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A sister lineage of the Mycobacterium tuberculosis
complex discovered in the African Great
Lakes region
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The human- and animal-adapted lineages of the Mycobacterium tuberculosis complex (MTBC)

are thought to have expanded from a common progenitor in Africa. However, the molecular

events that accompanied this emergence remain largely unknown. Here, we describe two

MTBC strains isolated from patients with multidrug resistant tuberculosis, representing an

as-yet-unknown lineage, named Lineage 8 (L8), seemingly restricted to the African Great

Lakes region. Using genome-based phylogenetic reconstruction, we show that L8 is a sister

clade to the known MTBC lineages. Comparison with other complete mycobacterial genomes

indicate that the divergence of L8 preceded the loss of the cobF genome region - involved in

the cobalamin/vitamin B12 synthesis - and gene interruptions in a subsequent common

ancestor shared by all other known MTBC lineages. This discovery further supports an East

African origin for the MTBC and provides additional molecular clues on the ancestral genome

reduction associated with adaptation to a pathogenic lifestyle.
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T
uberculosis (TB), caused by members of the Mycobacter-
ium tuberculosis complex (MTBC), is among the ancient
scourges of humankind1, and remains the leading cause of

mortality globally due to an infectious disease2. Intense research
has been dedicated to decipher the evolutionary history of the
MTBC and to understand the causes underlying the worldwide
spread of TB3–5. Current genome data show that the MTBC is
comprised of the five human-adapted lineages representing M.
tuberculosis sensu stricto (L1–4 and L7), two other human-
adapted lineages traditionally referred to as M. africanum (L5-6)
and at least nine animal-adapted lineages6. Africa is the only con-
tinent where all MTBC lineages are present, suggesting that the
MTBC emerged from a common ancestor therein and then
expanded to the rest of the world following human migrations3,7–10.
However, the genomic traits of this common ancestor and the
region from which this expansion took place in Africa remain
unknown. Whole-genome sequencing (WGS) analyses showed that
rare human TB bacilli with a smooth colony morphotype, highly
restricted to the Horn of Africa and named Mycobacterium canettii
(alias smooth tubercle bacilli or STB) represent early evolutionary
branching lineages that predate the emergence of the most recent
common ancestor (MRCA) of the MTBC (or of the rest of the
MTBC, if M. canettii is considered to be part of the complex)4,11,12.
Indeed, whereas known MTBC strains differ by no more than
~2000 single nucleotide polymorphisms (SNPs)13, M. canettii
strains are 10- to 25-fold more genetically diverse and separated by
at least 14,000 SNPs from the hitherto known MTBC MRCA4,12.
Moreover, M. canettii strains are less virulent and possess highly
mosaic genomes, possibly reflecting adaptation to an environmental
reservoir favouring active lateral gene flow4,14–16. These biological
differences support the existence of lineages that reflect intermediate
stages in the evolution fromM. canettii towards the obligate MTBC
pathogens.

Here, we describe two exceptional strains representing a new
clade, diverging before the MRCA of the other MTBC lineages.
These two strains were discovered in two independent analyses
and were both multidrug-resistant (MDR; i.e. resistant to at least
rifampicin and isoniazid). One was isolated from a TB patient in
Rwanda through an ongoing MDR-TB diagnostic trial in Africa.
The second isolate came from a patient in Uganda, and was
discovered upon screening publicly available draft genome data-
sets, where it was misclassified as an M. bovis strain. We used
PacBio and Illumina WGS to reconstruct the full circular genome
of the Rwandan strain. We used these data and the available
Illumina sequencing data of the Ugandan strain to reconstitute
the phylogeny of this novel lineage, which we named Lineage 8
(L8), and further investigate molecular and evolutionary events
associated with the emergence of the MTBC.

Results
Patient with the L8 MTBC strain in Rwanda. The Rwandan
strain was isolated from a male patient, aged 77 years, HIV-
negative, resident of Rulindo district bordering with the South-
west of Uganda, and who had lived in Uganda previously. The
patient was diagnosed with rifampicin-resistant TB based on
standard Xpert MTB/RIF testing (Xpert; Cepheid, Sunnyvale, CA,
USA), which probes for mutations in the rifampicin resistance-
determining region of the rpoB gene of the MTBC17. The results
of the assay showed a rare delayed probe B reaction (~3% pre-
valence in Rwanda)18, presumed (and later confirmed; see below)
to be due to the rifampicin resistance-associated Asp435Tyr
mutation19.

Per routine practice, the patient was initiated on standard short-
course MDR-TB treatment (i.e. 9-month WHO-endorsed MDR-
TB regimen, including moxifloxacin, kanamycin, protionamide,

ethambutol, clofazimine, high dose isoniazid and pyrazinamide)20.
However, the patient developed hypotension, and eventually died
due to probable cardiac failure, after 20 days of treatment.
Phenotypic drug-susceptibility testing (DST) confirmed resistance
to both rifampicin and isoniazid, and susceptibility to other anti-
TB drugs including ethambutol, fluoroquinolones and second-line
injectables.

Growth characteristics and biochemical properties of the
Rwandan L8 strain. The Rwanda strain was grown in 12.5 days on
Mycobacterial Growth Indicator Tubes. Colonies were observed on
the fifth week after initial inoculation on Löwenstein–Jensen
medium, indicating a slow grower phenotype with rough colonies
(Fig. 1). The strain also displayed archetypal biochemical char-
acteristics of M. tuberculosis sensu stricto, including niacin pro-
duction combined with urease hydrolysis (Table 1).

Genotypic resistance and SNP profile of the Rwandan L8 strain
by Deeplex-MycTB. Following the MDR-TB diagnosis, the strain
was included in the first set of tests for an ongoing MDR-TB
diagnostic trial ‘DIAgnostics for MDR-TB in Africa (DIAMA)
Clinicaltrials.gov, NCT03303963’, evaluating a new targeted deep
sequencing assay, called Deeplex-MycTB. Deeplex-MycTB testing
confirmed the presence of the rpoB Asp435Tyr mutation conferring
rifampicin resistance, along with the inhA Ser94Ala mutation
conferring isoniazid resistance, consistently with the MDR pheno-
type identified by phenotypic DST (Fig. 2). This strain also har-
boured two alleles in phylogenetic positions in embB (Ala378) and
gidB (Ala205) not associated with resistance to ethambutol or
streptomycin, which were both shared by several MTBC lineages
(L1, 5, 6, 7 and animal lineages) andM. canettii21. In addition, eight
other—so far uncharacterised non-synonymous SNPs were identi-
fied in six of the 18 gene targets interrogated by the assay (Fig. 2).
Moreover, this test detected an atypical spoligotype pattern,
1111100000000000000000000000000001110000000 (Fig. 2), which
was further confirmed by conventional membrane-based spoligo-
typing testing. This spoligotype pattern was unique in the global
spoligotype database that comprises 111,637 MTBC isolates from
131 countries22.

WGS analysis and phylogenetic position of the Rwandan and
Ugandan L8 strains. Results from WGS analysis of the Rwandan
strain using Illumina sequencing confirmed all Deeplex-MycTB
findings.

The strain isolated in Uganda was discovered independently
upon screening global MTBC genome datasets publicly available
on NCBI/EBI, comprising ~20,000 genomes in total. From
subsequent processing with our WGS analysis pipeline, we
found 1 genome that did not classify in any of the 7 human-
adapted lineages or 9 animal-adapted ecotypes known at the
time, but had been misclassified as M. bovis isolated from a
human patient23. These WGS data revealed a similar spoligotype
1111100000000000000000000000000001111000111, with an
overlapping signature characterised by the presence of spacers
1 to 5 and 34 to 37 (vs 34–36 in the Rwandan strain) with all
intervening spacers missing. Moreover, the Ugandan strain also
shared the same rpoB Asp435Tyr and inhA Ser94Ala mutations
and the same sequence alleles in embB and gidB. The Ugandan
strain contained an additional katG Ser315Thr mutation
conferring high-level isoniazid resistance, as well as the embA
C-11A and embB Asp328Tyr mutations predictive of ethambutol
resistance and two pncA missense mutations, predictive of
pyrazinamide resistance. Moreover, only three of the nine
aforementioned uncharacterised SNPs detected by Deeplex-
MycTB were shared between both strains.
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To further assess the relationships between both strains and in
comparison to other MTBC strains, a maximum likelihood
phylogeny was inferred from 241 MTBC genomes, including
representatives of all known human- and animal-adapted lineages6

and using an M. canettii strain as an outgroup. M. canettii
represents the closest outgroup to the MTBC including L8, as
shown by subsequent comparative analysis of a complete L8
genome (see below), and previous observations of ~2.0Mb larger
genomes and substantially lower average nucleotide identities of
phylogenetically closest non-tuberculous mycobacterial species
such as M. marinum and M. kansasii4,24,25. This reconstruction
revealed a unique phylogenetic position of the two new genomes
from Rwanda and Uganda (Fig. 3), representing a newly
characterised monophyletic clade, in which none of the known

MTBC genomes were contained. A core genome-based phylogeny
was also constructed from representatives of the MTBC lineages as
well as M. canettii, M. marinum and M. kansasii (Supplementary
Fig. 1). This phylogeny confirmed the placement of the L8
Rwandan strain as being a new clade between M. canettii and the
other lineages of the MTBC. Based on these phylogenies, this clade
shares a MRCA with the rest of the MTBC, thus representing a
new sister clade to the known MTBC, which we named Lineage 8
(L8). Comprehensive SNP analysis identified a total of 189 SNPs
separating both L8 genomes, which is within the range of zero to
700 SNPs found between any two strains within any of the lineages
1 to 7 of the MTBC13. On average, two strains of the MTBC
including L8 differed by 1443 SNPs (corresponding to 0.04% of the
genome, excluding repetitive/‘problematic’ regions), thus at least an

Fig. 1 Image of colonies from the Rwandan Lineage 8 strain. Isolate grown on solid medium, with the typical rough morphotype of Mycobacterium

tuberculosis. Colonies grown on Dubos agar medium were visualized by microscopy. The scale bar represents ~2 mm.

Table 1 Standard biochemical characteristics of selected mycobacterial species and M. tuberculosis complex lineages/

subspecies.

Mycobacterial species/

lineage

BCCM/ITM

Ref no.

Niacin

production

Nitrate

reduction

Urease

hydrolysis

Tween

hydrolysis

Catalase

production

Arylsulfatase

L8 500961 + + + Weak + − −

L1 500941 + + + − Weak + −

L2 500945 + − + − − −

L3 500947 + + + − − −

L4 500951 + + + + − −

L5 500953 + − − + − −

L6 500957 + − Weak + Weak + − −

L7 500959 + − Weak + − − −

M. bovis 500324 − − Weak + − − −

M. bovis BCG 500101 − − + − Weak+ −

M. orygis 501026 + − + − − −

M. canettii 500199 − − + + Weak + −

M. fortuitum 500465 − + + − Weak + +

+ Positive reaction, − negative.
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order of magnitude lower than the SNP distance separating any
MTBC strain from M. canettii4,13.

The absence of any matching pattern in the global spoligotype
database, as well as the lack of detection of this clade in previous
large WGS datasets of MTBC strains from global sources,
suggests that L8 is rare and seemingly geographically restricted to
the African Great Lakes region. Specifically, the L8 spoligotype
signature and the three SNPs shared by both L8 strains were not
detected in any of 115 MTBC genomes from a previous drug

resistance survey in Uganda26, nor in 380 rifampicin-resistant
strains from Rwanda collected between 1991 and 2018, from
routine drug resistance surveillance as well as various drug
resistance surveys27–29. Furthermore, among 14 other available
isolates out of 27 from Uganda and Rwanda tested by Gene Xpert
MTB/RIF that showed the same delayed probe B as L8, none
displayed the L8 signatures when tested by Deeplex-MycTB or
by classical spoligotyping. Likewise, none of >1500 clinical
samples from TB patients tested by Deeplex-MycTB from a

hsp65-based identification best match
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Fig. 2 Deeplex-MycTB results identifying a MDR-TB strain from Rwanda with an atypical genotypic profile. Deeplex-MycTB results identifying a MDR-

TB strain from Rwanda with an atypical genotypic profile. Target gene regions are grouped within sectors in a circular map according to the tuberculous

drug resistance with which they are associated. The two sectors in red indicate regions where rifampicin and isoniazid resistance-associated mutations

are detected. The multiple sectors in blue refer to regions, where as yet uncharacterised mutations are detected, whereas sectors in green indicate regions

where no mutation or only mutations not associated with resistance (shown in grey around the map) were detected. Green lines above gene names

represent the reference sequences with coverage breadth above 95%. Limits of detection (LOD) of potential heteroresistance (reflected by subpopulations

of reads bearing a mutation), depending on the coverage depths over target sequence positions, are represented by grey (LOD 3%) and orange zones

(variable LOD > 3–80%; only seen in extremities of a few targets, such as the two rrs regions) above the reference sequences within the sectors.

Information on an unrecognised spoligotype, an equivocal SNP-based phylogenetic lineage and on mycobacterial species identification, based on hsp65

sequence best match, are shown in the centre of the circle. AMI amikacin, BDQ bedaquiline, CAP capreomycin, CFZ clofazimine, EMB ethambutol, ETH

ethionamide, FQ fluoroquinolones, KAN kanamycin, LIN linezolid, INH isoniazid, PZA pyrazinamide, RIF rifampin, SM streptomycin, SIT spoligotype

international type.
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recent nationwide drug resistance survey performed in the
Democratic Republic of the Congo displayed the L8 spoligotype
signature or the specific SNPs.

Defining features of a complete L8 genome. To further assess
the phylogenetic position of L8 and its split from the rest of the
MTBC, the Rwandan strain was subjected to long read-based
PacBio sequencing. Comparison of the obtained assembly with 36

available complete genomes of MTBC members, comprising L1-
L4 (including H37Rv), M. africanum (L6) and M. bovis strains,
showed a highly syntenic organisation, with no major structural
rearrangement between both groups. Although the assembled
L8 genome of 4,379,493 bp was within the 4.34–4.43Mb size
range of the other MTBC genomes, it was 30 kb smaller than the
4.41-Mb mean size of genomes of M. tuberculosis sensu stricto30.
However, the largest part of this gap was accounted by the
absence of three genomic regions in L8, corresponding to regions

L2

L3

L4

L7

L1

L5

L6

L8

M. microti

M. bovis

M. caprae

M. canettii

Rwanda
Uganda

0.00003

100

100

100

100

99

M. orygis

M. pinnipedii

Dassie

Chimpanzee

M. suricattae

M. mungi

Fig. 3 Maximum likelihood phylogeny of 241 MTBC genomes, inferred from 43,442 variable positions. Maximum likelihood phylogeny of 241 MTBC

genomes, inferred from 43,442 variable positions. The scale bar indicates the number of substitutions per polymorphic site. Branches corresponding to

human-adapted strains are coloured and branches corresponding to animal-adapted strains are depicted in black. The phylogeny is rooted on M. canettii

and bootstrap values are shown for the most important splits.
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of difference (RDs) known to be variably present or absent in
other MTBC (sub)lineages31,32 (Supplementary Data 1). These
include a 9.3 kb PhiRv1 prophage region (RD3), as well as 10.0 kb
and 8.5 kb segments corresponding to RD14 and RD5, com-
prising the plcD gene region and the plcABC gene cluster,
respectively31. In L8, each of the two latter regions only contained
one copy of the IS6110 insertion sequence, devoid of direct
repeats (DRs) that normally flank IS6110 copies after transposi-
tion, indicating that these deletions in L8 resulted from recom-
bination between two adjacent IS6110 copies with loss of the
intervening sequences33. These mobile DNA-related deletions,
which also arose independently in several other MTBC
branches31,34, probably occurred after the divergence of L8 from
the other MTBC lineages. Apart from these three deletions and
two dozen repetitive/multicopy genes (IS6110-related, PE/PPE-,
or Mce-encoding), we only found 5 non-repetitive genes, inclu-
ded in two small segments (3.4 kb and 4.4 kb), which were
undetected in the complete L8 genome while being present in
reference MTBC genomes (Supplementary Data 1).

Conversely, a 4.4 kb genome region was present in the genomes
of both L8 strains and in M. canettii, but absent in the 36 available
complete genomes of MTBC members (Supplementary Data 2).
This region comprises the cobF gene (Fig. 4), encoding the precorrin
6A synthase involved in the cobalamin/vitamin B12 synthesis, along
with two other genes, respectively encoding a PE-PGRS protein

family member and a protein of unknown function. This region
shared by the L8 and the M. canettii genomes is also present in the
phylogenetically proximal non-tuberculous mycobacterial species
M. marinum and M. kansasii (Fig. 4). Via BLAST analysis, we
further confirmed the systematic absence of cobF in any of 6456
quality draft genome assemblies available as of January 2020 from
the NCBI, from strains belonging to lineages 1–7 or the animal
lineages of the MTBC. Moreover, we thereby determined that the
junction between the sequences flanking the cobF deletion was at the
same nucleotide position in all but 6 of these genomes, resulting in
the truncation of rv0943c and rv0944 genes as seen in the complete
MTBC genomes (Fig. 4). Consistent with the clonal evolution of the
MTBC with negligible, if any, horizontal gene transfer between
strains1,14,32,35, the perfect conservation of this sequence junction
suggests that cobF was lost in the MRCA of the other MTBC
lineages, after its divergence from L8. The 6 exceptions were
3 strains from lineage 4.3 and 3 strains from lineage 3 that showed
slightly larger deletions, including the 5′ region of rv0943c or the 5′

region of rv0943c, rv0944 and the 5′ region of rv0945, respectively,
suggesting probable additional deletion events in particular sub-
branches of these lineages.

In contrast, none of the almost 900 other genes specifically
identified in the M. canettii genomes, and absent in the other
MTBC genomes, were found in the L8 genome. The latter finding
thus supports the close relationship with the previously known
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MTBC lineages indicated by the SNP-based phylogeny, as well as
the outgroup position of M. canettii relatively to the MTBC
including L8.

Further evidence for the early branching of L8 relative to the
rest of the MTBC comes from examination of interrupted coding
sequences (ICDSs). These ICDSs correspond to frameshifts or in-
frame stop codons detected in genes that are intact in a common
progenitor, thus putatively representing so-called molecular scars
inherited during progressive pseudogenisation of the MTBC
genomes36,37. Four orthologues of MTBC ICDSs were previously
found to be intact in the genomes of M. canettii strains, as well as
in M. marinum and M. kansasii4. One of these four orthologues
(pks8), which belongs to a multigene family encoding polyketide
synthases involved in the biosynthesis of important cell envelope
lipids38, was also intact in the genomes of both L8 strains (Fig. 5
and Supplementary Data 3). Moreover, we found an additional
orthologue of MTBC ICDSs (i.e. rv3899c-rv3900c), coding for a
conserved hypothetical protein, which was intact in the genomes
of M. canettii, M. kansasii, M. marinum and both L8 strains
(Supplementary Data 3). These two molecular scars were also
likely acquired by the other MTBC lineages after their divergence
from the common progenitor shared with L8.

The assembled L8 genome also included 35 of the 50 genes (the
exceptions are rv3513c encoding the probable fatty-Acid-Coa
ligase FadD18 and 14 genes in the PhiRv1 region; see above)
present in MTBC members but not found in any of theM. canettii
genomes, including a number of genes putatively acquired
through horizontal gene transfer by the common ancestor of the
MTBC after its separation from M. canettii4 (Supplementary
Data 4). This observation additionally supports both the close
relationship with the previously known MTBC lineages and the

outgroup position of M. canettii relatively to the MTBC including
L8. Likewise, consistent with the rough colony morphotype of the
Rwandan strain, both L8 strains displayed the single polyketide-
synthase-encoding pks5 gene configuration shared by all MTBC
members, instead of the dual pks5 conformation found in M.
canettii strains involved in the smooth colony phenotype of the
latter strains15. Thus, the recombination between the two pks5
genes and the loss of the intervening pap gene, thought to have
resulted in surface remodelling and incremental gain of virulence
after the phylogenetic separation from M. canettii15, already
existed in the common progenitor of L8 and the rest of the MTBC.
Moreover, both L8 strains also contained the intact TbD1 and
RD9 regions, shared by the other ‘ancestral’ M. tuberculosis
lineages (L1, L7) but subsequently lost by the so-called ‘modern’
lineages of M. tuberculosis (TbD1 lost in L2-4), M. africanum (L5
and L6) and the animal lineages (RD9)31.

In contrast to the highly clonal population structure of the
MTBC, M. canettii strains are highly recombinogenic, as apparent
from mosaic sequence arrangements in their genomes and
functional DNA transfer between M. canettii strains mediated by
a distributive conjugal transfer (DCT)-like mechanism4,39. How-
ever, no significant genome-wide recombination signal was detected
by ClonalFrameML analysis40 between L8 and other MTBC strains
(Supplementary Fig. 2). In particular, and in contrast to the
numerous recombination segments in M. canettii4, the complete L8
genome only contained 26 possible recombination segments, yet the
longest of these was 607 bp and the average length was 142 bp.

Discussion
The discovery of L8 provides unique insights into an ancestor of
the MTBC that existed after the pks5-recombination-mediated
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surface remodelling, which occurred after separation of the
MTBC MRCA from theM. canettii clade, but preceded the loss of
the cobF region and gene interruptions in a later common
ancestor of the other MTBC lineages. The seeming restriction of
this lineage to the African Great Lakes region represents new
evidence supporting an origin for the MTBC in the eastern part of
the African continent. These findings reinforce results from
previous work suggesting an East—rather than a West African
origin of the MTBC3,4,9,11,41.

A distinct ecological niche, linked to a potential environmental
reservoir, has been hypothesised to explain the marked geo-
graphic restriction ofM. canettii strains to the Horn of Africa, the
lower persistence of these strains in infection models as well as
their genome mosaicism implying multiple DNA recombination
events within the M. canettii strain pool4,12. However, although
our analysis is limited to two genomes identified to date, our
results suggest that L8 is as clonal as the rest of the
MTBC3,14,34,42. Moreover, the observation that both L8 strains
share two uncommon rifampicin- and isoniazid-resistance con-
ferring mutations in rpoB and inhA suggests that multidrug
resistance was already acquired in the common ancestor of these
two strains. Isoniazid and rifampicin were introduced in TB
treatments in the African Great Lakes region in the late fifties and
1983, respectively (Dr. Armand Van Deun, personal commu-
nication). These shared MDR-defining mutations, and the
detection of these isolates in human patients in both cases (with
reported absence of previous TB history for the Rwandan
patient), suggest that these patients were infected with an already-
resistant strain, which was exposed to drug selective pressure
already decades ago and had been likely circulating in the com-
munity for some time. Overall, this pattern thus suggests human-
to-human transmission rather than infection from a non-human
source. Although based on only two initial strains, these results
are consistent with the presumed scenario of a human rather than
a zoonotic origin for the MTBC31,43.

Of note, given the above timeline of introduction of rifampicin
and isoniazid in both countries, the ~100 SNPs distance separ-
ating these two strains from their MRCA would imply a rapid
molecular clock for L8, in the range of the upper bound of 2.2
SNPs/genome/year most recently estimated for other MTBC
clades44. However, this mutation rate cannot be confirmed until
additional L8 samples are uncovered.

Remarkably, the absence of other L8 strains in datasets from
Uganda, Rwanda and DRC, together comprising more than
2000 strains, suggests that L8 is rare even within the African
Great Lakes region. Such scarcity is compatible with selective
sweeps of later branching MTBC strains, introduced more
recently into the region. Similar scenarios have also been pro-
posed to explain the slow apparent replacement of MTBC L5 and
L6 by L4 in West Africa45–47 and the restriction of L7 to
Northern Ethiopia48.

Loss-of-function linked to the deletion of cobF is a plausible
candidate molecular event involved in such a replacement sce-
nario for L8. Indeed, loss-of-function appears to be an important
mechanism driving the pathoadaptive evolution of the TB
pathogen, as shown for the role of the loss of lipo-oligosaccharide
production (via recombination in the pks5 locus)15 in the evo-
lution towards increased virulence from M. canettii to MTBC
strains. Likewise, loss of secretion of PPE-MPTR and PE_PGRS
proteins by the type VII secretion system ESX-5 (via mutations of
the ppe38 locus) has been involved in the hypervirulence of recent
branches of L2 (alias ‘modern’ Beijing) strains49. The loss of the
cobF region in the other MTBC lineages, inferred from com-
parative genomics with M. canettii and non-tuberculous myco-
bacteria4, was previously hypothesised to reflect enhanced
adaptation to an intracellular parasitic lifestyle50. Indeed, the

cobalamin/vitamin B12 synthesis pathway, of which the cobF-
encoded precorring-6a synthase is a component, represents a
highly complex and energy consuming process with about 30
enzymatic steps51. Although the absence of this component may
not entirely ablate cobalamin biosynthesis52,53, its loss might have
resulted in gain of fitness and reflect enhanced pathogenic pro-
fessionalisation, by economical reliance upon the mammalian
host environment as source of vitamin B12. As an additional
plausible but not necessarily mutually exclusive hypothesis, such
selective sweep of L8 might have been (further) enhanced by the
loss of theTbD1 region in later branching MTBC strains. This
region, which we also found intact in L8, as is the case in the
‘ancestral’ M. tuberculosis lineages L1 and L7, encodes members
of the mycobacterial membrane protein families MmpL. Very
recent findings indicate that the loss of this region in later
branching MTBC strains was also associated with a gain of
virulence, and the deletion of TbD1 at the origin of the ‘modern’
M. tuberculosis lineages L2/L3/L4 has therefore been suggested as
a key driver for their global epidemic spread54. If true, more
recently emerged or introduced cobF- and TbD1-deleted strains
might conceivably have largely outcompeted L8 strains. This
hypothesis could be explored by assessing the growth and the
virulence/fitness in cellular and animal models, of recombinant
cobF- and/or TbD1-knock-out, as well as cobF- and/or TbD1-
knock-in strains, derived from the available Rwandan L8 strain
and other MTBC strains, respectively.

In conclusion, our genomic data, on an as-yet-unknown
ancestral stage between the MTBC and the putative progenitor
pool of M. canettii-like mycobacteria, thus suggest further
experiments to examine candidate molecular events potentially
involved in the pathoadaptive evolution of M. tuberculosis. The
discovery of such rare strains raises the possibility for the existence
of further extant strains, especially in Eastern Africa, representing
other clades further closing the biological gap between the MTBC
and M. canettii.

Methods
Rwandan patient recruitment and ethics statement. The patient in Rwanda was
recruited into, and gave informed consent for, the DIAMA study, which was
approved by the Rwanda National Ethical committee (IRB 00001497 of
IORG0001100; Ref No.0069/RNEC/2017). Consent to publish identifying infor-
mation was obtained from the patient’s representative.

Phenotypic characterisation. We studied conventional mycobacterial growth and
biochemical characteristics including colony morphology, niacin production,
nitrate reduction, p-nitro benzoic acid growth inhibition, catalase production, urea
hydrolysis, Tween 80 hydrolysis and thiophene carboxylic acid hydrazide growth
inhibition55. For comparative purpose, a reference set of the seven known human-
adapted MTBC lineages56, together withM. canettii (BCCM/ITM500199), M. bovis
(BCCM/ITM500324), M. bovis BCG (BCCM/ITM500101) and M. orygis (BCCM/
ITM501026) strains were processed with the novel strain isolated in Rwanda.
Moreover, phenotypic drug-susceptibility testing to first- and second-line anti-TB
drugs was done using the proportion method57. The strain isolated in Uganda was
not available for phenotypic characterisation.

Targeted- and whole-genome sequencing of the Rwandan strain. Targeted
sequencing was performed by using the Deeplex-MycTB assay58 (Genoscreen,
France). Briefly, this assay relies on a 24-plexed PCR amplification of mycobacterial
species identification (hsp65), genotyping (spoligotyping and phylogenetic single
nucleotide polymorphisms (SNPs)) and 18M. tuberculosis complex drug resistance-
associated gene targets. This test and short-read Illumina-based WGS were per-
formed on the Rwandan strain as follows. A bead beating method was used to extract
DNA from colonies as follows: a loopful colonies from LJ were suspended in Tris-
EDTA buffer, and heat inactivated at 95 °C for 20min. After cooling at room
temperature, the suspension was centrifuged at 20,000×g for 30min followed by
discarding supernatant and 250 μl of 10mM Tris-HCl pH 7.8 were added and briefly
vortexed. Mixture was incubated at 95 °C for 15min, then spun down briefly fol-
lowed by transferring entire volume in a new microcentrifuge tube containing 0.5 g
of zirconium beads (Sigma-Aldrich, St. Louis, USA). For destruction of the solid
mycobacterial cell wall, the mixture was vortexed at high speed for at least 30 s
followed by briefly spinning down and incubation at−20 °C for at least 30min. After
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thawing at room temperature, the mixture was briefly spun down and 200 μl of
supernatant was transferred to a new microcentrifuge tube. For gDNA concentra-
tion, 1 μl of glycogen solution (Sigma-Aldrich, St. Louis, USA) was added followed by
0.1 volume of 3M sodium acetate at pH 5.2 (Thermo Fisher Scientific, Waltham,
MA USA), then 3 volume of 100% pre- cooled ethanol were added and vigorously
vortexed for 10 s. The mixture was incubated at −20 °C for 10min. After thawing at
room temperature, the mixture was centrifuged at 15,000 × g for 20min followed by
discarding supernatant, then 600 μl of freshly prepared pre-cooled 70% ethanol was
added followed by centrifugation at 15,000 × g for 5 min. Supernatant was discarded
and the tube was air dried. gDNA was resuspended in 20 μl of sterile molecular grade
water. The yield was measured by Qubit dsDNA BR Assay Kit (Life Technologies,
Carlsbad, USA).

Libraries of Deeplex-MycTB amplicons or genome fragments were constructed
using the Nextera XT kit and sequenced on an Illumina MiSeq platform with
paired end, 150-bp read lengths (Illumina, CA, USA). DNA extraction suitable for
PacBio SMRT sequencing was performed using the Genomic DNA Buffer Set
(Qiagen Inc, Germantown, Maryland, USA) as follows: colonies (70.3 ± 1.0 mg)
from a one month old LJ were transferred into a 50 ml falcon tube containing
3.5 ml of the Qiagen buffer B1 and 70 μl of 10 mg/ml RNAse (Life Technologies,
Carlsbad, USA) solution followed by thoroughly vortex and heat inactivation of
bacilli at 80 °C for 1 h. Vortexing at later stages was avoided to maintain high
molecular weight DNA, by gently inverting or swirling instead. After cooling at
room temperature, 100 μl of 100 mg/ml lysozyme (Sigma-Aldrich, St. Louis, USA)
was added and the tube was incubated at 37 °C for 60 min, followed by
adding 1.2 ml of 2.5 mg/ml of Proteinase K (MP Biomedicals, Santa Ana, USA) and
again incubated at 37 °C for 60 min. For protein denaturation (nucleases and
DNA- binding proteins), 1.2 ml of buffer B2 was added to the mixture and placed
overnight in horizontal shaker at 50 °C (30 RPM) alongside with Qiagen buffer QF.
On the next day, a Qiagen Genomic-tip 100/G tip was placed over a 50 ml falcon
tube and equilibrated with 4 ml of buffer QBT allowing the column to empty by
gravity flow. The overnight incubated mixture was centrifuged at 3700 × g, 4 °C for
10 min, followed by applying the supernatant to the equilibrated column allowing
it to enter the resin by gravity flow. The column was washed by adding twice 7.5 ml
of buffer QC and then placed over a new clean 50 ml falcon tube, and the DNA was
eluted with 5 ml pre-warmed QF buffer. For DNA precipitation, 3.5 ml of
isopropanol were added followed by centrifugation at 4500 × g, 4 °C for 20 min,
then the supernatant was gently discarded. gDNA was then washed with 1.5 ml
cold (4 °C) 70% ethanol, centrifuged at 10,000 × g, 4 °C for 15 min followed by
discarding all supernatant and drying the pellet in the Speedvac for 5 min at the
medium drying setting. Finally, 200 μl of 10 mM Tris-Cl, pH 8.0 buffer was added
and mixed gently by tapping and refrigeration overnight. On the next day, gDNA
pellet was resuspended in the horizontal shaker at 65 °C (250 RPM) for 15 min.
The purity and integrity of the gDNA were examined through 0.5% agarose gel
electrophoresis and yield was measured using the NanoDrop 1000
Spectrophotometer (Thermo Fisher Scientific, Waltham, MA USA) and Qubit
dsDNA BR Assay Kit (Life Technologies, Carlsbad, USA) according to
manufacturer’s instructions. Sequencing was performed on a PacBio RS II using the
SMRT technology.

Deeplex-MycTB analysis and spoligotyping. Analysis of the Deeplex-MycTB
sequencing data, including SNP calling and spoligotype identification, was per-
formed by read mapping on M. tuberculosis H37Rv sequence references, using a
parameterised web application (GenoScreen)58. Membrane-based spoligotyping
was performed as described previously59.

Illumina whole-genome sequencing analysis. Raw genomic reads from the newly
sequenced L8 genome from Rwanda and the L8 genome from Uganda
(SAMN02567762) were processed as previously described60. Briefly, the reads were
trimmed with Trimmomatic v0.33.2261 and reads larger than 20 bp were kept. The
software SeqPrep (https://github.com/jstjohn/SeqPrep) was used to identify and
merge any overlapping paired-end reads. The resulting reads were aligned to the
reconstructed ancestral sequence of the MTBC62 using the mem algorithm of BWA
v0.7.1363. Duplicated reads were marked using the MarkDuplicates module of
Picard v2.9.1 (https://github.com/broadinstitute/picard) and local realignment of
reads around InDels was performed using the RealignerTargetCreator and Indel-
Realigner modules of GATK v3.4.064. SNPs were called with Samtools v1.2 mpi-
leup65 and VarScan v2.4.166 using the following thresholds: minimum mapping
quality of 20, minimum base quality at a position of 20, minimum read depth at a
position of 7X, maximum strand bias for a position 90%.

The spoligotype pattern of the strain from Uganda was extracted in silico from
the raw reads using KvarQ67.

Phylogenetic reconstruction. The maximum likelihood phylogeny was inferred
with RAxML v.8.2.868 using an alignment containing only polymorphic sites and
the branch lengths of the tree were rescaled using invariant sites44,69.

A position was considered polymorphic if at least one genome had a SNP at that
position. Deletions and positions not called according to the minimum threshold of
7× were encoded as gaps. We excluded positions with more than 20% missing data,
positions falling in PE-PGRS genes, phages, insertion sequences and in regions with

at least 50 bp identity to other regions in the genome. We also excluded variable
positions falling in drug resistance-related genes. The phylogeny was computed
using the general time-reversible model of sequence evolution (-m GTRCAT
-V options), 100 bootstrap inferences and M. canettii (SRR011186) were used as
an outgroup to root the phylogeny.

Whole-genome de novo assembly, annotation and comparative genomics.
Raw PacBio reads obtained from the Rwandan strain were assembled with Canu
v1.670, using default settings and an expected genome size of 4.4 Mbp, typical of
MTBC strains. After discarding 60,272 reads below minimal quality parameters,
106,681 reads were used for the assembly. On the basis of the expected genome
size, the average coverage depth was estimated at 186× using raw reads, and 39×
and 38× using corrected and trimmed reads, respectively. The obtained unique
contig of 4,387,285 bp was circularised with Circlator v1.5.571 using default set-
tings, resulting in an assembly of 4,379,493 bp. Additional sequence verification
and correction was then performed by mapping Illumina reads obtained from the
same strain, using pacbio-utils v0.272 (https://github.com/douglasgscofield/PacBio-
utilities) and snippy v4.473 (https://github.com/tseemann/snippy). Alignments of
the final assembly were performed against an ensemble of complete genome
sequences available from 38 strains of tubercle bacilli. This set included 34M.
tuberculosis strains from lineages 1, 2, 3 and 4 (comprising H37Rv), M. africanum
L6 GM041182, M. bovis AF2122/97, as well as the closest STB-A (CIPT140010059)
and most distant (STB-K)M. canettii strains (Supplementary Data 5). Comparative
alignments and genome annotation were performed based on BLAST searches and
analysis of gene synteny, using Artemis and Artemis comparison tool74, as well as a
custom Multiple Annotation of Genomes and Differential Analysis (MAGDA)
software previously used for annotation of M. canettii and Helicobacter pylori
genomes4,75. Comparisons with orthologues from M. canettii STB-D, -E, -G, -H, -I
and -J in addition to STB-A and -K, and from M. marinum type strain M and M.
kansasii genomes were additionally done using the Microscope platform v3.13.376.
When applicable, annotations were transferred from those of M. tuberculosis or M.
canettii orthologs in the TubercuList/Mycobrowser database, using BLAST matches
of >90% protein sequence identity, an alignable region of >80% of the shortest
protein length in pairwise comparisons and visual inspection of the gene synteny.
Genome completeness was assessed using CheckM77 using the lineage-specific
workflow and Mycobacterium as the genus. The PacBio assembled Rwandan strain
was found to have 98.74% completeness and 0% contamination or strain hetero-
geneity, making it suitable for further analyses.

ACT comparison files were generated using MAUVE 2015-02-25 software to
visualise the genome-wide distribution of SNP densities between the assembled
L8 genome from Rwanda and M. tuberculosis H37Rv and M. canettii STB-A
and STB-K genomes. Recombination between L8 and other MTBC lineages or
M. canettii was assessed from a progressive MAUVE alignment of the PacBio
assembled L8 genome and previously published closed genomes73 using
ClonalFrameML40. To further assess the phylogenetic placement of the Lineage
8 strain, a core gene alignment was constructed using the completed genomes of
the Rwandan L8 strain, representatives of the MTBC lineages 1–4 and 6, M.
canettii, M. bovis, M. marinum (accession GCF_000419315.1) and M. kansassii
(accession GCF_000157895.3). The GFF files of each genome were input to roary78

with an 80% identity cut-off, as has been done for previous genus-level
mycobacterial core alignments79. A phylogenetic tree was constructed from the
core gene superalignment using RAxML-NG v0.9.080 under the GTR+Gamma
model of evolution with 20 starting trees. Bootstrapping was run until autoMRE
converged with a value of 0.03 (50 replicates).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The complete genome sequence of the L8 strain from Rwanda was deposited in the NCBI
repository under project PRJNA598991 with SRR10828835 and SRR10828834 accession
codes for Illumina- and PacBio-derived genome sequences, respectively. The strain can
be requested from the BCCM/ITM [http://bccm.belspo.be/] collection with accession
code ITM-500961.
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