicators, i.e.,

vp ∈ {0, 1}, ∀p ∈ P and zt ∈ {0, 1}, ∀t ∈ T .

Let S be a siphon. Note that vp = 1 indicates that p /∈ S

and zt = 1 indicates that t /∈ S•. On the contrary, vp = 0

indicates that p ∈ S and zt = 0 indicates that t ∈ S•.

By solving the MIP problem (1)−(8), we can obtain a

maximal emptiable siphon. More precisely, all places with

vp = 0 in the solution constitute a maximal emptiable siphon.

However, note that the computed siphon is not necessarily

emptiable in the net system (N , M0). This is because con-

straint (6) not only computes all reachable states of (N , M0)

but also may include some unreachable states of (N , M0).

In other words, it could happen that the computed siphon is

emptiable at the unreachable state computed by constraint (6)

but is not emptiable at any reachable state of (N ,M0). In this

case, the computed siphon is clearly not an emptiable siphon

of the given net system.

Moreover, it is true that no maximal emptiable siphon

exists in a bounded net system (N , M0) if no solution exists

for the MIP problem (1)-(8).

The MIP problem [22]:

GMIP = Maximize(
∑

p∈P
vp) (1)

s.t. zt ≥
∑

p∈•t
vp − |•t|+1, ∀t ∈ T (2)

vp ≥ zt , ∀(t, p) ∈ F (3)

vp zt ∈ {0, 1} (4)

vp ≥ M (p)/B(p), ∀p ∈ P (5)

M = M0 + [N ]Y , M ≥ 0, Y ≥ 0 (6)

B(p) = max{M (p) | M = M0 + [N ]Y },

M ≥ 0, Y ≥ 0 (7)
∑

p∈P
vp < |P| (8)

VOLUME 7, 2019 86865
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C. M-CONTROL OF EMPTIABLE SIPHONS [1]

Yamalidou et al. [1] propose a method based on place invari-

ants that enforces linear constraints on the reachable states

of a net system by introducing control places (or we say

monitors). This method can be used to guarantee a siphon to

be a non-emptiable siphon, i.e., guarantee a siphon marked at

all reachable states. We review the method as follows.

Suppose that (N , M0) is a net system to be controlled,

which contains n places and m transitions, and the linear

constraint on markings is

L ·M ≤ b, (9)

where M is the marking vector of the PN model, L is a 1 ×n

integer vector, and b is an integer.

We use c to denote a control place, [Nc] to denote a 1 ×m

matrix that shows the connection relationship between the

control place c and transitions of the net N , and M0(c) to

denote the initial marking of c. The linear constraint (9) on

markings is guaranteed by adding the control place c to the

given net system such that

[Nc] = −L · [N ]; and

M0(c) = b− L ·M0,

where [N ] is the incidence matrix of N .

Now, consider the siphon control using the place-invariant

method. Let S be an emptiable siphon. The control goal is to

guarantee that S is never emptied during the evolution of the

system (N , M0), i.e.,

M (S) ≥ 1, ∀M ∈ R(N ,M0) (10)

Clearly, constraint (10) can be reformulated as the inequal-

ity L · M ≤ b with L(p) = −1 {∀p ∈ S} and b = −1. The

control place cwith [Nc]= −L · [N ] andM0(c) = −1 – L ·M0

is computed to guarantee that S is a non-emptiable siphon in

the resultant net system.

Note that the place-invariant method only removes mark-

ings that violate the linear constraint (9) from the reach-

able markings. It implies that the monitor computed by the

place-invariant method for siphon control is maximally per-

missive since it only forbids markings where the siphon S is

unmarked.

In the remainder of this paper, we say that a siphon S is

M -controlled if a monitor VS is added for it according to the

place-invariant method [1].

D. BAD SIPHON COMPUTATION AND CONTROL [19]

In this subsection, we recall the definition of bad siphons

and methods of bad siphon computation and control

in [19].

We note that, given a net system containing some weighted

arcs, i.e., a generalized PN system, even though there is no

emptiable siphon, a deadlock may still arise. In particular, for

an S4PR, its liveness is related to the existence of bad siphons.

The formal definition of bad siphons is as follows.

Definition 3 [19]: Let (N , M0) be an S4PR, where N =

(P0∪ PA∪PR, T , F ,W ). A siphon S is said to be a bad siphon

at a markingM ∈ R(N ,M0), if the following conditions hold:

1) SR = S∩PR = {r ∈ PR|∃t ∈ r• such thatM (r) < W (r ,

t) and M (•t ∩ PA) > 0} 6= Ø;

2) SA = S ∩ PA = {p ∈ H (SR)|M (p) = 0} 6= Ø.

We can see that emptiable siphons are also bad siphons and

bad siphons are a notionmore general than emptiable siphons.

Moreover, the following result holds.

Theorem 2 [19]: An S4PR is live iff there is no bad siphon

in the net system.

In other words, to guarantee the liveness of an S4PR,

it is not enough to ensure the absence of emptiable siphons.

Indeed, it is necessary to guarantee that there is no bad siphon

in the net system.

There exists an MIP method proposed by Tricas et al.

allowing us to compute and control bad siphons in an S4PR.

It is proven in Lemma 16 in [19] that the net obtained by

adding a control place to an S4PR using the method in [19] is

still an S4PR. For the sake of brevity, this method will not be

introduced here in order to highlight the focus of this paper.

For more details, please refer to [19].

IV. DEADLOCK PREVENTION STRATEGY

In this section, we firstly introduce two rules that specify

siphon control orders, which will be involved in our deadlock

prevention policy. Next, we define two kinds of emptiable

siphons with specific structural features and present two

modified MIP problems to compute them. Finally, based on

the two modified MIPs and the methods recalled in the last

section, an iterative deadlock prevention strategy consisting

of three stages is proposed.

A. SIPHON CONTROL ORDERS

The existing iterative deadlock control policies basically

compute an emptiable siphon in a ‘‘random’’ way at each

iteration and add a monitor to make the siphon controlled.

Actually, different siphon control orders may lead to super-

visors with different behavioral permissiveness, structural

complexity as well as computational complexity, which is

verified through a large number of case studies.

In more detail, it could happen that redundant control

places and/or weighted arcs are introduced by a control order,

which however can be avoided if another control order is

chosen. Besides, note that the introduction of weighted arcs

implies that an original ordinary net is transformed into a

generalized net. If the generalized net still suffers from dead-

locks, we have to consider deadlock control methods for

generalized nets instead of ordinary nets. Clearly, deadlock

control methods for generalized nets are often much more

complex than those for ordinary nets. In some cases, we can-

not optimally control a generalized net in the sense that we

have to lose some good states to enforce liveness. In addition,

it is easy to see that the number of iterations may be different

if we choose different siphon control orders.

86866 VOLUME 7, 2019
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FIGURE 2. An S3PR.

In this paper, we specify the siphon control order in our

deadlock control policy mainly based on the following two

rules.

Rule1: Emptiable siphons in the original plant system have

the priority to be controlled.

Clearly, we consider an S3PR as a plant net. An aug-

mented net after adding some monitors to the S3PR by the

place-invariant method is indeed an S4PR since monitors are

regarded as resource places. In more detail, it can be checked

that condition 4 in Definition 1 is satisfied for each monitor.

Note that, during the introduction of monitors, it could

happen that new emptiable siphons that do not exist in the

original S3PR appear. Such an emptiable siphon contains

some added monitors. In other words, emptiable siphons that

we need to consider can be divided into two categories, i.e.,

those existing and not existing in the original plant system,

or equivalently, those containing and not containingmonitors.

It can be verified that any monitor added to M-control

an emptiable siphon in the original S3PR is connected via

unitary arcs, which is due to the structural characteristics of

emptiable siphons in an S3PR. In contrast, a monitor added

to M-control an emptiable siphon not in the original S3PR

may introduce weighted arcs. As we analyze above, deadlock

control of generalized nets is often much more complex than

ordinary nets. Hence, hoping to introduce weighted arcs as

late as possible or ideally avoid weighted arcs, we prefer

to M-control emptiable siphons in the original plant system

rather than those caused by adding monitors if both of them

exist.

Rule 2: Minimal emptiable siphons with minimal number

of resource places have the priority to be controlled.

We prefer to control a minimal emptiable siphon rather

than a maximal emptiable siphon. This is because once an

emptiable siphon is controlled by adding a monitor, some

emptiable siphons with more places can be controlled as

well. It means that the control of minimal emptiable siphons

instead of maximal emptiable siphons may reduce the chance

of introducing redundant monitors. In addition, it is discov-

ered that, once emptiable siphons with fewer resource places

are controlled by adding monitors, some emptiable siphons

with more resource places can be controlled as well. As a

result, we prefer to control minimal emptiable siphons with

minimal number of resource places.

For example, S1 ={p3, p8-p10}, S2 ={p4, p7,p10, p11} and

S3 ={p4, p8-p11} are three minimal emptiable siphons in the

S3PR in Fig. 2. S1 and S2 both have two resource places,

while S3 has three. If S1 and S2 are firstly M-controlled by

adding two monitors, S3 is always marked at any reachable

marking without adding more monitors. On the contrary, if S3
is firstly M-controlled by adding a monitor, two monitors

are still needed to M-control S1 and S2, respectively, since

otherwise they cannot be controlled.

B. EMPTIABLE SIPHONS WITH SPECIAL

CHARACTERISTICS

Motivated by Rules 1 and 2, we define two emptiable siphons

in an S4PR. We note that although the plant net in this paper

is an S3PR, the intermediate augmented nets after adding

monitors by the place-invariant method and/or the method

in [19] become S4PR instead of S3PR. Thus, we have to

consider siphons in an S4PR as follows.

Definition 4: Let (N , M0) be an S4PR, where N = (P0 ∪

PA∪PR, T ,F ,W ), and5min−r be the set of emptiable siphons

with minimal number of resource places in (N ,M0). A siphon

S ∈ 5min−r is said to be an ω-siphon in (N , M0) if S
′ ∈

5min−r such that |S
′ ∩ PA| < |S ∩ PA|.

Proposition 1: Let (N , M0) be an S4PR andS be a siphon.

If S is an ω-siphon, S is a minimal emptiable siphon.

Proof: It is obvious that S is emptiable. Now we

prove that S is minimal. By contradiction, suppose that S

is not minimal. That is to say, there exists a siphon S ′ such

that S ′ ⊂ S. Since S ′ ⊂ S, we can see |S ′ ∩ PA| <

|S ∩ PA| or/and |S ′ ∩ PR| < |S∩ PR|, which contradicts

that S is an ω-siphon. Therefore, S is a minimal emptiable

siphon. �

Definition 5: Let (N , M0) be an S4PR, where N = (P0 ∪

PA ∪ PR, T , F , W ), and Pc ⊆ PR be a set of resource places.

Let5′ be the set of emptiable siphons containing no places of

Pc in (N ,M0) and 5′
min−r be the set of siphons with minimal

number of resource places in 5′.A siphon S ∈ 5′
min−r is

said to be a Pc-excluded ω-siphon if S ′ ∈ 5′
min−r such that

|S ′ ∩ PA| < |S ∩ PA|.

Proposition 2: Let (N ,M0) be an S
4PR, where N = (P0 ∪

PA ∪ PR, T , F , W ), Pc ⊆ PR be a set of resource places, and

S be a siphon. If S is a Pc-excluded ω-siphon, S is a minimal

emptiable siphon in (N , M0).

Proof: Similar to the proof of Proposition 1. �

C. TWO MODIFIED MIPS TO COMPUTE

EMPTIABLE SIPHONS

In this subsection, we present two modified MIPs, denoted

as MMIP-1 and MMIP-2, to compute an ω-siphon and a Pc
-excluded ω-siphon given a set of resource places Pc from an

S4PR, respectively.

First, we introduce MMIP-1 as follows, which computes

an ω-siphon in an S4PR (N ,M0) with N = (P0 ∪PA ∪PR, T ,

F , W ).
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MMIP-1:

GMMIP1 = Maximize(
∑

p∈PR
|PA| · vp +

∑

p∈PA
vp) (11)

s.t. constraints (2-8).

We can see that MMIP-1 has a new objective function (11)

compared to the original MIP. It is clear that the solution

space of constraints (2)–(8) describes the set of all emptiable

siphons in the net system (N ,M0). The objective function (11)

actually implies that it firstly searches emptiable siphons with

minimal resource places and then selects one with minimal

activity places from them, i.e. an ω-siphon. In the following,

we present and prove some results related to MMIP-1.

Proposition 3: Given an S4PR (N , M0), a solution of

MMIP-1 corresponds to an ω-siphon.

Proof: Let VP = (vp1, vp2, . . . , vpn) ∈ {0, 1}n be

a solution of MMIP-1, where n is the number of places in

the S4PR, and S be the place set corresponding to VP, i.e.,

S ={p ∈ P|vp = 0}. It is known that the solution space of

constraints (2)–(8) describes the set of all emptiable siphons

of the S4PR [22]. Hence, S is an emptiable siphon.

Let 5min−r be the set of emptiable siphons with minimal

number of resource places in N .

Now, we prove that S ∈ 5min−r . By contradiction, suppose

that the number of resource places of S is not minimal. That

is to say, there exists a minimal emptiable siphon S ′ that

contains fewer resource places than S. Construct a vector

V ′
P = (v′p1, v

′
p2, . . . , v

′
pn) ∈{0, 1}n corresponding to S ′ such

that ∀p ∈ P, v′p = 0 iff p ∈ S ′. Clearly, V ′
P is a solution

to constraints (2)–(8) since S ′ is an emptiable siphon. Since

S ′ has fewer resource places, we can see that
∑

p∈PR
v′p >

∑

p∈PR
vp. Thus

∑

p∈PR
vp

′ −
∑

p∈PR
vp ≥ 1. By multiplying

both sides with |PA|, i.e. the number of activity places, we can

derive that
∑

p∈PR
|PA| · v′p −

∑

p∈PR
|PA| · vp ≥ |PA|. Note

that an emptiable siphon in an S4PR consists of resource

places and activity places. For activity places, we can see

that
∑

p∈PA
vp-

∑

p∈PA
v′p < |PA| since 1 <

∑

p∈PA
vp ≤

|PA| and 1 <
∑

p∈PA
v′p ≤ |PA|. Hence, it is trivial to see

that
∑

p∈PR
|PA| · v′p +

∑

p∈PA
v′p >

∑

p∈PR
|PA| · vp +

∑

p∈PA
vp, which contradicts that VP is the solution ofMMIP-

1. Therefore, S has minimal numbers of resource places, i.e.

S ∈ 5min−r .

Next, we prove that S ′ ∈ 5min−r such that |S ′ ∩ PA| <

|S ∩ PA|. By contradiction, there exists a minimal emptiable

siphon S ′ ∈ 5min−r that contains fewer activity places than

S. Construct a vector V ′
P = (v′p1, v

′
p2, . . . , v

′
pn) ∈{0, 1}n

corresponding to S ′ such that ∀p ∈ P, v′p = 0 iff p ∈ S ′.

Since S ′ is an emptiable siphon, V ′
P is a solution to constraints

(2)–(8). Since S ′ has fewer activity places and at the same

time contains the same number of resource places, it is trivial

to see that
∑

p∈PR
|PA| · v′p +

∑

p∈PA
v′p >

∑

p∈PR
|PA| ·

vp+
∑

p∈PA
vp, which contradicts that VP is the solution of

MMIP-1.

Therefore, S is an ω-siphon. �

Proposition 4: Given an S4PR (N , M0), it contains no

emptiable siphon if no solution exists for MMIP-1.

Proof: Since no solution exists for MMIP-1, it means

that the solution space of constraints (2)–(8) is empty. Since

the solution space of constraints (2)–(8) describes the set of

all emptiable siphons in the net system, clearly, the net system

contains no emptiable siphon.

Now, we introduce MMIP-2 that is applicable to an S4PR

given a set Pc ⊆ PR. The only difference between MMIP-1

andMMIP-2 is the introduction of constraint (12) inMMIP-2.

It is easy to see that, due to the constraint (12), an emp-

tiable siphon excluding places in Pc is computed by solving

the MMIP-2 problem. To be exact, MMIP-2 computes a

Pc-excluded ω-siphon.

MMIP-2:

GMMIP2 = Maximize(
∑

p∈pR
|PA| · vp +

∑

p∈PA
vp)

s.t. constraints (2-8) and

vp = 1, ∀p ∈ PC (12)

Proposition 5: Given an S4PR (N , M0) with N = (P0 ∪

PA ∪ PR, T , F , W ), and a set of resource places Pc ⊆ PR, a

solution of MMIP-2 corresponds to a Pc-excluded ω-siphon.

Proof: Similar to the proof of Proposition 3. �

Proposition 6: Given an S4PR (N ,M0) and a set of resource

places Pc ⊆ PR, it contains no emptiable siphon that excludes

places in Pc if no solution exists for MMIP-2.

Proof: Similar to the proof of Proposition 4. �

D. AN ITERATIVE DEADLOCK PREVETION STRATEGY

In this subsection, we propose a new iterative deadlock pre-

vention policy for S3PR. For simplicity, we call it G-policy.

As the existing iterative deadlock prevention policies,

G-policy computes and controls siphons iteratively and

finally synthesizes a liveness-enforcing supervisor for an

S3PR. The novelty of G-policy is that it consists of three

stages that specify the control order on three kinds of siphons,

i.e., Pc-excluded ω-siphons, ω-siphons and bad siphons,

where Pc is the set of monitors added to the original S3PR.

Note that, in the remainder of this paper, Pc is assumed to

be the set of monitors added to the original S3PR by default.

We explain the three stages in more detail as follows.

In Stage 1 (i.e., Steps 3-6), we compute and M-control Pc-

excludedω-siphons iteratively.More specifically, we look for

aminimal emptiable siphonwithminimal number of resource

places, which contains no monitors, by the siphon detec-

tion method MMIP-2 at each iteration. Once such a siphon

is computed, a control place is added, making the siphon

M-controlled.We note that the resultant net from Stage 1 is an

S4PR if all control places are regarded as resource places and

the S4PR is guaranteed to be ordinary. In addition, there is no

emptiable siphon that excludes control places in the resultant

net by Proposition 6. In other words, all emptiable siphons in

the original S3PR have been controlled.

In Stage 2 (i.e., Steps 7-9), we compute and M-control

ω-siphons iteratively. At each iteration, an ω-siphon is com-

puted by solving an MMIP-1 problem. It is clear that the

ω-siphons computed in Stage 2 definitely contain some con-

trol places since no emptiable siphon excluding control places
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G-policy 1 A Three-Stage Deadlock Prevention Policy

Input: An S3PR net system (N, M0)

Output: A live S4PR net system (N c, Mc
0)

1) Let (N c, Mc
0) := (N , M0);

2) Pc:= Ø;

/∗ ∗ ∗ Stage One: Pc-excluded ω-siphon Control ∗ ∗ ∗/

3) while there exists a Pc-excluded ω-siphon S in (N c, Mc
0)

computed by solving an MMIP-2 do

4) add a monitor Vs to (N c, Mc
0) such that S is

M-controlled and denote the resultant net as (N c,

Mc
0);

5) Pc:= Pc∪{Vs};

6) end while

/∗ ∗ ∗ Stage Two: ω-siphon Control ∗ ∗ ∗/

7) while there exists an ω-siphon S in (N c, Mc
0) computed

by solving an MMIP-1 do

8) add a monitor Vs to (N c, Mc
0) such that S is

M-controlled and denote the resultant net as (N c,

Mc
0);

9) end while

/∗ ∗ ∗ Stage Three: BadSiphon Control ∗ ∗ ∗/

10) if there exists a weighted arc in (N c, Mc
0) then

11) while there exists a bad siphon S in (N c, Mc
0)

computed using the method in [19] do

12) add a monitor Vs to (N c, Mc
0) according to [19]

and denote the resultant net as (N c, Mc
0);

13) end while

14) end if

15) End

exists in the resultant net of Stage 1. In addition, we note

that weighted arcs may be introduced while adding monitors

in Stage 2. Thus, the resultant net after Stage 2 may be

not ordinary. But it is still an S4PR if all control places are

regarded as resource places. In addition, the resultant net after

Stage 2 contains no emptiable siphons by Proposition 4.

Concerning Stages 1 and 2, we can say that the difference

between them is that we look for and control emptiable

siphons in the original plant system in Stage 1, while we look

for and control emptiable siphons in the augmented net that

contain control places in Stage 2.

In Stage 3 (i.e., Steps 10-14), we firstly determine if the

resultant net after Stage 2 is ordinary. If so, it is already a

live net system according to Theorem 1. Otherwise, it may

be not live since the liveness of a generalized net cannot

be guaranteed by the absence of emptiable siphons. In this

case, we compute and control bad siphons iteratively using

the method in [19]. The resultant net after Stage 3 contains

no bad siphon. By Theorem 2, a live net system is obtained

after the control of three stages.

Based on the above analysis, we can derive the following

result.

Theorem 3: Let (N , M0) be an S3PR. The net (N c, M c
0 )

resulting from applying G-policy to (N , M0) is a live S
4PR.

Proof: Note that S3PR is a subclass of S4PR. It is clear

that the resultant net after applying G-policy to an S3PR is

an S4PR. Besides, if the resultant net is ordinary, G-policy

guarantees that it has no emptiable siphons, which indicates

it is live by Theorem 1. If the resultant net is generalized,

G-policy guarantees that it contains no bad siphons, which

implies it is live by Theorem 2. Hence, the final resultant net

is a live S4PR. �

In the following, we make some comments on G-policy in

terms of structural complexity, computational complexity and

behavioral permissiveness.

Remark1 (Behavioral Permissiveness):Although G-policy

computes a liveness-enforcing supervisor, the supervisor is

not necessarily maximally permissive in the sense that some

good states of the plant net system may be missing in the

controlled net system. Indeed, if the resultant net after Stage

2 is ordinary, the computed supervisor is definitelymaximally

permissive since M-control of an emptiable siphon does not

forbid any good states of the plant net system; otherwise,

the behavioral permissiveness of the supervisor computed

by G-policy depends on the computation and control of bad

siphons in Stage 3. Since the control of a bad siphon by

the method in [19] may forbid good states of the plant net

system, the final computed supervisor is not guaranteed to be

maximally permissive.

However, it is worth noting that large quantities of numer-

ical examples show that no bad siphon can be found in Stage

3 when G-policy is applied. In other words, the computed

supervisor is liveness-enforcing and maximally permissive.

Hence, we conjecture that the liveness-enforcing supervisor

for an S3PR computed by G-policy is guaranteed to be max-

imally permissive but it is not proved now.

Remark 2 (Computational Complexity): We can see that

G-policy does not require the reachability analysis, which

in general leads to the state explosion problem. Besides,

G-policy can avoid the complete siphon enumeration, which

is time-consuming especially in large-size nets since the

number of siphons in a net grows exponentially with respect

to the net size. As a result, G-policy typically has lower

computational complexity than those approaches requiring

the reachability analysis or the complete siphon enumeration.

Remark 3 (Structural Complexity):As we analyzed before,

an inappropriate siphon control order can introduce redun-

dant control places, thereby increasing the structural com-

plexity of the final supervisor. G-policy controls emptiable

siphons in a specified order, aiming to introduce as few

control places and weighted arcs as possible to simplify the

structure of the supervisor. Typically, compared with most

existing siphon-based deadlock prevention policies that iter-

atively control siphons, G-policy computes a supervisor with

a simpler structure. Note that it does not guarantee that the

structure of the supervisor is definitely the simplest.

Finally, we make a comparison between G-policy and

the policy proposed in the paper [24]. G-policy is similar
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TABLE 1. Siphon computation and control at each iteration in example 1.

to the policy in [24]. Both of them consist of three stages

and iteratively control siphons in each stage. In more detail,

both of them iteratively and selectively search and control

emptiable siphons based on solving MIP problems in the first

two stages, and search and control bad siphons by the method

in [19] in the third stage. The difference between the two

policies mainly lies in the search of emptiable siphons in

the first two stages. The policy in [24] finds a maximal

emptiable siphon at each iteration and then extracts a min-

imal emptiable siphon from it. In contrast, G-policy finds

a minimal emptiable siphon directly at each iteration by

solving MMIP-1 or MMIP-2 problem. In addition, the policy

in [24] extracts a minimal emptiable siphon from a maximal

emptiable siphon in a ‘‘random’’ way, while G-policy breaks

the random mechanism, searching and controlling siphons

with specific structural characteristics. G-policy is indeed the

improved version of the policy in [24], which is verified by

illustrative examples in the next section.

V. EXAMPLES

In this section, we provide two numerical examples to demon-

strate the proposed policy and compare it with some other

methods in the literature. Here, the software ‘‘Lingo’’ is used

as a tool to solve MIP problems, and the software ‘‘INA’’ to

verify and analyze the final results.

A. EXAMPLE I

Consider the S3PR (N , M0) in Fig. 2. Let us compute the

liveness-enforcing supervisor for it by G-policy.

In Stage 1, we repeatedly compute a Pc-excluded

ω-siphon by solving an MMIP-2 problem and then make it

M-controlled. Firstly, the Pc-excluded ω-siphon S1 ={p4,

p7, p10, p11} is found in (N , M0), where Pc = Ø, and the

monitorVs(1) is added to (N ,M0) such that S1 isM-controlled,

resulting in an augmented net denoted as (N c, Mc
0). Now, Pc

is updated as Pc ={Vs(1)}. Next, the Pc-excluded ω-siphon

S2 ={p4, p6, p10, p11} is found in (N c, Mc
0) and (N c, Mc

0)

is updated by introducing the monitor Vs(2) that makes S2
M-controlled. Accordingly, Pc is updated as Pc ={Vs(1),

Vs(2)}. Then, no Pc-excluded ω-siphon can be found by solv-

ing an MMIP-2 problem, which means the termination of

Stage 1. Now all emptiable siphons in the original S3PR (N ,

M0) have been controlled in the resultant net of Stage 1.

TABLE 2. Monitors added in example 1.

FIGURE 3. An S3PR.

In Stage 2, we repeatedly compute an ω-siphon by solving

an MMIP-1 problem and then make it M-controlled. At the

first iteration, the ω-siphon S3 ={p3, p7, Vs(1), Vs(2)} is found

and the monitor Vs(3) is designed to M-control S3. Then no

ω-siphon is found at the next iteration. Hence, Stage 2 termi-

nates. Now, there exists no emptiable siphon in the resultant

net.

We can easily determine that the resultant net after

Stage 2 is ordinary, which indicates that it is already live by

Theorem 1. Hence, there is no need to perform Stage 3.

To be intuitive, Table 1 shows the selected siphon and the

monitor added at each iteration. Specifically, the first and

second columns indicate the stage numbers and the iteration

numbers, respectively, the third column presents the com-

puted siphon at each iteration, and the last column shows

the name of each added control place. The details of added

control places are shown in Table 2, where the initial marking

(M0(ci)), pre-transitions (
•pci) and post-transitions (p•

ci) are

presented.

B. EXAMPLE II

Consider the S3PR (N, M0) shown in Fig. 3, which is the

PN model of an FMS firstly proposed in [17] and then

widely used to evaluate the performance of deadlock control

strategies in, e.g., [45]. The system contains 26750 reachable

states with 21581 good states. In the case that the system is

optimally controlled, or equivalently, the liveness-enforcing

supervisor is maximally permissive, the controlled system

should have 21581 reachable states that are all good states.

Let us see the performance of G-policy applying to this sys-

tem. As shown in Table 3, seven Pc-excluded ω-siphons and
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TABLE 3. Siphon computation and control at each iteration in example 2.

seven ω-siphons are computed and M-controlled by monitors

in Stage 1 and Stage 2, respectively. According to the infor-

mation of added monitors shown in Table 4, we can see that

the resultant net of Stage 1 is still ordinary, but the monitors

added in Stage 2 introduce weighted arcs, which forces us to

search bad siphons in Stage 3. Fortunately, by solving anMIP

problem according to [19], no bad siphon can be found. Thus,

we obtain the final resultant system that is live.

We note that the liveness-enforcing supervisor is max-

imally permissive since no monitor is added in Stage 3.

Indeed, it can be checked by ‘‘INA’’ that the controlled system

is live with 21581 reachable states. In addition, we can see

that 14monitors are added in total byG-policy, whereVs(11) is

actually the only redundant monitor through the redundancy

analysis.

Finally, we compare G-policy with other deadlock pre-

vention strategies in the literature by applying them to the

net system in Fig. 3 as well. The performance of all the

considered strategies is summarized in Table 5.

As shown in Table 5, strategies in [33] and [25] also result

in maximally permissive liveness-enforcing supervisors for

the S3PR in Fig. 3. We can see that the computation of

the reachability graph is required by the strategy in [33],

leading to its exponential computational complexity. In con-

trast, the computational complexities of G-policy and the

strategy in [25] are both NP-hard. Moreover, it is clear that

both the supervisors obtained by strategies in [33] and [25]

contain more monitors and additional arcs than the supervisor

obtained by G-policy.

Concerning the structural complexities of strategies

in Table 5, we can see that all of the supervisors that contain

TABLE 4. Monitors added in example 2.

TABLE 5. Performance comparison.

less monitors than the supervisor obtained by G-policy lose

5000 or even much more good states, while G-policy reserves

all good states, i.e., is maximally permissive.

Finally, let us focus on the strategy in [34], which is

the only strategy in Table 5 with polynomial complexity.

Although it has the advantage in computational complexity,

it loses almost 20000 good states.

Consequently, we may conclude that, for the S3PR in

Fig. 3, G-policy is the best one among all the strategies

in Table 5 concerning the overall performance on structural

complexity, behavioral permissiveness and computational

complexity.
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VI. CONCLUSION AND FUTURE WORK

In this paper, a three-stage iterative deadlock prevention pol-

icy named G-policy is proposed for S3PR that specifies the

control order on siphons. Specifically, we firstly iteratively

control Pc-excluded ω-siphons in Stage 1, where Pc is the

set of monitors added to the plant system, then ω-siphons in

Stage 2, and finally bad siphons in Stage 3. In particular, two

modified MIPs are developed to compute a Pc-excluded ω-

siphon and an ω-siphon in Stages 1 and 2, respectively. Com-

pared with the existing policies, G-policy usually synthesizes

a liveness-enforcing supervisor with lower computational,

structural complexities and higher behavioral permissiveness.

In addition, the supervisor is guaranteed to be maximally

permissive in the case that no bad siphon can be found in

Stage 3.

In our future work, we intend to design a siphon con-

trol order for a class of PNs that allows us to obtain a

liveness-enforcing supervisor by M-controlling emptiable

siphons only. In this case, the supervisor can be guaranteed to

bemaximally permissive. Also, we investigate how to achieve

theminimality on the supervisor structure.Moreover, we plan

to consider extending G-policy to more general PN systems

than S3PR.
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