Supplementary

A site energy distribution function from Toth isotherm for adsorption of gases on heterogeneous surfaces
K.Vasanth Kumar *, M. Monteiro de Castro, M. Martinez-Escandell, M. Molina-Sabio, and F. Rodriguez-Reinoso

Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica, Universidad de Alicante, Apartado 99. 030080 Alicante.
Spain
*E-mail: vasanth@ua.es

Derivation of site energy distribution function based on a Toth isothem (Type 1) by condensation approximation method

The Toth isotherm involving three parameters is given by: 1-2
$q_{e}=\frac{q_{m} p}{\left(b+p^{t}\right)^{1 / t}}$
where, q_{e} is the amount adsorbed at equilibrium, q_{m} is the maximum adsorption capacity, b is a constant related to the binding affinity and is specific to adsorbate-adsorbent pairs and t is the Toth isotherm exponent related to surface heterogeneity, usually less than or equal to unity. The t equal to unity suggests a homogeneous adsorption process.

For convenience of determining the site energy distribution, let us replace q_{m} by a.

The site energy distribution function, $f\left(E^{*}\right)$ according to a condensation approximation method is given by ${ }^{3}$
$f\left(E^{*}\right)=-d q_{e}\left(E^{*}\right) / d E^{*}$

The site energy distribution of an adsorbent material based on Toth isotherm can be obtained by differentiating local isotherm applied with respect to E^{*}

The equilibrium pressure in eq (1) can be related to the energy of adsorption using the Polanyi potential theory given by 3,4 $p=p_{s} \exp \left(-\frac{E^{*}}{R T}\right)=p_{s} \exp \left(-\frac{E-E_{s}}{R T}\right)$

The E_{s} reference state for E represents the lowest physically realizable sorption energy, and its magnitude depends only on the solute and is independent of the adsorbent ${ }^{4}$.
substituting eq (3) in (1) we get
amount.adsorbed $=\frac{a p_{s} \exp \left(-\frac{E^{*}}{R T}\right)}{\left(b+\left(p_{s} \exp \left(-\frac{E^{*}}{R T}\right)\right)^{t}\right)^{1 / t}}$
for convenience, let us rewrite, $-E^{*}=x, p=p_{\mathrm{s}}$ and $R T=r$, thus eq (4) can be written as:
amount.adsorbed $=\frac{a p \exp \left(-\frac{x}{r}\right)}{\left(b+\left(p \exp \left(-\frac{x}{r}\right)\right)^{t}\right)^{1 / t}}$
substituting eq(5) in (4), the site energy distribution function can be written as:
$f(x)=\frac{d}{d x}\left(p a \exp \left(-\frac{x}{r}\right)\left(b+\left(p \exp \left(-\frac{x}{r}\right)\right)^{t}\right)^{-1 / t}\right)$

Let $u=\exp (-x / r)$ and $v=\left(b+\left(p \exp \left(-\frac{x}{r}\right)\right)^{t}\right)^{-1 / t}$, then from the product rule: $\frac{d(u v)}{d x}=\frac{d u}{d x} v+u \frac{d v}{d x}$, we get
$=p a\left(b+\left(p \exp \left(-\frac{x}{r}\right)\right)^{t}\right)^{-1 / t} \frac{d}{d x}\left(\exp \left(-\frac{x}{r}\right)\right)+\exp \left(-\frac{x}{r}\right) \frac{d}{d x}\left(\left(b+\left(p \exp \left(-\frac{x}{r}\right)\right)^{t}\right)^{-1 / t}\right)$
if $u=-x / r$, then applying the chain rule of differentiation, $\frac{d e^{u}}{d x}=e^{u} \frac{d u}{d x}$, and applying the rule: $\mathrm{d}\left(x^{n}\right)=n x^{n-1}$, we get

$$
=p a\left(\exp \left(-\frac{x}{r}\right) \frac{d}{d x}\left(b+\left(p \exp \left(-\frac{x}{r}\right)\right)^{t}\right)\right)^{-1 / t}-\frac{\exp \left(-\frac{x}{r}\right)\left(\left(b+\left(p \exp \left(-\frac{x}{r}\right)\right)^{t}\right)^{-1 / t}\right)}{r}
$$

Let $u=-x / r$, then by applying the chain rule, we get

$$
=p a\left(p\left(-\exp \left(-\frac{2 x}{r}\right)\left(p \exp \left(-\frac{x}{r}\right)\right)^{t-1}\right)\left(b+\left(p \exp \left(-\frac{x}{r}\right)\right) t^{-\frac{1}{t}-1} \frac{d}{d x}\left(-\frac{x}{r}\right)\right)-\frac{\exp \left(-\frac{x}{r}\right)\left(\left(b+\left(p \exp \left(-\frac{x}{r}\right)\right)^{t}\right)^{-1 / t}\right)}{r}\right.
$$

Applying the rule: $d\left(x^{\mathrm{n}}\right)=n x^{n-1}$, the above equation can be further simplified to

$$
\begin{equation*}
f\left(E^{*}\right)=-b p a \exp \left(-\frac{x}{r}\right)\left(b+\left(p \exp \left(-\frac{x}{r}\right)\right)^{t}\right)^{-\frac{t+1}{t}} \tag{8}
\end{equation*}
$$

Replacing the parameters: $x=E^{*}, p=p_{s}, r=R T$, and $a=q$, the site energy distribution function following a Toth isotherm explained in eq
(1) is given by:
$f\left(E^{*}\right)=-b p_{s} q \exp \left(-\frac{E^{*}}{R T}\right)\left(b+\left(p_{s} \exp \left(-\frac{E^{*}}{r}\right)\right)^{t}\right)^{-\frac{t+1}{t}}$

Derivation of site energy distribution function based on a Toth isothem (Type 2) by condensation approximation method

The Toth isotherm involving three parameters is given by: 1-2

$$
\begin{equation*}
q_{e}=\frac{q_{m} b p}{\left(1+(b p)^{t}\right)^{1 / t}} \tag{1}
\end{equation*}
$$

where, q_{m} is the maximum adsorption capacity, b is a constant related to the binding affinity and is specific to adsorbate-adsorbent pairs and t is the Toth isotherm exponent related to surface heterogeneity, usually less than or equal to unity. The t equal to unity suggests a homogeneous adsorption process. For convenience, let us replace q_{m} by q.

The site energy distribution function, $f\left(E^{*}\right)$ is given by ${ }^{3}$
$f\left(E^{*}\right)=-d q_{e}\left(E^{*}\right) / d E^{*}$

The site energy distribution of an adsorbent material based on Toth isotherm can be obtained by differentiating local isotherm applied with respect to E^{*}

The equilibrium pressure in eq (1) can be related to the energy of adsorption using the Polanyi potential theory given by ${ }^{3-4}$
$p=p_{s} \exp \left(-\frac{E^{*}}{R T}\right)=p_{s} \exp \left(-\frac{E-E_{s}}{R T}\right)$
substituting eq (3) in (1) we get
amount.adsorbed $=\frac{q_{m} b p_{s} \exp \left(-\frac{E^{*}}{R T}\right)}{\left(1+\left(b p_{s} \exp \left(-\frac{E^{*}}{R T}\right)\right)^{t}\right)^{1 / t}}$
for convenience, let us rewrite, $-E^{*}=x, p_{\mathrm{s}}=p, q_{\mathrm{m}}=a$ and $R T=r$, thus eq (4) can be written as:
amount.adsorbed $=\frac{a b p \exp \left(-\frac{x}{r}\right)}{\left(1+\left(b p \exp \left(-\frac{x}{r}\right)\right)^{t}\right)^{1 / t}}$
substituting eq(5) in (4), the site energy distribution function can be written as:
$f(x)=\frac{d}{d x}\left(b p a \exp \left(-\frac{x}{r}\right)\left(\left(b p \exp \left(-\frac{x}{r}\right)\right)^{t}+1\right)^{-1 / t}\right)$
let $u=\exp (-x / r)$ and $v=\left(\left(b p \exp \left(-\frac{x}{r}\right)\right)^{t}+1\right)^{-1 / t}$, then from the product rule: $\frac{d(u v)}{d x}=\frac{d u}{d x} v+u \frac{d v}{d x}$, we get
$=b p a\left(\left(\left(b p \exp \left(-\frac{x}{r}\right)\right)^{t}+1\right)^{-1 / t} \frac{d}{d x}\left(\exp \left(-\frac{x}{r}\right)\right)+\exp \left(-\frac{x}{r}\right) \frac{d}{d x}\left(\left(\left(b p \exp \left(-\frac{x}{r}\right)\right)^{t}+1\right)^{-1 / t}\right)\right)$

Let, $u=-x / r$, then applying the chain rule of differentiation $\frac{d e^{u}}{d x}=e^{u} \frac{d u}{d x}$, we get
$=b p a\left(\exp \left(-\frac{x}{r}\right)\left(\left(b p \exp \left(-\frac{x}{r}\right)\right)^{t}+1\right)^{-1 / t} \frac{d}{d x}\left(-\frac{x}{r}\right)+\exp \left(-\frac{x}{r}\right) \frac{d}{d x}\left(\left(\left(b p \exp \left(-\frac{x}{r}\right)\right)^{t}+1\right)^{-1 / t}\right)\right)$

Since, $\mathrm{d}\left(x^{\mathrm{n}}\right)=n \mathrm{x}^{n-1}$, the above equation can be modified as
$=b p a\left(\exp \left(-\frac{x}{r}\right) \frac{d}{d x}\left(\left(\left(b p \exp \left(-\frac{x}{r}\right)\right)^{t}+1\right)^{-1 / t}\right)+\frac{\left.\exp \left(-\frac{x}{r}\right)\left(\left(\left(b p \exp \left(-\frac{x}{r}\right)\right)^{t}\right)+1\right)^{-1 / t}\right)}{r}\right)$

For convenience, let $u=\left(b p \exp \left(-\frac{x}{r}\right)\right)^{t}+1$ and $n=-1 / t$, then using the chain rule of differentiation, $\frac{d u^{n}}{d x}=n u^{n-1} \frac{d u}{d x}$, and simplifying the resulting expression, we get

$$
\begin{equation*}
=b p a\left(-\frac{\exp \left(-\frac{x}{r}\right)\left(\left(b p \exp \left(-\frac{x}{r}\right)\right)^{t}+1\right)^{-\frac{1}{t}-1}}{t} \frac{d}{d x}\left(\left(b p \exp \left(-\frac{x}{r}\right)\right)^{t}\right)-\frac{\left.\exp \left(-\frac{x}{r}\right)\left(\left(\left(b p \exp \left(-\frac{x}{r}\right)\right)^{t}\right)+1\right)^{-1 / t}\right)}{r}\right) \tag{10}
\end{equation*}
$$

if $u=b p \exp (-x / r)$ and $n=t$, then using the chain rule, $\frac{d u^{n}}{d x}=n u^{n-1} \frac{d u}{d x}$, we get

$$
\begin{equation*}
=b p a\left(-b p \exp \left(-\frac{x}{r}\right)\left(b p \exp \left(-\frac{x}{r}\right)\right)^{t-1}\left(\left(b p \exp \left(-\frac{x}{r}\right)\right)^{t}+1\right)^{-\frac{1}{t}-1} \frac{d}{d x} \exp \left(-\frac{x}{r}\right)-\frac{\left.\exp \left(-\frac{x}{r}\right)\left(\left(\left(b p \exp \left(-\frac{x}{r}\right)\right)^{t}\right)+1\right)^{-1 / t}\right)}{r}\right) \tag{11}
\end{equation*}
$$

if $u=-x / r$, the applying the chain rule $\frac{d e^{u}}{d x}=e^{u} \frac{d u}{d x}$, we get

$$
\begin{equation*}
=b p a\left(-\frac{b p \exp \left(-\frac{2 x}{r}\right)\left(b p \exp \left(-\frac{x}{r}\right)\right)^{t-1}\left(\left(b p \exp \left(-\frac{x}{r}\right)\right)^{t}+1\right)^{-\frac{1}{t}-1}}{r} \frac{d}{d x}(x)-\frac{\exp \left(-\frac{x}{r}\right)\left(\left(\left(b p \exp \left(-\frac{x}{r}\right)\right)^{t}\right)+1\right)^{-1 / t}}{r}\right) \tag{12}
\end{equation*}
$$

Since, $d\left(x^{n}\right)=n x^{n-1}$, the above equation can be simplified to
$f(x)=-\frac{b p a \exp \left(-\frac{x}{r}\right)\left(\left(b p \exp \left(-\frac{x}{r}\right)\right)^{t}+1\right)^{-\frac{t+1}{t}}}{r}$

Replacing the parameters: $x=E^{*}, p=p_{s}, r=R T$, and $a=q_{\mathrm{m}}$ the site energy distribution function following a Toth isotherm explained in eq
(1) is given by:
$f\left(E^{*}\right)=-\frac{b p_{s} q_{m} \exp \left(-\frac{E^{*}}{R T}\right)\left(\left(b p_{s} \exp \left(-\frac{E^{*}}{R T}\right)\right)^{t}+1\right)^{-\frac{t+1}{t}}}{R T}$

References

1. Toth, J. Uniform interpretation of gas/solid adsorption. Adv. Colloid Interface Sci. 1995, 55, 1-239.
2. Toth, J. Adsorption Theory Modeling and Analysis, Marcel Dekker, 2002.
3. Cerofolini, G. F. Localized adsorption on heterogeneous surfaces. Thin Solid Films. 1974, 23, 129-152.
4. Carter, M.C., Kilduff, J.E., Weber Jr. W.J. Environ. Sci. Technol., 1995, 29(7), 1773-1780.
