
 

A sixth-order continuous-time bandpass sigma-delta
modulator for digital radio IF
Citation for published version (APA):
Engelen, van, J. A. E. P., Plassche, van de, R. J., Stikvoort, E. F., & Venes, A. G. W. (1999). A sixth-order
continuous-time bandpass sigma-delta modulator for digital radio IF. IEEE Journal of Solid-State Circuits,
34(12), 1753-1764. https://doi.org/10.1109/4.808900

DOI:
10.1109/4.808900

Document status and date:
Published: 01/01/1999

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 22. Aug. 2022

https://doi.org/10.1109/4.808900
https://doi.org/10.1109/4.808900
https://research.tue.nl/en/publications/62e56aaf-cff5-4b63-a13d-e89936150e37


IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 34, NO. 12, DECEMBER 1999 1753

A Sixth-Order Continuous-Time Bandpass
Sigma–Delta Modulator for Digital Radio IF

Jurgen A. E. P. van Engelen,Student Member, IEEE, Rudy J. van de Plassche,Fellow, IEEE,
Eduard Stikvoort, and Ardie G. Venes,Member, IEEE

Abstract—This paper presents a sixth-order continuous-time
bandpass sigma–delta modulator (SDM) for analog-to-digital
conversion of intermediate-frequency signals. An important as-
pect in the design of this SDM is the stability analysis using the
describing function method. Key to the analysis is the extension
of the linear gain model for the sampled quantizer with a phase
uncertainty. The single-loop, one-bit SDM is tuned at 10.7 MHz,
is sampled at 40 MHz, and achieves 67-dB signal-to-(noise+
distortion) ratio in 200 kHz and 80 dB in 9 kHz. The third-order
intermodulation is at �82 dBc for a �13-dBFS input level. The
0.5-�m CMOS chip occupies 0.9� 0.4 mm2 and consumes 60
mW at 3.3 V (digital) and 5.0 V (analog). The sample frequency
is variable and can be set from 30 to 80 MHz.

Index Terms—Analogue, data conversion, digital conversion,
receivers, sigma–delta modulator (SDM), stability criteria.

I. INTRODUCTION

SIGMA–delta modulation [1], [2] has become a widely
applied technique for high-performance analog-to-digital

(A/D) conversion of narrow-band signals. Through the use of
oversampling and negative feedback, the quantization errors of
a coarse quantizer are suppressed in a narrow signal band in
the output of the modulator. Bandpass sigma–delta modulation
[3]–[7] is well suited for A/D conversion of narrow-band
signals modulated on a carrier, as occur in communication
systems such as AM/FM radio receivers.

A/D conversion of intermediate-frequency (IF) signals
moves the IF signal-processing stage of receivers to the
digital domain, thus providing more flexibility, better noise
immunity, and potential improvements in performance and
power consumption by scaling of the technology.

A typical digital IF architecture for a broadcast radio re-
ceiver using a sigma delta modulator (SDM) is shown in
Fig. 1. The receiver consists of a low-noise amplifier (LNA)
followed by a wide-band bandpass filter. A mixer converts
the signal to the IF frequency of 10.7 MHz using a tunable
local oscillator (LO). For FM signals (88–108 MHz), the
mixer performs a common downconversion; in the case of AM
signals (520–1650 kHz), the mixer performs an upconversion.
This configuration allows a single (ceramic) surface acoustic
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wave filter for channel selection for both AM and FM signals.
The filter is followed by an automatic gain control (AGC)
amplifier, which feeds the signal to the SDM. Additional
filtering, final channel selection, and demodulation of the
signals is done by a digital signal processing (DSP) unit. The
demodulated signal is passed to the digital-to-analog converter
(DAC) and made audible by a power amplifier (PA) followed
by a loudspeaker.

The requirements for the SDM are determined by its input
signal characteristics. For FM and AM broadcast radio re-
ceivers, a dynamic range (DR) of 65 and 90 dB, respectively, is
desirable. Preferably, the SDM should achieve this DR at low
input signal levels to alleviate the requirements for the AGC.
The ceramic filter has a fixed bandwidth of approximately
200 kHz, corresponding to a single channel for FM signals.
For AM signals, the typical carrier spacing is 9 kHz, and the
filter feeds several channels to the AGC and SDM. The A/D
conversion of themultichannelAM signals places stringent
requirements on the linearity of the SDM in order to avoid
intermodulation distortion of adjacent channels.

II. M ODULATOR ARCHITECTURE

The theoretically achievable signal-to-noise ratio (SNR) and
dynamic range of an SDM depends on the orderof the loop
filter, the resolution of the quantizer, and the oversampling
ratio (OSR), which is defined as half the sample frequency

divided by the signal bandwidth BW. As high-order
( 4) single-loop bandpass SDM’s exhibit signal-dependent
stability, multibit quantizers and/or multistage (MASH) ar-
chitectures are often used to increase the SNR of low-order
SDM’s. However, both solutions suffer from performance
degradation due to mismatch of, for example, quantization lev-
els. The required accuracy of the intermediate quantizer levels
of a multibit quantizer is very high as mismatch introduces
nonlinear distortion. Note that mismatch of the quantization
levels of a one-bit quantizer only results in a gain-mismatch
and a dc offset, which are linear deviations. Mismatch of loop
filter transfer functions in a MASH structure causes imperfect
cancellation of the quantization errors of the first lower order
loop. A part of the low-order noise-shaped quantization errors
leaks to the output of the SDM, thus reducing the SNR.
For reason of the required linearity, a single-loop one-bit
modulator architecture is chosen here (see Fig. 2).

In order to achieve the required DR, our SDM uses a
sixth-order loop filter. The loop filter uses continuous-time
(CT) circuitry, which has several advantages over a switched-
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Fig. 1. A typical digital IF radio receiver using a�� modulator.

Fig. 2. A one-bit single-loop bandpass�� modulator.

capacitor (SC) implementation. First, the clock feedthrough
and settling errors of the sampler are also suppressed by the
feedback loop as the sampler is placed between the loop
filter and ADC inside the loop. Second, a CT circuit can
operate at higher frequencies, as the sample frequencyis
not limited by charge transfer accuracy requirements. Third,
the tuning frequency of a CT filter does not depend on the
sample frequency. The filter can be easily tuned and set to a
frequency other than to prevent aliasing of the third-order
harmonic distortion component at into the signal band,
without requiring additional circuitry.1 As a result, the sample
frequency can be determined by the requirements for the DSP
unit. A disadvantage of using a CT loop filter is the increased
sensitivity to clock jitter of the feedback DAC.

In the case of such a high-order one-bit SDM, the design of
the CT loop filter transfer function is mainly determined
by the signal-dependent stability of the SDM. As the loop of
the SDM is sampled by the quantizer, the stability of the loop
can be analyzed in discrete-time (DT) domain. The (sampled)
response of the CT loop filter to the pulse shape
of the quantizer DAC can be replaced by an equivalent DT
loop filter , and the loop filter transfer function design
can be done in the DT domain (invariant impulse response
method) [8], [9]. While the poles of the loop filter ensure
high in-band gain, the zeros of the DT loop filter determine
the SDM’s stable operating range. Locating the zeros near the
poles results in a loss of performance, but placing the zeros
too far away from the poles results in unstable behavior, even
at low input amplitudes.

III. STABILITY ANALYSIS

With respect to the SDM, the concept of stability needs
some explanation, as it differs from linear systems. Commonly,
stability refers to the boundedness of states of a system.

1In the case of a DT filter, half of the filter coefficients is zero when the
filter is tuned atfs=4 and does not have to be implemented.

Consequently, constant-amplitude oscillations (resulting from
limit cycles) are considered stable behavior. This definition is
unsuitable for SDM’s as some constant-amplitude oscillations
are tolerated (namely, “idle patterns”) whereas other oscilla-
tions are considered “unstable” behavior as they effectively
disable the noise shaping behavior. Limit cycles resulting in
a small amplitude (quasi-) periodic signal at the output of the
loop filter are easily disturbed by an input signal applied to
the SDM and are called idle patterns. In contrast, a limit cycle
will be called a “large signal limit cycle” when it results in
a large amplitude at the output of the loop filter and cannot
be disturbed easily by an input signal. Here, an SDM will be
called stable when (for a certain class of input signals) the
states of the SDM are bounded and the SDM is free of large
signal limit cycles.

Design rules for the stability of high-order SDM’s such
as Lee’s rule [10] are often based on an intuitive model
combined with empirical results. Here, we analyze the sta-
bility of the SDM using the describing function method, in
which the nonlinear quantizer is modeled by a quasi-linear,
signal-dependent transfer [11]. The quantizer model should
be adequate for an accurate stability analysis. Commonly, the
one-bit quantizer is modeled by a linear, signal-dependent gain
[12], [13]. However, when using this model, the describing
function method fails to predict small-signal stability issues
such as idle patterns and instability under zero-input and zero-
initial state conditions. For example, a second-order low-pass
modulator exhibits an idle pattern with a frequency of
whereas the describing function method predicts a frequency
of [14]. Therefore, the commonly used “linear signal
gain” model for a one-bit quantizer is extended with a phase
shift. The gain results from the variable input and fixed output
amplitude of the quantizer. The phase shift is in fact a phase
uncertainty and represents the inaccuracy in time with which
the zero-crossings of the quantizer input signal are detected.
Sampling of the input signal causes a zero crossing to be
detected by the sample moment following this crossing. As
the zero crossing could have occurred anywhere within the
previous sample period, an uncertainty in the phase transfer of
the signal is introduced [15]. Fig. 3 shows an example in which
an input signal with frequency (solid line) is shifted in
phase without changing the output samples of the quantizer
(denoted by impulses).

In Appendixes I and II, it is shown that adding this phase
uncertainty to the quantizer model improves the stability anal-
ysis and allows calculation of a small-input stability boundary
on the location of the zeros of the loop filter transfer function.
Choosing the zeros near this boundary optimizes the dynamic
range of the SDM [14].
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Fig. 3. Phase uncertainty of a one-bit quantizer withfin = fs=4:

IV. DISCRETE-TIME DESIGN

As mentioned in Section II, the design of the loop filter will
start in the discrete-time domain. For the sixth-order bandpass
SDM, the “equivalent” DT loop filter transfer function is
chosen from the class of bandpass loop filters described in
Appendix II

(1)

in which represents the normalized angular tuning fre-
quency. With a tuning frequency of 10.7 MHz, the sample
frequency is set to 40 MHz, which gives an oversampling
ratio of 100 for a bandwidth of 200 kHz (FM signals) and a
tuning frequency of The parameter determines
the location of the zeros and provides the tradeoff between
stability and performance. For this modulator is
unstable, even for zero-input and zero-initial state conditions.
For the modulator is stable, but the in-band loop gain
is low and the quantization noise is not shaped significantly.
According to the analysis in Appendix II (Fig. 23), the loop
filter parameter should satisfy for small-signal
stability when and the order is six. In order to allow
stable operation at an acceptable input signal amplitude level
and provide a safety margin for implementation tolerances,
is set to Simulations show that the maximum stable
input amplitude equals dB relative to the DAC
output power (see Fig. 2). Simulations predict a maximum
SNR of 93 dB in a bandwidth of 200 kHz.

V. CONTINUOUS-TIME DESIGN

Now that the equivalent DT transfer function has been
designed, the corresponding CT loop filter transfer function
can be found by means of the invariant impulse response
transformation. The equivalent DT transfer function
designed in the previous section depends on the sampled
response of the CT loop filter transfer function to the
pulse shape of the DAC (see Fig. 4). As sampling can
be represented mathematically by multiplication with a sum

of time-shifted Dirac pulses () [16], the equivalent DT loop
filter can be written as

(2)

in which represents the-transform and the inverse
Laplace transform. Writing the multiplication in the time
domain as a convolution in the frequency domain and applying

gives

(3)

This integral can be solved using the residue theorem of
Cauchy [17]. Note, however, that we are trying to find the CT
transfer function from (3) for a given As the
inverse of the transformation described by (3) does not have a
unique solution, a suitable CT loop filter prototype should be
used to solve (3). In order to result in the desired DT transfer
function the CT loop filter prototype should have a
filter structure that provides sufficient degrees of freedom for
the placement of the poles and zeros of the CT (and DT)
transfer function.

The loop filter structure of the sixth-order bandpass SDM is
based on a cascade of resonators (see Fig. 5). Three resonators
realize the complex conjugate poles for the passband of the
filter. Six feed-forward paths provide sufficient degrees of
freedom to place the five zeros of the equivalent DT transfer
function independently. The resonators should have current
inputs to simplify the summing nodes within the filter and
voltage outputs such that the coefficients in the feed-forward
paths can be realized by resistors (Rto R ). The coupling
resistors R and R are used for scaling the voltages within
the filter to the same level. In the case that the quality factor
of the resonators is high (i.e., ), the transfer function
of the loop filter of the SDM can be written as

(4)

with 10.7 MHz and

(5)

The coefficients are defined by

(6)

in which is the resistor used in the resonator (see below).
As the coefficients depend on the ratio of resistive values, an
accuracy of 1% can be achieved and no tuning or trimming
is required for the feed-forward resistors.

The DAC uses a -delayed return-to-zero (RTZ) pulse
shape with a duration of for minimizing intersymbol
distortion and for reducing signal-dependent jitter of the quan-
tizer. The Laplace transform of the DAC pulse is given by

(7)
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Fig. 4. Sampled impulse response of the pulse shaping DAC followed by a CT loop filter.

Fig. 5. Diagram of the sixth-order bandpass SDM.

Fig. 6. Balanced integrator resonator. Tuning transistors are dashed.

By substituting (4), (5), (7), and (1) into (3) the coefficients
and thus can be solved

(8)

In order to ensure stability at large input signal amplitudes,
the output of the second resonator is limited, as is indicated
in Fig. 5. When the limiter is active, the effective order of
the loop filter is reduced and stable operation is ensured while
degrading the performance of the SDM gracefully [18].

VI. I MPLEMENTATION

The resonators of the loop filter use balanced integrators, as
shown in Fig. 6. The balanced integrator has a large linear out-

TABLE I
NOMINAL COMPONENT VALUES

put range, and parasitic capacitances to the substrate have little
influence as the integrating capacitors are placed in feedback.
The tuning frequency equals As the tuning
frequency is fixed, a choice for automatically determines

The choice for the value for allows a tradeoff between
power consumption and noise as it determines the value of all
resistors in the filter. Here, the value is set to k
The resulting nominal values of the components are listed in
Table I. Two transistors are placed in parallel to the resistors to
provide the required tuning mechanism. In order to assess the
amount of nonlinear distortion introduced by these transistors,
two versions of the SDM were made: with and without the
tuning transistors. The capacitors limit the quality factor of
the resonator. The balanced implementation allows easy imple-
mentation of negative coefficients by simply reversing positive
and negative terminals. The ADC and DAC of the quantizer
are also fully differential, improving the noise and distortion
immunity. The supply voltage is 3.3 V for the digital part and
5 V for the analog sections. The common-mode dc level of
the signals is 3 V, and the amplitude is 3 Vmaximally.
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Fig. 7. Transconductance amplifier.

The key aspects of the design of the amplifiers of the
resonator are the gain and the delay. A reasonable gain is
required to prevent deterioration of the overall filter transfer
characteristic. The delay of the amplifier should be small to
prevent the resonator from oscillating. For these reasons, the
single-stage transconductance amplifier of Fig. 7 is used [19].
The (negative) impedance of the cross-coupled transistors M1
and M2 together with the input pair M5 and M6 increase the
voltage swing on the gates of the differential pair formed by
M3 and M4. The overall transconductance is increased without
seriously affecting the delay. The transistors M7 and M8
provide the common-mode feedback. The amplifier consumes
1 mA and has a gain-bandwidth product of 1.1 GHz. The
(simulated) equivalent input noise power density of the filter
at the tuning frequency equals 8.410 V/ Hz Combined
with a quantizer output power of 3.5 dBm2 (see below), the
noise of the filter results in a maximum achievable SNR of 72
dB in 200 kHz. Due to the high of the resonators, the noise
caused by the filter will exceed the theoretical quantization
noise and serve as a dither signal for the SDM.

The performance of the one-bit ADC of the quantizer is
mainly determined by the offset voltage and bit error rate
of the comparator used. The bit error rate is related to the
meta-stability of the comparator: when the input signal of the
comparator decreases, the decision time of the comparator
increases. This may cause erroneous decisions by the com-
parator. Note that the delayed RTZ pulse shape of the DAC
alleviates this problem as more decision time for the ADC
is allowed. The quantizer ADC (see Fig. 8) consists of two
flip-flops in a master–slave configuration that reduces the bit
error rate without increasing the parasitic load on the filter.
The master flip-flop consists of two cross-coupled transistors
(M8, M9) and contains two diodes (M6, M7) for limiting the
voltage swing and increasing the speed of the comparator.
Two nonoverlapping clock signals are generated internally by

2Here, 0 dBm refers to thevoltagethat gives 1 mW across 50
: Actual
impedance levels may vary.

dividing the external clock. A low offset voltage of the com-
parator is achieved by a separate input gain stage (M1, M2).
The input stage is disabled by transistor M3 during latching to
prevent input-signal-induced switching of the master flip-flop.

The DAC of the quantizer is shown in Fig. 9. It consists
of a logic block to create RTZ signals, a cascoded differential
stage (M1–M4), and two source followers (M7, M8). Two
dummy transistors (M5–M6) are added to the differential stage
to reduce glitches caused by charge storage. The RTZ pulses
of the quantizer DAC have a width of and an amplitude
of 1.2 V which gives 3.5 dBm. The resulting maximum
differential input voltage is 200 mV

The loop of the SDM was closed off-chip to allow detailed
measurements. The summing node at the input of the SDM
(see Fig. 5) operates in voltage mode and is implemented by
a single transconductance amplifier (similar to Fig. 7) with
an external feedback resistor and two input resistors (also
external) connecting the SDM input signal and DAC feedback
signal.

In order to monitor the individual outputs of the resonators
in the loop filter, three analog buffers are also included in
the design of the SDM. Both the tunable and nontunable
versions of the SDM are realized in 0.5-m double-poly
CMOS. A die photograph is shown in Fig. 10. The total chip
area including bondpads measures 1.81.0 mm The core
circuit (analog filter, ADC, and DAC) measures 0.9 0.4
mm and consumes 60 mW at a sample rate of 40 MHz.
The digital buffers consume 9.5 mW at 40 MHz with a
load capacitance of 8 pF. The analog buffers, required for
testing purposes only, consume 117 mW. The total power
consumed by the chip equals 186.5 mW at 40 MHz. As most
of the power is consumed by the analog filter and the output
buffers, the sample frequency is insignificant for the total
power consumption.

VII. M EASUREMENTS

As the tuning frequency and sample frequency are not cou-
pled, the sample frequency is variable and can range from 30 to
80 MHz. For this sample frequency range, the SDM was free
of large signal limit cycles (as expected), and the performance
(in terms of SNR and distortion) remained constant (within
0.5 dB). This observation confirms the assumption that the
SNR performance is limited by thermal noise. Unless stated
otherwise, a sample frequency of 40 MHz was used for the
measurements.

The typical tuning frequency of the filter of the nontunable
version is 9.15 MHz. The designed and measured transfer
characteristics of a single resonator of the tunable version is
shown in Fig. 11 when tuned at 10.7 MHz. The measured
amplitude and phase characteristics show little deviation from
the designed response. The parasitic delay caused by the poles
of the transconductance amplifier increases the quality factor
of the resonators from the designed value of to

The total filter transfer is shown in Fig. 12. The
measured amplitude response shows a loss of gain owing to
the fact that the three resonators do not have an identical tuning
frequency: the amplitude response of the filter shows two local
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Fig. 8. One-bit ADC.

Fig. 9. One-bit DAC.

maxima in passband. The phase response of the loop filter
agrees with the designed characteristic. This is important as
the phase characteristic of the loop filter mainly determines
the stability of the modulator.3

Typical output spectra of the nontunable and tunable SDM
are shown in Figs. 13 and 14, respectively. The spectrum
of the tunable version not only shows a higher noise floor
than the output spectrum of the nontunable version but also
shows larger distortion components near 1 and 19 MHz. The
nonlinearity of the tuning transistors in the resonators clearly
introduces additional distortion that affects the performance of
the SDM.

3The quantizer provides a variable signal gain.

The nontunable version has an idle channel noise of78.5
dBm in 200 kHz and 92.5 dBm in 9 kHz, resulting in
DR of 72 dB and 86 dB, respectively. Fig. 15 shows the
signal-to-(noise + distortion) ratio (SNDR) versus input power
characteristic. At an input of 6 dB relative to the DAC
output power (full scale), the maximum SNDR is 67 dB in
200 kHz and 80 dB in 9 kHz, giving an effective number
of bits of 10.8 and 13 bits, respectively. The performance of
the tunable version is slightly less with a DR of 67 dB (200
kHz) and 81 dB (9 kHz) and an SNDR of 63.5 and 76 dB,
respectively.

In order to determine the third-order intermodulation distor-
tion (IM3), a two-tone measurement is performed. Two input
signals (“carriers”) with frequencies and

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on January 16, 2009 at 04:50 from IEEE Xplore.  Restrictions apply.
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Fig. 10. Die photo of the sixth-order SDM IC.

Fig. 11. Measured resonator transfer characteristic of the tunable version.

Fig. 12. Measured filter transfer characteristic of the tunable version.

Fig. 13. Measured output spectrum of nontunable version (fs = 40 MHz,
fin = 9:15 MHz, 32k FFT, RBW= 1.22 kHz).

(or and ) are applied to the modulator, and
the spurious response at the tuning frequencyis measured
as a function of the carrier amplitude level. In Fig. 16, the
resulting characteristic of the nontunable version is shown
for three different carrier spacings. The optimal IM3 of82
dBc is reached at 13-dB carrier power, corresponding to
an IP3 of 24.5 dBm. For carrier levels lower than16
dB, the IM3 intermodulation product is near the measurement
noise floor. Note that the measurement noise floor is not
horizontal, as the vertical scale is relative to the carrier
level (in dBc). When the carrier level decreases, the distance
between the noise floor and the carrier also becomes smaller.
Although the absolute noise floor remains constant, the relative
noise floor increases as the carrier power is decreased. For
carrier powers exceeding 11 dB, the IM3 intermodulation
distortion increases rapidly. At such high input powers, the
signals inside the loop filter become large. The limiter of the
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Fig. 14. Measured output spectrum of tunable version (fs = 40 MHz,
fin = 10:7 MHz, 32k FFT, RBW= 1.22 kHz).

Fig. 15. SNDR versus input power characteristic of the nontunable SDM.

Fig. 16. IM3 versus carrier power characteristic of the nontunable SDM for
three different carrier spacings.

second resonator in the loop filter will be active, increasing
the (intermodulation) distortion. An output spectrum of the
nontunable modulator during the two-tone test is shown in
Fig. 17. The carrier spacing is 100 kHz. Note that thein-
band IM3 distortion component at 9.25 MHz is more than

Fig. 17. Output spectrum of the two-tone IM3 measurement of the nontun-
able SDM (fs = 40 MHz, f1 = 9:35 MHz, f2 = 9:45 MHz, �f = 100

kHz, 512k FFT, RBW= 76.3 Hz).

Fig. 18. Output spectrum of the two-tone IM3 measurement of the tunable
SDM (fs = 40 MHz, f1 = 10:3 MHz, f2 = 10:5 MHz, �f = 200 kHz,
512k FFT, RBW= 76.3 Hz).

20 dB lower than theout-of-bandcomponent at 9.55 MHz.
This shows that the IM3 distortion is partly suppressed by the
feedback loop. This observation suggests that the distortion is
mainly caused within the filter, and not within the DAC or
at the summing node, in which case the two IM3 distortion
components should have been identical. Fig. 18 shows a
two-tone measurement of the tunable version with a carrier
spacing of 200 kHz. Again, the amplitudes of the two IM3
distortion components at 10.1 and 10.7 MHz differ more than
20 dB.

Table II shows a summary of the performance of the sixth-
order bandpass SDM. The power consumption does not in-
clude the consumption by the analog output buffers, which
are not required for the operation of the SDM.

VIII. D ISCUSSION

The DR and SNDR performance of the SDM is limited
by the thermal noise of the filter. The performance can be
improved by reducing the impedance level in the filter at
the penalty of a higher power consumption. In particular, the
noise contribution of the first resonator should be reduced.
A comparison between the tunable and nontunable version
shows that the tuning transistors have a slight impact on the
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TABLE II
SIXTH-ORDER BANDPASS SDM PERFORMANCE

performance of the SDM. The tuning mechanism may be
improved by adding two cross-coupled transistors to cancel
the nonlinear part in the transconductance [20].

IX. CONCLUSION

A sixth-order single-loop one-bit continuous-time bandpass
sigma–delta modulator for digitizing IF signals in a combined
AM/FM radio receiver has been designed and tested. The SDM
achieves a DR of 72 dB in a 200-kHz bandwidth centered at
10.7 MHz. An important aspect in the design of the SDM
is the stability analysis using the describing function method.
Key to the analysis is the modeling of the phase uncertainty
of a sampled quantizer. Together with the SDM presented in
[21], this SDM shows that the signal-dependent stability of
high-order, one-bit SDM’s can be dealt with and that these
SDM’s are a viable solution for high-performance low-power
A/D conversion of IF signals.

APPENDIX I
PHASE UNCERTAINTY OF A ONE-BIT QUANTIZER

First, an expression for the maximum phase uncertainty
of a one-bit quantizer as a function of the input frequency

is calculated [22]. Let the input signal be a sinewave
with amplitude , frequency , and phase

Let the input signal be sampled at a rate of The
zero crossing of the input signal is detected without any phase
error when a sample moment coincides with the
zero crossing

(9)

Solving phase of the input signal from (9) results in a set
of phases for which the phase error is zero

with (10)

Any phase will result in a phase error of with
that is nearest to As a result, the maximum absolute

phase error or phase uncertainty equals half the maximum

distance between two adjacent solutions

with

(11)

For an input frequency that is not a rational fraction of the
sample frequency, i.e., the maximum phase
uncertainty is zero. According to [23], any set with

arbitrary integers andan irrational number will be dense
in As is assumed to be an irrational number, set
in (10) will also be dense in , and the distance between any
two adjacent solutions will be zero. Therefore, the maximum
phase uncertainty is also zero.

For input frequencies that are a rational fraction of the
sample frequency, the phase uncertainty can be calculated as
follows. In this case, the fraction can be written as

with (12)

In the case that the Nyquist criterion ( ) is taken into
account, and also satisfy

4 (13)

The zero phase error solution set can be simplified by
substituting (12) into (10). Using Bezout’s theorem [24]

gcd
(14)

Equation (10) is reduced to

even

odd
(15)

For input frequencies equal to a rational fraction of the sample
frequency, the solutions in are equidistant. The maximum
phase uncertainty is equal to half this equidistance

odd
(16)

From (16), it follows that the maximum phase uncertainty
does not depend on the sinewave amplitude. The maximum
phase uncertainty is shown in Fig. 19 for
For an input frequency of ( ), the maximum
phase uncertainty is However, for a sampled sinewave
with frequency a phase shift is indistinguishable from a
change in amplitude, regardless of quantization. Therefore, the
phase uncertainty for may also be considered equal
to zero.

The discrete nature of the solutions for the phase uncertainty
complicates a model for the stability analysis. A first-order

4 represents the highest integer smaller than
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Fig. 19. Phase uncertainty of a one-bit quantizer.

approximation of the envelope of the maximum phase uncer-
tainty can be written as a function of the normalized angular
frequency

(17)

APPENDIX II
STABILITY ANALYSIS

Now that the phase uncertainty of a sampled quantizer
has been calculated, a stability model can be derived. The
maximum phase uncertainty determines therange of
the phase uncertainty of the sampled quantizer. To represent
the actual phase uncertainty, a new model parameteris
introduced. The actual phase uncertainty can be written as

Together with the gain parameterthat models
the effects of amplitude quantization, the linearized-domain
model for the one-bit quantizer can be written as

with (18)

Note that for , the model is reduced to the previously
mentioned linear gain model. For the maximum phase uncer-
tainty, the previously derived approximation in (17) is used.
The stability of the SDM with the DT loop filter can
now be analyzed by drawing the root locus of the (linearized)
closed loop transfer function of the system (see Fig. 20), i.e.,
the roots of

(19)

Modeling the phase uncertainty adds a second parameter to
the root locus analysis. In order to simplify the evaluation, the
root trajectories are plotted as a function of the gain parameter

for discrete values of the phase uncertainty parameter
The basic thought behind this is that any instability will give
rise to a higher amplitude of the signal within the loop and

Fig. 20. Stability model of a sigma–delta modulator.

Fig. 21. Root locus of a third-order low-pass SDM (a = 0) for different
values of the phase uncertainty parameter�:

a corresponding change in As the phase uncertainty is
independent of the amplitude of the signal,can be considered
constant.

As an example, consider the third-order low-pass SDM with
loop filter

(20)

The parameter determines the location of the zeros and
provides a tradeoff between stability and performance. For

this modulator is unstable, even for zero-input and
zero-initial state conditions. For the modulator is stable,
but the in-band loop gain is low and the quantization noise is
not shaped significantly. In order to find the minimum required
value for for which the third-order SDM is stable for zero-
input conditions, the root locus is analyzed. In Fig. 21, the
root locus is shown for and several (discrete) values
of the phase parameter Now, a very small amplitude signal
( ) is assumed to be present in the loop. A single root
will be outside the unit circle in the left-hand plane, and the
loop is unstable. Consequently, the amplitude of the signal will
increase and will decrease, thus moving the unstable root
toward the unit circle. However, for some values ofthis root
does not enter the unit circle whendecreases. The root can
remain outside the unit circle even for very small: a large-
signal limit cycle is possible. The SDM cannot be considered
stable, even for small input signals. This instability is not
predicted without modeling the phase uncertainty ( ).

By changing the value of the filter parameterthis mod-
ulator can be made stable for small input signals. In Fig. 22,
the outer (worst case) branch of the root locus is shown for
several values of For this branch does intersect
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Fig. 22. Root locus (� = �1) of a third-order low-pass SDM for different
values of the filter parametera:

TABLE III
MINIMAL VALUES FOR a FOR WHICH A LOW-PASS SDM WITH LOOP FILTER

G(z) = (z � a)n=(z � 1)n � 1 IS STABLE FOR SMALL SIGNALS

with the unit circle, and all the roots will move inside the
unit circle for a certain range of and all This provides
a stable operating range. Note that, as some roots can leave
the unit circle again in case decreases further (due to an
applied input signal), the modulator is only conditionally sta-
ble. The theoretical minimum found for is within 1% of the
experimentally determined value of Higher order
modulators have a similar root locus, and minimum values for
the filter parameter can be found in the same manner (see
Table III).

As the outer branches of root loci of higher order low-pass
modulators all touch the unit circle near the analysis
can be simplified. The radius of the outer root locus branch
needs only to be evaluated for To extend this analysis
to high-pass modulators, evaluation at is required as
well (this follows from symmetry considerations). This leads
to the following stability criterion.

An SDM with loop filter will be stable for small input
signals when the roots of the stability equation

with (21)

lie within the unit circle for and
all

Although derived for low- and high-pass modulators only,
we now apply this stability test to a class of tunable modulators
with the following loop filter:

(22)

Fig. 23. Theoretically (dashed) and experimentally (solid) determined min-
imum values fora of a fourth-, sixth-, eighth-, and tenth-order band-pass
SDM, for which it is stable for small signals.

The order of the modulator equals 2, and the tuning fre-
quency is In Fig. 23, both the theoretical required minimum
value for and the experimental minimum value for
found by lengthy simulations are shown as a function of
the tuning frequency for a fourth-, sixth-, eighth-, and
tenth-order modulator. For tuning frequencies

and this extended model provides an
accurate estimate for minimal values of loop filter parameters,
required for small-signal stability of the SDM.

As the minimum value for only provides conditional
stability (at small input signal levels), additional measures for
absolute stability are required. By limiting a number of filter
states, the effective order of the loop filter is reduced and stable
operation of the SDM is ensured.
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