
Mobile Information Systems 4 (2008) 131–146 131
IOS Press

A skeleton based programming paradigm for
mobile multi-agents on distributed systems
and its realization within the MAGDA
Mobile Agents platform

R. Aversaa, B. Di Martinoa, N. Mazzoccab and S. Venticinquea

aDepartment of Information Engineering, Second University of Naples, Aversa, Italy

E-mail: {rocco.aversa,beniamino.dimartino,salvatore.venitcinque}@unina2.it
bDipartimento di Informatica e Sistemistica, Universitá Federico II di Napoli, Napoli, Italy

E-mail: n.mazzocca@unina.it

Abstract. Parallel programming effort can be reduced by using high level constructs such as algorithmic skeletons. Within
the MAGDA toolset, supporting programming and execution of mobile agent based distributed applications, we provide a
skeleton-based parallel programming environment, based on specialization of Algorithmic Skeleton Java interfaces and classes.
Their implementation include mobile agent features for execution on heterogeneous systems, such as clusters of WSs and PCs,
and support reliability and dynamic workload balancing. The user can thus develop a parallel, mobile agent based application
by simply specialising a given set of classes and methods and using a set of added functionalities.

1. Introduction

The Mobile Agents model [22] has the potential to provide a flexible framework to face the challenges
of Distributed Computing, especially when targeted toward heterogeneous distributed architectures. It
represents an effective alternative to the Client-Server paradigm in several application fields such as
e-commerce, brokering, distributed information retrieval, telecommunication services [1]. Several char-
acteristics of potential benefit for scientific distributed computing can be provided by the adoption of the
mobile agent technology, as shown in the literature [5,6,21]: they range from network load reduction,
heterogeneity, dynamic adaptivity, fault-tolerance to portability paradigm-oriented development. Our
research activity in this field concerned the application of the Mobile Agent paradigm to parallel and
distributed systems programming, with particular focus to hybrid systems with hierarchical structure
(such as clusters of SMP) [13,14,18] and Grid systems. It was studied the mobile agents paradigm
integration with other paradigms, languages, primitives and libraries at low and high abstraction level,
such as OpenMP [15], skeletons [19], Object oriented [18], message passing and threads, and optimized
libraries, with application to real applications of highly irregular nature, such as N-Body and Branch &
Bound [13,14]. A prototype tool, MAGDA [16], has been designed and currently developed. MAGDA
is a framework for supporting the programming and execution of mobile agents [17]. It supplements

1574-017X/08/$17.00 2008 – IOS Press and the authors. All rights reserved

132 R. Aversa et al. / A skeleton based programming paradigm for mobile multi-agents

mobile agent technology with a set of features for supporting parallel programming on a dynamic het-
erogeneous distributed environment – as present in Grid systems. Here we are going to describe how the
characterization of a mobile software agent overcomes its implementation and the task he has to carry
out. We will introduce the model of its lifelines in our applications and how algorithmic skeleton will
exploit this model in order to implement high level facilities to support parallel and distributed program-
ming. Many authors presented taxonomies of distributed algorithmic skeletons [2,4,12]; in particular,
we refer to Campbell’s work that examined the classification of algorithmic skeletons and proposed a
general one. According to this classification many kinds of algorithms can be included in the Farm-like
and Divide and Conquer-like skeleton. Other works [12] use algorithmic skeleton approach mainly to
separate the communication/synchronization structure from the application-specific computation in order
to optimize the mapping of skeletons on different underlying distributed architectures. Similarly many
programming environments [3,9,11], based on functional or OOP languages, have been developed to
provide, through skeletons, implicit parallel programming mechanisms. A mobile agent based approach
for Paradigm-Oriented Distributed Computing is described in paper [6].

2. Modeling agent in object oriented programming

A Software Agent is a program able to act autonomously, on behalf of its owner [7]. The characteri-
zation of an agent overcomes its implementation and the task he has to carry out. It can be defined as a
tuple of properties such as name, origin, owner, state, server, context. A namespace should be defined
in order to grant that agent instance is univocally identifiable among the ones who share the same code.
The origin makes known the place were the agent was created, while the owner is the responsible for that
agent. Through a delegation based mechanism the agent should inherit the owner profile in order to get
the authorization he needs to perform its task. Agent state collects the results of execution. A server is
the site able to host an agent. It accepts and handles creation, cloning, migration and disposal requests.
It receives and forwards messages. It processes authorization requests granting access to local resources
to incoming agents. A server is able to host an agent inside a context. The context defines the execution
constraints for a group of hosted agents. This mechanism allows execution of agents on the same server
but according to different policies and in separated rooms. When an agent travels across a network he
needs to take with itself a set of information which makes possible its identification and its execution.
The agent code is composed of a set of classes which implement agent’s behavior. It can be transmitted
together the agent state, or provided by an URL that specifies codebase, an archive file and a protocol to
be used to fetch them. When we want to model an agent we have to characterize an object with its own
behavior, we have to provide it with autonomy and reactivity as concurrent activities. This model allows
us to define for a single agent many execution flows which are concurrently scheduled and are able to
share the same data. They represents the agents behaviors whose execution depends by the agent status.
Concurrency provides agents with a kind of parallelism by which it is possible to to react to different
events and at the same time to pursue some goals. By a comparison with men’s activities, we can design
an Agent Model, whose proactivity and reactivity proceed together and influence each other.

2.1. Lifeline of an agent

We intend to describe the lifeline of an agent and components which implement its behavior. Autonomy,
reactivity and proactivity can be implemented by providing agent’s model with a set of mechanisms which
are common to the men’s lifeline. A man is always looking for carry out an established plan of activities.

R. Aversa et al. / A skeleton based programming paradigm for mobile multi-agents 133

For example in a day he spends some time on its job, part of its time on its favorite hobbies, other with its
family or friends. He is proactive to achieve his goals. Other activities in the man’s life are executed as
a reaction to internal or external stimuli. On the basis of internal stimuli, he eats when he is angry, or he
sleeps when he is tired. By the external ones, he could decide to have a walk when it is sunny and to read
a book when it is raining. These activities are scheduled according to man’s priorities which depends
on his desires and motivations. A men could feel these sensations when some time has elapsed without
to eat or to sleep. These are external stimuli which condition his behavior. The model we propose is
composed of the following kind of execution threads that characterize the behavior of an agent:

– Main proactive thread
– Listeners
– Timers
– Context listeners
– Communication thread

These activities, which are carried out to achieve a specific goal, correspond to autonomous and
proactive behaviors, which a software agent should have. In order to provide software agents with
reactivity we need to add some listeners, which are able to wait for events and to activate new behaviors,
or to influence the ones which are already running. Listeners are able to detect some events, to interrupt
proactive behaviors and to execute the reaction to the event. In our model these listeners can be other
threads which compose the agent lifeline. Of course we tell about threads but the concurrency can be
handled at different levels: by the agent itself, by the platform, by the multi-threads scheduler of the
underlying system. In our model a priority mechanism allows to schedule the proactive tasks and the
reactive routines according to a designed policy. The priority values could dynamically change according
to the agent’s status. Reaction of agent can be triggered by internal or external stimuli. About internal
stimuli some kinds of events can be related to expiration of timers. Otherwise internal stimuli can be
connected to internal believes of an agent. A change of agent’s internal status can affect active behavior,
but also can start new ones (for example the belief “had a coffee” can activate the behavior “have a
cigarette”). On the other side external stimuli are generated by some events in the context where the
agent resides. Some listeners should be added in order to manage the events which are generated in the
context. The agent has to subscribe its listeners to the context and context will provide to wake up them
on the occurrence of each event that the agent aims to handle. Social behavior is the last feature that
characterize the agent’s lifeline. Communication is a further component of the agent’s behavior that can
cause the activation of a new thread to be handled. A new message is forwarded to a handler which is
able to start the specific routines. The lifeline of agent’s model is illustrated in Fig. 1. Internal methods
belong to the object, but do not define behaviors. Proactive threads represent those behaviors which
are executed in order to get some agent’s goals. Message handlers implements reactive behavior which
perform the interaction with other agents when some messages are received. Listeners are able to detect
events in the environment and to modify agent’s beliefs or to start new actions.

2.2. The programming model

The programming model of an Agent, according to the description we have introduced before can,
be built on a set of APIs, which allow users to implement agent’s behavior and to define its status. We
can find different implementations which support the design and management of concurrent behaviors.
Class abstraction or threaded routines are alternative solution. Scheduling of concurred behaviors could
be managed by the programmer himself, or can be supported by the agent implementation or by the

134 R. Aversa et al. / A skeleton based programming paradigm for mobile multi-agents

Internal

Methods
Listeners

Proactive

Thread

Message

Handler

Agent Status

Fig. 1. Agent life cycle.

run-time environment. An agent class defines the parameters that characterize its status and overrides
the methods which implement its proactive behavior.

In our environment the agents are provided with mobility. This capability makes necessary to address
many issues. The first one deals with the persistence of the agent’s status. In our model agents implements
the weak mobility mechanism. It means that the dispatching of an agent requires the serialization of
only the attributes of the agent’s status and their transmission. At destination the application is resumed,
not the executing process. Definition of agent’s status, that is the choice of transient (the ones which
cannot or must not be dispatched) and not transient data, among the class attributes, is the first not
trivial task carried out by programmer. Some examples of not serializable data are sockets or files which
are necessary linked to the physical machine executes. The address of the hosting machine is another
parameter that is part of the agent status, but it changes its value each time the agent is dispatched to
another destination.

2.2.1. The main proactive thread

As we said before this thread carries out the proactive behavior of an agent. A programmer is able
to describe the main agent’s task overriding a specified method inside the agent class. This method
corresponds to the run routine of main agent’s thread and it will be restarted each time the agent’s status
has been resumed. This model deals with a weak mechanism that does not allow the resuming of threads
inside a process. The degree of autonomy of an agent allows him to activate or deactivate its listeners, to
set events in the context, to send messages to other agents or to set its own internal events or the ones of
other agents. An agent can choose to move by itself to another host, to create other agents or to die. The
most important feature of an agent is autonomy that is granted by the programming model. It is essential
that when an agent is created any other program can not own its control. It is possible by preventing that
creation of an agent returns a memory reference to the agent instance.

2.2.2. Events and listeners

According to the programming model we are exploiting, an agent is able to catch two kinds of event.
Events belonging to a first category are related to lifeline of agents (creation, cloning, migration, message
reception). Second ones occur inside the execution context (pending shutdown, agent arrival, new agent
creation, . . .). To react to these events some listeners must be defined. A listener is an animated object
itself. Its class is provided with the set of API that builds the Agent Programming Environment. A
listener waits for an event and implements its handler. When a new event occurs, a listener is able to

R. Aversa et al. / A skeleton based programming paradigm for mobile multi-agents 135

Adapter Listener
Proactive

Thread

Agent Status

New Event

Start

Stop

Handle Event

Fig. 2. Listener model in the agent.

stop the proactive thread and to access the agent’s status. Two parameters must be provided in order to
initialize a listener:

– The event to be handled
– The Adapter for handling

The Adapter is an interface, which is implemented by the programmer in order to describe the behavior
of a listener, and describes the reaction to a particular event. In Fig. 2 is illustrated the listener model.
An example can be a mobility event that is generated when an agent migrates from an host to another
one. A mobility Adapter can be used to define the behavior of an agent before dispatching and on arrival.
A special listener is the Message Handler. It handles incoming messages. Handling a message is quite
different from handling an event. A message is characterized from additional parameters, which are:

– A sender
– A kind
– A content

An agent can know, by the kind value, if it is able to handle that message and how to handle it. The
sender parameter allows an agent to personalize the response and to send it back. In our model when a
message is received an answer is always due. The simplest response is a notification of reception and
the result of message handling (successful or unsuccessful), otherwise the response could be a message
itself.

3. Mobile Agents and the distributed object programming paradigm

The Distributed Objects (DO) paradigm represents a further development of conventional object ori-
ented programming to support development of parallel and distributed applications capable of seamlessly

136 R. Aversa et al. / A skeleton based programming paradigm for mobile multi-agents

utilizing heterogeneous computing resources ranging from small-scale Cluster computing to large scale
Grid computing. Whereas the mobile agents paradigm targets mostly loosely connected applications, the
distributed objects paradigm focuses on a more tight interplay among application components (although
they can be widely distributed). The main feature which makes an agent different from a distributed
object is autonomy. An object, after a creation or a dispatch action should be activated by a method
invocation to start its execution. As we said above the memory reference of an agent is not available to
the programmer in order to grant agent’s autonomy. In this way an agent can choose to reject external
requests for services, such as cloning and mobility. In DO programming the interaction among objects is
supported via remote method invocation mechanism by synchronous, asynchronous and one-side method
invocation. A sending object can transfer data to a receiving object via any method invocations. Whereas
a receiver could use synchronous (blocking) or asynchronous (non-blocking) method invocation to get
the data from a source (without the need of an explicit sender).

MA paradigm provides instead a set of Java API designed for inter-agents communication. An agent
can send a message object to another agent using asynchronous, synchronous or future send primitives.

Both approaches require an active server which run on target nodes, which are used to distribute the
program. Servers provide an environment to agents and to objects for their execution. Furthermore
they provide connections with other servers, which run on different nodes, system parameters, and some
basic services such as deactivation/activation , dispatching and retracting, cloning and disposing. A set
of events are notified by the server to running agents, providing them with the possibility to react to
changes in the execution environment such as the shutdown of the hosting node. Above all in mobile
agent programming is relevant to provide the possibility to handle security and other policies about
agents permissions and administration.

4. Mobile Agents paradigm to support a skeleton-based programming approach

After all, using mobile agent paradigm remains a non trivial task because mobility introduces additional
difficulties in designing coordination, synchronization and communications among different tasks. In
most cases, especially when starting point is an available sequential code, utilization of high level
interaction models, provided by some customizable skeletons, can ease the programming task, and the
mapping of a parallel application on parallel systems. Algorithmic skeletons can be built as specialization
of an agent’s lifeline. A specialized model eases the task of a programmer providing a limited set of
interaction models implemented in advance. We integrated algorithmic skeletons in a framework for
supporting programming and execution of mobile agent based distributed applications, the MAGDA

(Mobile AGents Distributed Applications) toolset [17]. We have implemented a set of Java packages,
which enable to program distributed applications by adopting a skeletons-like approach [19], exploiting
peculiar features of both Object Oriented and Mobile Agents programming models. By means of
available skeleton interfaces a programmer is able to implement its own application by specializing
an assigned structure and using a set of functionalities that a mobile agents framework can offer. A
predefined algorithmic skeleton allows to reuse the sequential code by filling some methods, classes and
interfaces and hides the difficulties involved by an explicit parallel programming paradigm. Difficulties
and features of the Mobile Agent programming paradigm can be managed at a lower level, transparent
to the user. Two algorithmic skeletons involving the Farm-like programming paradigm and the Divide

and Conquer-like programming paradigm respectively have been implemented and tested. In Processor

Farm programming paradigm a master process creates a number of slaves and assigns some work to
everyone of them. The slaves compute their work and return the results to the master. Task Queue is

R. Aversa et al. / A skeleton based programming paradigm for mobile multi-agents 137

the most general Farm-like skeleton, every slave may produce new work to be performed by itself or by
other slaves. The second algorithmic skeleton we have implemented belongs to Divide and Conquer-like
skeleton class. It is an example of Tree computation algorithmic skeleton. It solves the initial problem
dividing it in several subproblems assigned to different agent workers. Data flow from the root into
the leaves and solutions flow back up toward the root. We chose to implement a binomial algorithm to
build our tree, so its shape and results recombination procedure is consequentially determined. In the
following we show how design particular agents behaviors in order to implement the Processor Farm

and Tree computation skeletons introduced above.

5. The tree computation skeleton

5.1. Skeletons’ description

The skeleton frequently referred to as tree computation consists of a set of processes connected by
communication channels according to a tree structure. Each process receives a problem to be solved, tests
for a condition and then either splits the problem into k subproblems that are sent to k child processes, or
does some processing work. When a process terminates its job, it remains waiting for a reply from each
child, then combines these replies and sends back new result to its parent. In other words, according
to this skeleton, data flow from the root into the leaves and solutions flow back up toward the root. In
practice a number of questions (how to choose type, degree and depth of the tree, number of processes
to be created, etc.) have to be answered before a working program can be produced out of this skeleton.
However, they do not depend on the particular nature of the computation to be parallelized, but, instead,
they are part of the skeleton and can be solved once and for all in the context of the skeleton itself. Our
implementation mainly follows the general structure depicted in previous section, except that processes
are replaced with agents and we have chosen to implement a binomial algorithm to build our tree, so
its shape and results recombination procedure is consequentially determined. Here we have an agent
that can be at the same time a son and a father. Proactive behavior is implemented by the run() method.
Reactivity of agent to incoming messages is implemented by the handleMessage() method. The lifeline
of the agent evolves as follows. When the agent starts, it is a son. At beginning its main goal is to become
a father, so in the main thread it clones itself. Next goal to be scheduled is to solve the problem assigned
to it. Then the agent needs to collect results from its sons. The agent asks each son for its result and
waits for reply. The reaction to a new message from a son collects and reduces received results. When
all results have been collected the second goal is achieved. Agent behaves again as a son and waits for a
joining request from its father. When a new message has been received he reacts by returning its results
and disposing.

5.2. Implementation in MAGDA

Initially, the first agent of application starts, cloning itself and generating a first son, splitting and
assigning half of initial workload to it. At each following step, every agent clones itself once, thus
generating a son; at each step all agents simultaneously clone themselves, until the number of agents
matches a target number. The tree shape and the communication pattern among agents are consequentially
determined, as is shown in Fig. 3. The number of levels of the tree is equal to the number of cloning
steps. The number of nodes belonging to the ith level is equal to 2nc−i, where nc is the number of cloning
steps and i is the level index. A the end of this cloning step each agent can start solving its subproblem.

138 R. Aversa et al. / A skeleton based programming paradigm for mobile multi-agents

level 0 level 4

level 1

level2 level 3

level 3

level 2

level3

level 3

level4

level 4

level 4

level 4

level4

level 4

level 4

Fig. 3. Cloning/communication graph of the Tree Computation skeleton (binomial tree case).

Once the work is performed each agent collects and joins the results from its sons (from the youngest
to the oldest one) and in its turn pass them to its parent. An agent returns its results only if it is not a
parent or it has collected the results from all its own sons (from the youngest to the oldest one). We
have defined a BinomialTree class which performs the basic actions of described skeleton behavior and
activates specific methods that the user should override in order to specialize agent’s behavior. All the
names of such methods begin with the word user . The following methods belong to the BinomialTree

class and should be overridden:

– The user init() method, invoked by the first agent in order to initialize the application data.
– The user onCloning() method, invoked in order to generate a new agent.
– The user Solve() method, invoked in order to solve the agent’s task.
– The handler message() method, invoked in order to handle a message from the application.
– The user joinToFather() method, invoked by an agent in order to return its results to its parent.
– The user fatherJoining() method, invoked by an agent in order to join its own results to its sonŠs

results.
– The user Close() method, invoked, by the first agent, on occurrence of its disposing, at the end of

the application, in order to present final results.

In Fig. 4 a pseudo-code is shown, sketching the skeleton’s implementation within MAGDA framework.
The first agent begins its execution by reading skeleton’s input data, and user data (by calling the
overridden method user init()). Cloning phase requires the specialization, according to the specific
application, of data and of behavior for both parent and its generated son. This is performed by means
of user onCloning() method to be overridden. After it has been generated, the son dispatches itself to its
destination and at the end of the cloning phase it begins to compute its own data: the user’s overridden
method called by the framework is the user Solve() one. At the end of the computational step every agent
has to join itself to its sons in reverse order with respect to the generation; in order to perform the joining
phase the framework calls the user joinToFather() methods for the son agent and the user fatherJoin()
method for the parent agent. Only the first agent of the tree will call the user Close() method to present
final application results.

R. Aversa et al. / A skeleton based programming paradigm for mobile multi-agents 139

OnCreation(){user_init();}

run(){

if(!dispatched) dispatch(myDestination);

while(clones<nodes){

clones=2*clones;

user_onCloning();

clone();

}

user_compute(myObject);

while(!mySons.isEmpty()){

next=mySons.next();

next.send("jointofather");

}

wait("jointofather");

if(!master) dispose();

else user_Close();

dispose();

}

handleMessage(Message m){

if(m.sameKind("jointofather"�)) myFather.reply(user_joinToFather());

else user_fatherJoin(m);

}

Fig. 4. BinomialTree class pseudo-code.

5.3. An example: Quick sort

We show now, through a simple example, how the above described class and methods can be used
in order to develop a distributed mobile tree computation. Chosen computation is the simple and well
known Quick Sort algorithm, applied to an array of integers. In the user-defined QuickSort class, user
declares and initializes all data that each agent needs in order to solve its own sub-problem: in the
QuickSort example data are an array of integers to be sorted, and the sub-arrays’ bounds, by means of
which each agent is able to know which part of the original array is assigned to. The first agent fills up
its array by calling the user-overridden user init() method and sets its lower bound to 0, and the upper
one equal to the length of the array. The user onCloning() method calls the user-defined split() method,
in order to split the array into two sub-arrays, representing parent’s sub-problem and the one of its son.
The method returns two new QuickSort objects for the two agents (the parent and the son). When the
cloning phase ends up, user-overridden user Solve() method is called, performing a recursive sorting of
the array (by calling the sort() method of the SeqQuickSort object).

In this example the handler message() method is not used because the sorting computation doesn’t
require communication among agents. The user joinToFather () method is called by son when its parent
is collecting the expected results: in QuickSort example this method returns a sorted sub-array. The
user fatherJoining() method is called by parent its son’s results have been received; in the example this
method performs the fusion between the array owned by the current agent and the ones returned by the
sons. The user Close() method finally prints the sorted array.

140 R. Aversa et al. / A skeleton based programming paradigm for mobile multi-agents

Master

 Slave

Master

 Slave Slave

Fig. 5. The communication graph of the Task Queue Skeleton.

6. The task queue (Processor Farm) skeleton

6.1. Skeletons’ description

Skeleton usually referred to as processor farm consists of a coordinator process and a set of worker

processes that act as slaves. In a processor farm, the coordinator decomposes the work to be done
in subproblems and assigns a different subproblem to each worker. Upon receipt of a subproblem,
each worker solves it and returns a result to the coordinator. Again some details have to be defined
before skeleton can become a working program, and slightly different organizations can be selected
for the processor farm (for instance workers may or may not be allowed to communicate each others).
However, even in this case, these issues concern the skeleton definition and can be entirely dealt with in
the skeleton context. We have chosen to implement the Task Queue Skeleton, that is the most general
Farm-like skeleton: every slave may produce new work to be performed by itself or by other slaves. The
task queue skeleton is illustrated in Fig. 5.

6.2. Implementation in MAGDA

Here we have to define two different agent behaviors and their interaction protocol. Master agent
goals are: an initial distribution of tasks, reduction of results and notification of termination to the slaves.
It is proactive in reading the input data, dividing the problem in a certain number of subtasks and to
verify the termination condition and notify it. These actions will be executed in the agent main thread.
The collection of results provided by the slaves is part of the reactive behavior that is activate when a
new message has been received. A slave is an agent whose goal is to compute the task and return the
result to its master. All these action are carried out in the main thread. Slaves also look for new tasks
to be solved, which can or cannot be available in any moments. A listener that is waiting for a message
implements agent’s reaction to the arrival of a new task to be solved, or to a disposal request, which has
been sent by the master when all tasks have been solved. In the following section our single program

R. Aversa et al. / A skeleton based programming paradigm for mobile multi-agents 141

implementation of the agent’s behavior is described. For this skeleton the MAGDA framework makes
available the TaskQueue Java class, and the Task Interface interface. TaskQueue class describes the
behavior of an agent worker and of its master. When an user extends this class it needs to declare and
initialize all data that each worker needs in order to solve the generic task. The user has to implement its
worker by extending the class and overriding the following methods:

– The user init() method, invoked by the first agent worker in order to initialize the application data;
– the user split task() method, invoked by the first worker in order to fill the bag with more sub-

problems, which will be distributed among all the workers;
– the user handle message() method, invoked in order to handle a message from the application;
– the user Close() method, invoked by the first agent worker at disposal, in order to present final

results.

In Fig. 6.2 a pseudo-code is shown, sketching skeleton’s implementation within the MAGDA frame-
work. The first agent begins its execution by reading skeleton’s input data, and user data (by calling the
overridden method user init()). The splitting of the initial problem is performed by the user, by over-
riding the user split task() method. Effect of this phase is filling agents’ queue with a certain number of
subproblems. Then the master clones itself, distributes the queue among different clones and dispatches
the workers to the target hosts. All global data are cloned together with agents. Arrived at destination
each agent activates a thread in order to extract and compute those tasks, which are stored into the queue.
When the queue is empty a request for new tasks is sent. If no more tasks are available the worker
signals the empty queue condition to the master. The master, after its computation ends, receives the
empty queue signal from all workers and check the termination condition by calling the user-overridden
user stopCondition() method. If a true value is returned all workers can be disposed and the master can
terminate itself. When a message is received, a message handler start asynchronously. The handler reads
the message tag and if it is not able to handle it, because it is an application specific message, calls the
user-overridden user handle message() method. In order to specify how a task extracted from the queue
has to be consumed, the user must define a Workload class that implements the Task Interface interface.
Task Interface is implemented as follows:

public interface task interface{
public void compute();

}

The compute() method implemented by the user is called by an agent worker on the user’s object in
order to complete the task. Other methods, which need not to be overridden and can be used by the
programmer, are defined in the TaskQueue class. As the skeleton is designed in order to hide the real
distribution of the application, the programmer is not able to locate each single worker. It means that
only collective communication are allowed, in order to share global values and update them, or in order
to synchronize all the workers. The procFarmBroad(Message) method allows the programmer to send
a message to all the other workers. The bag push(Object obj) method allows the programmer to insert
some new tasks into the queue according to the Task Queue skeleton.

6.3. An example: A combinatorial optimization application

We show, through a quite complex real application, how the above described skeleton’s classes and
methods can be utilized. The chosen application is a combinatorial discrete optimization, performed with

142 R. Aversa et al. / A skeleton based programming paradigm for mobile multi-agents

OnCreation() {

master=true;

init_data_par(); //input parallel data

user_init(); //input application data

user_task_split (int n); //problem splitting

agents_split (); //agent splitting and dispatching

}

run() {

while(!stop) {

do{

runThread.start();

waitThreadEnd();

repeat= balance();

}while(repeat);

if(!master){

sendMessage("empty_bag");

waitMessage();

}

else{

while((!stop)&(bag.empty()){

waitMessage();

stop=user_stopCondition();//all queues are empty

}

}

}//end while

user_Close();

sendToAll("Dispose");

dispose();

}//end run

handleMessage(Message msg){

if(msg.sameKind("service msg") {...}

else user_handleMessage(msg);

}

Class runThread {

run(){

while(!bag.empty()){

newTask=(Task_interface) bag.pop();

newTask.solve();

}

}}

Fig. 6. TaskQueue class pseudo-code.

the well known Branch and Bound method. A discrete optimization problem consists in searching the
optimal value (maximum or minimum) of a function f : �x ∈ Zn → R, and the solution�x = {x1, . . . , xn}
in which the function’s value is optimal. f(�x) is said cost function, and its domain is generally defined by
means of a set of m constraints on the points of the definition space. Constraints are generally expressed
by a set of inequalities:

n∑

i=1

ai,jxi � bj ∀j ∈ {1, . . . ,m} (1)

R. Aversa et al. / A skeleton based programming paradigm for mobile multi-agents 143

and they define the set of feasible values for the xi variables (the solutions space of the problem). Branch
& Bound [8] is a class of methods solving such problems according to a divide & conquer strategy. The
initial solution space is recursively divided in subspaces, until attaining to the individual solutions; such
a recursive division can be represented by a (abstract) tree: the nodes of this tree represent the solution
subspaces obtained by dividing the parent subspace, the leaf nodes represent the solutions of the problem,
and the tree traversal represents the recursive operation of dividing and conquering the problem. The
method is enumerative, but it aims to a non-exhaustive scanning of the solutions space. This goal is
achieved by estimating the best feasible solution for each subproblem, without expanding the tree node,
or trying to prove that there are no feasible solutions for a subproblem, whose value is better than the
current best value. (It is assumed that a best feasible solution estimation function has been devised, to
be computed for each subproblem.) This latter situation corresponds to the so called pruning of a search
subtree. The Task queue skeleton is thus very well suited to a parallel implementation of the Branch and
Bound method. According the skeleton’s description given above we have developed two java classes:
the BB Application, which extends the TaskQueue main class, and the BB Task class, which implements
the Task Interface interface. In the example the class data are the two arrays of weights and the matrix
of bounds. The first array is used in order to compute the best value; the second one and the matrix are
used to check if the bounds are satisfied. The local best value and the corresponding solution are member
variables too. The user split tasks() reads from a file the elements of the arrays of data described before.
In the B&B implementation the user split tasks() method fills the queue with a number of tasks greater
or equal to the number of workers. Each task is a node belonging to the same level of the tree of solutions.
In B&B implementation handler message() method updates the optimum value that is communicated
by the workers through a collective communication. The user Close() method prints the final optimum
value and the correspondent solution. The BB Task class implements the Task interface, which is used
by the worker in order to manage the single task of the bag. An object of this class declares only those
data that are local to the single task. In B&B implementation the data are:

– int sc[]: an array of integers, which represents a subset of solutions, (a node of the tree),
– int lsc: an integer, which represents the level of the tree where the above node is placed.

The compute() method, is invoked by the worker in order to solve the task. The compute() method
reproduces the sequential code for the visit of the tree. It starts from the node correspondent to sc[] array,
of the BB Task object extracted form the bag. When a node of the tree must be processed later a new
BB Task object is built, and it is pushed in the worker’s queue. When the leaf of the node is reached
the task is computed and another one will be extracted from the queue by the worker.

7. Experimental results

In this section we discuss experimental results of execution of the mobile agent based branch and
bound optimization application described in the previous section. The target architecture is a cluster of
8 Pentium Celeron processors, 800 MHz clock frequency and 128 M RAM, connected via an 100 Mb/s
ethernet switch. Experimental figures are provided, with varying the problem size and the number
of computing nodes. Because of the highly irregular behavior of this kind of algorithms, due to the
branching effect, the simple speedup measure is meaningless for our purposes. The distributed branch
biasing effect can be taken into account by considering the total number of solved subproblems, which
is largely variable with different executions, even with the same input data. We have thus defined
PRi, as being the ratio between the number of solved problems during the parallel execution of the

144 R. Aversa et al. / A skeleton based programming paradigm for mobile multi-agents

0

1

2

3

4

5

6

7

8

2 4 8

Nodes

S
p

e
e

d
u

p 50

51

52

55

Fig. 7. Normalized speed up values for four different problem sizes.

application and the number of problems solved by the sequential version of the application. We then
define a normalized speedup as being Sn = Speedup ∗ PRi ; this latter is considered in order to filter the
branching effect in experimental results. In Fig. 7 the normalized speed up values are shown, for four
different problem sizes, and from 2 to 8 processors.

The normalized speedup scales well with the number of processors for all the considered problem
sizes.

8. Conclusions

We described the mobile agent programming model that was adopted in our research activities in
addressing distributed systems programming. In order to overcome some additional challenges, which
have been involved by the adoption of the proposed approach, we developed a framework that provides
the programmer with high level programming skeletons. Skeletons implement automated mechanisms
for agents’ interaction exploiting migration and cloning. Algorithmic skeletons are presented as a
specialization of the agent lifeline using some facilities provided by the exploited programming model.
They allow to reuse parts of the sequential code by filling some methods, classes and interfaces, and
to hide the difficulties to be faced with using an explicit parallel programming paradigm. A synergic
integration, in the proposed approach, of the OOP concepts, the portability characteristics of the Java
language and the features of mobile agent model. These peculiarities ensure a good programming
easiness, by allowing the reuse of large portions of sequential code, and at the same time, don’t prejudice
the performance aspects, thanks to the highly dynamic adaptability of the implemented skeletons to the
underlying architecture.

References

[1] D.B. Lange, M. Oshima, Programming and Deploying Java Mobile Agents with Aglets, Addison-Wesley, 1998.
[2] D. Campbell, Towards the Classification of Algorithmic Skeletons, Tech. Rep. YCS-276, Dept. of Comp. Science, Univ.

of York, 1996.
[3] F.A. Rabhi, Exploiting Parallelism in Functional Languages: a Paradigm-Oriented Approach, in: Abstract Machine

Models for Highly Parallel Computers, Oxford University Press, April 1993, pp. 118–139.
[4] G.R. Andrews, Paradigms for Process Interaction in Distributed Programs, in: ACM Computing Surveys 23(1) (March

1991), 49–90.

R. Aversa et al. / A skeleton based programming paradigm for mobile multi-agents 145

[5] R. Gray, D. Kotz, S. Nog, D. Rus and G. Cybenko, Mobile agents: the next generation in distributed computing, in: Proc.
of Int. Symposium on Parallel Algorithms/Architecture Synthesis, IEEE Computer Society Press, 1997, pp. 8–24.

[6] H. Kuang, L.F. Bic and M. Dillencourt, Paradigm-oriented distributed computing using mobile agents, in: Proc. of. 20th
Int. Conf. on Distributed Computing Systems, IEEE Computer Society Press, 2000, pp. 11–14.

[7] H.S. Nwana, Software agents: an overview, in: The Knowledge Engineering Review, (Vol. 11)(3), Cambridge University
Press. 1996, pp. 205–244.

[8] H.W.J. Trienekens, Parallel Branch & Bound Algorithms, Ph.D. Thesis at Erasmus Universiteit-Rotterdam, Nov. 1990.
[9] J. Darlington, A.J. Field, P.G. Harrison, P.H.J. Kelly, D.W.N. Sharp, Q. Wu and R.L. Whie, Parallel Programming

Using Skeleton Functions, in: Parallel Architectures And Languages, PARLE’93, LNCS 694, Springer-Verlag, 1993,
pp. 146–160.

[10] M. Bull, M. Westhead, M. Kambites and J. Obdrzalek, Towards OpenMP for Java, in: Proc. of 2
nd European Workshop

on OpenMP – EWOMP’2000, Edinburgh, 2000.
[11] M. Danelutto, R. Di Meglio, S. Orlando, S. Pelagatti and M. Vanneschi, The P

3
L Language: an Introduction, Technical

Report HPL-PSC-91-29, Hewlett-Packard Laboratories, Pisa Science Centre, Dec. 1991.
[12] Murray Cole, Algorithmic Skeletons: Structured Management of Parallel Computation, MIT Press & Pitman, 1989.
[13] R. Aversa, B. Di Martino, N. Mazzocca and S. Venticinque, Mobile Agents for Distributed and Dynamically Balanced

Optimization Applications, in: High Performance Computing and Networking, Lecture Notes in Computer Science,
(Vol. 2110), Springer-Verlag, 2001, pp. 161–170.

[14] R. Aversa, B. Di Martino and N. Mazzocca, Restructuring Irregular Computations for Distributed Systems using Mobile
Agent, in: Applied Parallel Computing, Large Scale Scientific and Industrial Problems, Lecture Notes in Computer
Science, (Vol. 1947), Springer-Verlag, 2001, pp. 223–232.

[15] R. Aversa, B. Di Martino, N. Mazzocca, M. Rak and S. Venticinque, Integration of Mobile Agents and OpenMP for
programming heterogeneous clusters of Shared Memory Processors: a case study, in: Proc. of 3

rd European Workshop
on OpenMP – EWOMP’2001, Barcelona (S), September 2001 .

[16] R. Aversa, B. Di Martino, N. Mazzocca, S. Venticinque, MAGDA: a software environment for Mobile AGent based
Distributed Applications, in: Proc. of 11

th Int. Conference on Parallel and Distributed Processing, IEEE CS Press, 2003,
pp. 332–338.

[17] R. Aversa, B. Di Martino, N. Mazzocca and S. Venticinque, MAGDA: A Mobile Agent based Grid Architecture, in:
Journal of Grid Computing, Springer Netherlands, (Vol. 4)(4), December 2006, pp. 395–412.

[18] R. Aversa, B. Di Martino, T. Fahringer and S. Venticinque, On the evaluation of the Distributed Objects and Mobile Agents
programming models for a distributed optimization application, in: Applied Parallel Computing. Advanced Scientific
Computing, Lecture Notes in Computer Science, (Vol. 2367), Springer-Verlag, 2002, pp. 233–242.

[19] R. Aversa, B. Di Martino, N. Mazzocca and S. Venticinque, in: VECPAR’2002. 5th International Conference on High
Performance Computing in Computational Sciences 2002. Selected Papers and Invited Talks., LNCS 2565, Springer,
Berlin (2003), pp. 622–634.

[20] R. Aversa, B. Di Martino, N. Mazzocca and S. Venticinque, MAGDA: a software environment for Mobile Agents based
Distributed Applications, in: Parallel, Distributed and Network-Based Processing, IEEE Computer Society Press, 2003,
pp. 332–338.

[21] T. Drashansky, E. Houstis, N. Ramakrishnan and J. Rice, Networked Agents for Scientific Computing, in: Communica-
tions of the ACM, (vol. 42)(3), March 1999, pp. 48–54.

[22] V.A. Pham and A. Karmouch, Mobile software agents: an overview, in: IEEE Communications Magazine, (Vol. 36)(7),
IEEE Computer Society Press, 1998, pp. 26–37.

Salvatore Venticinque received the M.S. degree (magna cum laude) in Informatics Engineering in 2000 and his PhD in
“Electronic Engineering” from the “Seconda Università di Napoli” in 2003.

He is Assistant Professor at Department of Information Engineering of the Second University of Naples. He teaches
“Computer Programming” and “Computer Architecture” in regular academic courses. He is involved in research activities
dealing with Parallel and Grid Computing and Mobile Agents Programming for distributed systems.

He is author of publications in international journals, books, and conferences, in collaboration with national research
organizations and foreign academic institutions (ENEA, University of Vienna, . . .).

He participated to research projects supported by national and international organizations. He has been co-chair of interna-
tional conferences and member of several Program Committees.

Rocco Aversa graduated in Electronic Engineering at University of Naples in 1989 and received his Ph.D. in Computer Science
in 1994.

He is Associate Professor (Assistant Professor from 1995 to 2004) in Computer Science at the Department of Information
Engineering of the Second University of Naples.

146 R. Aversa et al. / A skeleton based programming paradigm for mobile multi-agents

His research interests are in the area of parallel and distributed systems. The research themes include: the use of the mobile
agents paradigm in the distributed computing; the design of simulation tools for performance analysis of parallel applications
running on heterogeneous computing architectures; the project and the development of innovative middleware software to
enhance the Grid computing platforms. Such scientific activity is documented on scientific journals, international and national
conference proceedings.

Rocco Aversa participated to various research projects supported by national organizations (MURST, CNR, ASI) and in
collaboration with foreign academic institutions. In particular, in 2004–2006 he coordinated the Second University of Naples
research group working in the project “Centre on Information and Communication Technology”, supported by Regione Campania
with a financing of more than one milion of euros. In 2005 he was appointed in the board of the directors of the consortium
“Centro Regionale Information e Communication Technology” as the representative of the Second University of Naples.

Beniamino Di Martino received the M.S. degree (magna cum laude) in Physics and the Ph.D. degree in Information Engineering,
both from University of Naples (Italy), in 1992 and 1996 respectively. Since 2005 he is Full Professor at the Second University
of Naples (Italy). In 1994 he joined the Institute for Software Technology and Parallel Systems at the University of Vienna
(Austria) where he was Researcher till 1998. In 1998 he moved at the Second University of Naples (Italy) where he was
Assistant Professor till 2002, and Associate Professor till 2005.

He is author of 5 international books and more than 100 publications in international journals and conferences. He
participated to various research projects supported by national and international organizations (international projects include:
EU-IST OntoWeb and APART, EU-Esprit HPF+ and PPPE, CEI PACT, EU-TMR, Austrian-SFB AURORA, Austrian FWF
HLPS).

He served as general and program chairman, and member in Program Committees, of several international conferences, and
as guest editor for journals’ special issues.

He is editorial board member and chair of international journals. He is member of the Executive Board of the IEEE CS
Technical Committee on Scalable Computing.

His research interests include Mobile and Intelligent Agents, Semantic Web and Grid, Semantic based Information Retrieval
and Text Mining, Natural Language Processing, Programming and Compiler Techniques for High Performance and Grid
Computing, Parallel and Grid Architectures, Automated Program Analysis, Comprehension and Transformation.

Nicola Mazzocca is a full professor of “Sistemi di Elaborazione” (ING-ING/05 area) at the Computer and System Engineering
Department, University of Naples “Federico II” From November 1998 to October 1991, he attended the Ph.D. program in
Electronic Engineering and Computer Science (IV cycle) at the Computer Science Department of the University Federico
II, Naples, major: Computer Science. In September 1992 he received the “Dottore di Ricerca” (PhD) degree in Electronic
Engineering and Computer Science. Thesis: “Sviluppo ed Analisi di Applicazioni Parallele in Ambiente CSP”. From 1994
to present, he taught over 30 university courses on topic ranging from computer organization, to high-performance systems,
reliable systems, operating systems, computer programming. Prof. Mazzocca conducts his research activity at the Computer
Science Department of the University Federico II, Naples, and at the ITC Regional Center of Competence, Regione Campania.
His research activities are mainly centered on: computer architecture, dedicated systems, reliable systems, secure systems,
distributed systems, high-performance systems, performance evaluation in high-performance systems. He authored over 170
papers on international journals, books, international conferences in the field of computing and computer networks. In the
context of such activities he cooperated with numerous Italian and foreign institutions and universities. Such research activities
led to proof-of-concepts and prototypes presented at international conferences and adopted by Italian and international research
institutions and companies. From 1998 to 2004 prof. Mazzocca coordinated the Computer Science research group at the Second
University of Naples. He took part in several research projects. During such projects, he was involved in research activities
conducted by Italian and international institutions (Università di Torino, Firenze, Parma, CNR, University of Urbana, Caltech,
University of Sheffield, JPL).

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

