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ABSTRACT
We study the fundamental problem of computing distances
between nodes in large graphs such as the web graph and
social networks. Our objective is to be able to answer dis-
tance queries between pairs of nodes in real time. Since
the standard shortest path algorithms are expensive, our
approach moves the time-consuming shortest-path compu-
tation offline, and at query time only looks up precomputed
values and performs simple and fast computations on these
precomputed values. More specifically, during the offline
phase we compute and store a small “sketch” for each node
in the graph, and at query-time we look up the sketches of
the source and destination nodes and perform a simple com-
putation using these two sketches to estimate the distance.

Categories and Subject Descriptors
G.2.2 [Graph Theory]: Graph algorithms, path and circuit
problems

General Terms
Algorithm, Performance

Keywords
Algorithms, Sketching, Embedding, Distance Computation,
Shortest Path

1. INTRODUCTION
Large graphs have become a common tool for represent-

ing real world data. We now routinely interact with search
engines and social networking sites that make use of large
web graphs and social networks behind the scenes. Many
of these interactions happen in real time where users make
some kind of a request or a query that needs to be serviced
almost instantaneously. Since user interactions should have
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low latency, one method to handle expensive operations is
to do them offline as a precomputation and store the data
so that they can be obtained quickly when required for a
real-time operation. For example, PageRank consists of an
expensive eigenvector computation over the web graph that
can be performed offline and a simple online lookup of the
PageRank score for each result.

One fundamental operation on large graphs is finding short-
est paths between pairs of nodes. This problem is not only
a common building block in many algorithms, but is also
a meaningful operation in its own right. For example, in a
social network one may be interested in finding the short-
est sequence of friends that connects one to a celebrity. In
the web graph, a short sequence of links between two URLs
may indicate a certain degree of relatedness between the
two pages [13, 20]. However, given the large size of these
graphs, shortest-path computation is challenging. Running
Dijkstra’s well known shortest-path algorithm [8] on a web
graph containing tens of billions of nodes and trillions of
edges would take several hours, if not days. Moreover, it is
not feasible to store a web-scale graph in the main memory
of a single machine. Even in a distributed setting, if the
computation is parallelized, the sequentially dependent na-
ture of Dijkstra’s computation would require huge amounts
of communication. Furthermore, in a real-time computa-
tion, only a small amount of resources – memory accesses
and CPU cycles – are available for a single shortest distance
query. As we would like to do this in real time with min-
imal latency, it becomes important to use small amounts
of resources per distance query. In this paper, we study
the problem of estimating distances between two nodes in a
large graph in real time.

One approach is to perform a one-time offline computa-
tion. A straightforward brute force solution would be to
compute the shortest paths between all pairs of nodes offline
and to store the distances on disk. In this setting, answering
a shortest-path query online requires a single disk lookup;
however, the space requirement is quadratic in the number
of nodes in the graph. For a web graph containing billions of
nodes, this would be simply infeasible. To reduce the space
complexity, our algorithms store some auxiliary information
with each node that can facilitate a quick distance compu-
tation online in real time. This auxiliary information is then
used in the online computation that is performed for every
request or query. One can view this auxiliary information
as a sketch of the neighborhood structure of a node that
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is stored with each node. Simply retrieving the sketches of
the two nodes should be sufficient to estimate the distance
between them. Two properties are crucial for this purpose:
First, these sketches should be reasonably small in size so
that they can be stored with each node and accessed for
any node at run time. Second, there needs to be a simple
algorithm that, given the sketches of two nodes, one can
estimate the distance between them quickly. As the com-
putation of the sketches is an offline computation, one can
afford to spend more resources on this one-time preprocess-
ing.

Computing sketches offline for a large collection of objects
to facilitate online computations has been studied exten-
sively and is also used in many applications. For example,
several search engines compute a small sketch of documents
to detect near-duplicate documents at query time; see [5, 10,
4] and references therein. This eliminates the need to com-
pare large documents, which is time consuming. Instead it
is achieved by comparing short sketches of these documents
and measuring the similarity between these sketches.

Computing sketches for the specific purpose of distance
computation is also called distance labeling. Some papers
that study the problem of the size of labels required with
each node to allow distance computation include Gavoille et
al. [14], Katz et al. [16], and Cohen et al. [7].

The field of metric embedding deals with mapping a set of
points from a high-dimensional space to a low-dimensional
space, such that the distortion is minimized. If each point
can be projected onto a small number of dimensions such
that distances are approximately preserved, one can store
the small dimensional vector as a sketch. The classic re-
sult of Bourgain [3] shows how such an embedding can be
achieved for certain distance metrics.

Another line of work in estimating distances is the study
of spanner construction. A spanner is a sparse subgraph of
the given graph, such that the distance on this sparse graph
approximates the actual distance, for any pair of points.
Although spanners take small space, they do not exactly
provide a sketch for each node; thus the online algorithm
for estimating distance may take a long time. Some the-
oretically efficient algorithms for spanners are presented by
Feigenbaum et al. [12], and Baswana [2]. Other fundamental
results in this area include Bartal [1] and Fakcharoenphol et
al. [11].

Cohen et al. [6] proposed an approximate distance scheme
using 2-hop covers of all paths in a directed (or undirected)
graphs. However, finding the near optimal 2-hop cover of a
given set of paths is expensive in a large graph. Moreover,
the size of such a cover can be as large as Ω(n

√
m), making

their scheme quite hard to implement on large graphs.
Several studies, for example the ones by Goldberg et al. [15,

9], have focused on answering exact shortest path queries
on road networks. These algorithms make use of a small set
of precomputed landmarks and shortcuts and use them at
query time to connect a source/destination pair. Landmarks
and shortcuts are chosen very carefully, using algorithms
that are specialized to the structure of road networks. Our
algorithms can be viewed as using a randomly sampled set
of landmarks; as such, it can be taken to mean that even a
simple algorithm that makes use of randomly sampled“land-
marks”works very well on other complex graphs such as the
web graph.

2. OUR CONTRIBUTION
In this work, we engineer algorithms for computing such

sketches and demonstrate how they can be used to esti-
mate distances between arbitrary pairs of nodes, in real
time. While there is not much empirical work on computing
sketches for distances, there are the aforementioned theo-
retical studies using embeddings [3, 1, 11] and spanners [12,
19, 2] in the algorithms literature. All of these algorithms
provably work only on undirected graphs, and some are com-
plicated and probably impractical. The classical result by
Bourgain [3] shows how one can project a graph onto a low
dimensional space, giving a small sketch that approximates
distances to a factor of O(log n). Matousek [17] later showed
that the same algorithm can be used to get a 2c − 1 factor
approximation using sketches of size Õ(n1/c). However, we
find in our experiments that Bourgain’s algorithm performs
very poorly in estimating the distance. On the other hand,
we propose an algorithm that is essentially a simplification
of the algorithm by Thorup and Zwick [19] and provides the
same theoretical guarantee: our algorithm approximates dis-
tances within a factor 2c−1 by using sketches of size Õ(n1/c)
(note that for c = log n this gives a O(log n)-factor approx-
imation to the distances using sketches of size O(log n)).
Furthermore, our algorithm is simpler to implement. While
both algorithms sample seed sets of different sizes and find
the closest seed in each seed set, Thorup’s and Zwick’s al-
gorithm needs to store additional data in the sketch of a
node, namely all IDs of nodes in a seed set that are closer
than the nearest seed in the next seed set when ordered by
decreasing size. This adds more complexity to the offline
precomputation and also introduces some additional checks
beyond what we do in the online step. In this paper, we
demonstrate that the additional data in the sketch is not
required, and simply keeping the seed ID along with the
distance is sufficient.

We further improve on existing work by extending our
algorithms to directed graphs and evaluating them on large
graphs. We find in our experiments that even on a large web
graph, our algorithm gives very good estimates for both di-
rected and undirected distances – the distances are usually
accurate to within an additive error of 2 to 3. The fact
that our algorithm performs well for directed distances is
surprising as there is no known sketching algorithm for di-
rected distances; in fact, it is known that this is impossible
in the worst case for arbitrary directed graphs, which sug-
gests that the web graph has some special properties. Un-
derstanding the gap between the theoretical guarantee and
the experimental observation is an interesting area for future
investigation.

The essential idea behind our algorithm is the following:
In the offline computation, sample a small number of sets
of nodes in the graph (sets of seed nodes). Then, for each
node in the graph, find the closest seed in each of these seed
sets. The sketch for a node simply consists of the closest
seeds, and the distance to these closest seeds. Then, in the
online computation, one can use the distance to this closest
seed to estimate the distance between a given pair of nodes.
One method to do this is to check if there is a common node
between the two sketches. Given a pair of nodes u and v
one can estimate the distance between them by looking for
a common seed in their sketches. If w is a common seed in
the sketch of u and v then the distance can be estimated
by adding up the distances to the common seed w. We also
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note that our algorithm produces an upper bound on the
actual distance; whereas Bourgain’s algorithm produces a
lower bound.

Experimentally we observed that our algorithm performs
very well for estimating both directed and undirected graphs.
We conduct experiments on a 2002 crawl of the web graph.
We compare our estimates with precise distances computed
by Dijkstra’s algorithm between sampled pairs of nodes. The
actual undirected distances are in the range of 1 and 15, and
the directed distances (whenever connected by a directed
path) are in the range of 1 and 100. We sample pairs from
each of these distances for examining the performance. For
all pairs u, v with actual distance d(u, v), we compute the
median of the distance estimate obtained by each of our
algorithms. We do this independently for undirected and
directed distances.

3. OUR ALGORITHMS
We will now describe the algorithm to compute sketches

for each node that can be used to perform online distance
computations between a pair of nodes u and v. For simplic-
ity, we only work with undirected graphs in this section, and
generalize to directed graphs in Section 4.

We denote a graph by G, its nodes by V , edges by E, and
number of nodes |V | by n. The distance between u and v is
denoted by d(u, v). Our goal is to preprocess and store this
graph in such a way that given any pair of nodes u and v, we
are able to estimate the distance d(u, v) in real time using
a small amount of computation. It is important to keep
in mind that a web-scale graph contains tens of billions of
nodes and trillions of edges. The precomputation consists of
computing a sketch Sketch[u] for each node u. The real-
time computation of the distance between u and v should
involve only reading Sketch[u] and Sketch[v].

We will use d̃(u, v) to denote an estimate for d(u, v) ob-
tained by a sketching algorithm. Another notation that we
use in the paper is d(u,S) = minw∈S d(u, w), which is the
shortest distance between u and a set of nodes S ⊆ V .

Algorithm Offline-Sketch
As stated earlier, the essential idea in our algorithm is to
sample a set of seed nodes, and store the closest seed from
every node along with its distance. This can be done effi-
ciently by just one Breadth First Search (BFS) from the seed
set (note that it is even possible to find the nearest node in
the set from each node by passing node IDs appropriately
while performing the BFS). Given a node u and a seed set
S, the s ∈ S nearest to u is referred to as the seed of u in S.
We do this for log n sets of sizes that are different powers of
2 in function Offline-Sample (see Algorithm 1) which re-
turns the nearest seed and the distance to it in each of these
sets. Function Offline-Sketch (see Algorithm 2) repeats
this k times – each time using different random sets – and
returns the union of the samples. All of this is done offline
and stored as Sketch[u] for each node u in the graph.

In order to help in estimating the distance between a
source vertex u and destination vertex v, the seed vertex
must lie on a path between u and v. In order to lie on a di-
rected path, a vertex must have non-zero in- and out-degree.
Thus, we should consider only such vertices as candidates for
a seed set. In the undirected case, we should consider only
vertices with degree of at least 2.

Algorithm 1 Offline-Sample(G)

Input: An undirected graph G and a node u in the graph.
Output: Sample[u], A set of nearest seeds and their
distances for each node u.

1: Let V denote the set of vertices, let r = �log |V |�. Sam-
ple r + 1 sets of sizes 1, 2, 22, 23, ..., 2r respectively. In
each set, the samples are chosen uniformly at random
from all nodes. (As stated before, when sampling nodes
from V we may ignore nodes with degree < 2 as they
cannot be in the shortest path between a source and a
destination). Call the sampled sets S0, S1, . . . , Sr.

2: For each node u, for all these sets Si, compute (wi, δi)
where wi is the closest node to u in Si and δi =
d(u, wi) = d(u, Si).
This can be done for all nodes u efficiently with
just one BFS from each set Si. Sketch[u] =
{(w0, δ0), . . . , (wr, δr)}

Algorithm 2 Offline-Sketch(G)

Input: An undirected graph G and a node u in the graph.
Output: Sketch[u], the sketch of node u.

1: Run Offline-Sample(G) k times, each time sampling
independently at random.

2: Sketch[u] = Union of the Sample[u] returned by each
of the k runs.

The above candidate selection rule applies to any graph.
There are other rules that may improve the accuracy of our
algorithms further (for example, biasing the sampling pro-
cess towards high-degree nodes), but they are dependent
on the topology of the graph (for example, biasing toward
high-degree nodes is a bad strategy in a “dumbbell” graph);
therefore, we did not consider them in the paper.

Algorithm Online-Common-Seed
We now present our main algorithm that estimates distances
using the sketches. Given nodes u and v, algorithm Online-

Common-Seed (see Algorithm 3) approximates the distance
between them by looking at the distance from u and v to any
node w occurring in both Sketch[u] and Sketch[v]. The
length of the shortest path from u to v through w is d(u, w)+
d(w, v); note that both d(u, w) and d(w, v) are contained in
the sketches and do not need to be computed. We take the
minimum of d(u, w)+ d(w, v) over all such common seeds w

to be the estimated distance d̃(u, v). It is easily shown that
this distance estimated by Online-Common-Seed is always
an upper bound on the actual distance.

Observation 3.1. The estimated distance d̃(u, v) from
Online-Common-Seed(u,v) is an upper bound of the ac-
tual distance d(u, v).

Proof. The algorithm considers various nodes w that are
in the intersection of the two sketches of u and v. The
sketches contain exact distances d(u,w) and d(w, v) between
each w and u and v, respectively. By triangle inequality,
d(u, w)+d(w, v) ≥ d(u, v). Notice that we take the minimum
sum over several w, but for each of these nodes, the triangle
inequality holds. The observation follows.
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Algorithm 3 Online-Common-Seed(u,v)

Input: Nodes u and v from G between which the distance
is to be estimated.
Output: An estimate of d(u, v).

1: Obtain Sketch[u] and Sketch[v].
2: Find the set of common nodes w in Sketch[u] and

Sketch[v]. Note that there is at least one w for undi-
rected G assuming that G is connected, as we perform
a BFS from at least one set of size 1.

3: For each common node w, compute d(u, w) and d(w, v).
4: Return the minimum of d(u, w) + d(w, v), taken over all

such common w’s. If no common seed w is present, then
output ∞.

Theorem 3.2. The estimated distance d̃(u, v) returned by

Online-Common-Seed(u,v) for k = Θ̃(n1/c) in the sketch
computation gives with high probability1 a 2c−1 approxima-
tion to the actual distance for all pairs; d(u, v) ≤ d̃(u, v) ≤
(2c − 1)d(u, v).

Proof. Let d = d(u, v). Let Ar, Br denote balls of radius
rd around u and v respectively; that is, all nodes within
distance at most rd around u and v.

Consider the points in Ar ∪ Br and Ar ∩ Br. If one of
the seed sets S is such that it has exactly one seed w in the
union Ar ∪Br which is also in the intersection Ar ∩Br, then
w is a common seed in the sketch of u and v. This is because
it is the closest seed to both u and v. We will argue that
such a seed set exists and results in a common seed in the
sketch that is at distance at most d log n from both u and v.
For simplicity, let us consider the case when c = log n. Pre-

cisely, we observe that if |Ar∩Br|
|Ar∪Br| is at least some constant

(say 1/2), then when we take seeds with probability 1
|Ar∪Br| ,

there is a constant chance that exactly one seed is present
in the union which also happens to be in the intersection. If
seeds are sampled with probability 1

|Ar∪Br | , this event hap-

pens with probability at least 1/(2e) since with probability
1/e there is exactly one seed and further with probability
1/2 it lies in the intersection. Since we are trying seed set
sizes that are different powers of 2, the probability will be

constant for the closest power of 2. Thus, if |Ar∩Br|
|Ar∪Br| > 1/2

for any i in the range 1.. log n, then there is a constant proba-
bility of finding a common seed within distance d log n from

both u and v. If not, this means |Ar∩Br|
|Ar∪Br| ≤ 1/2 for all

1 ≤ i ≤ log n.
But note that Ar ∪Br ⊆ Ar+1 ∩Br+1 since the set on the

left hand side contains points at distance at most rd from
u or v, and further since d(u, v) = d, these points are at
distance at most (r + 1)d from both u and v implying that

they are all present in Ar+1 ∩Br+1. So if |Ar∩Br|
|Ar∪Br| ≤ 1/2 for

all 1 ≤ i ≤ log n, this means |Ar+1 ∪ Br+1| > 2|Ar ∪ Br|,
implying |Alog n ∪ Blog n| > n which is impossible. Thus

there must be a value of r such that |Ar∩Br|
|Ar∪Br| ≤ 1/2. Since

we try each size k times, for constant k, we can make the
probability of failure negligible. The same proof generalizes
to arbitrary c; we show that is some i, 1 ≤ r ≤ c, such

that |Ar∩Br|
|Ar∪Br| ≥ n−1/c; if we repeat k = Θ̃(n1/c) times, we

succeed with high probability, giving a 2c approximation.

1with high probability means with probability 1 − 1/nΩ(1)

Algorithm 4 Online-Bourgain(u,v)

Input: Nodes u and v from G between which the distance
is to be estimated.
Output: An estimate of d(u, v).

1: Obtain Sketch[u] and Sketch[v].
2: For each seed set S, extract d(u, S) from Sketch[u] and

d(v, S) from Sketch[v], and compute |d(u, S)−d(v, S)|.
3: Return the maximum |d(u, S)−d(v, S)| over all seed sets

S.

This can be strengthened to give a 2c − 1 approximation
by looking at the sets Ar ∪Bi−1 and Ar ∩Br−1 – note that
|Ar∩Br−1| = 1 and for any point in the intersection the sum
of the distances from u and v is at most i · d + (r − 1)d =
(2r − 1)d ≤ (2c − 1)d.

Algorithm Online-Bourgain
We compare the performance of our algorithm to that of
Bourgain’s well-known technique that embeds some metric
space into a low dimensional space. We describe this in
Online-Bourgain (see Algorithm 4). We note that the
same sketches are used as before. However, instead of find-
ing nodes in the intersection of both sketches, we find the
distance from v to all the seed sets and similarly the distance
from u to all the seed sets. The L∞-norm of the difference of
these two vectors gives a lower bound on the actual distance
between u and v.

Furthermore, Bourgain also proves that if we set k to
Θ(log n) (where k is the number of sets picked for each of
the O(log n) sizes), then the distances are accurate up to
constant factor of log n. By using seed sets of size powers
of 2 and using k sets of each size, one can prove theoret-
ical guarantees on the quality of estimates. We present a
slight alteration that can be extended to directed graphs.
While the intuition carries over to directed graphs, unfor-
tunately one can no longer prove a O(log n) approximation
ratio. However, we present the simple observation that the
returned distance estimate d̃(u, v) is a lower bound on the
actual distance d(u, v). Notice that in the algorithm, we con-
sider the absolute value of d(u, S) − d(v, S) for undirected
graphs. This is justified by showing in our proof that both
directions impose a lower bound, and hence the absolute
value does too.

Observation 3.3. The distance estimate d̃(u, v) returned
by Online-Bourgain(u,v) is a lower bound on the actual
distance d(u, v) from u to v.

Proof. The proof follows essentially from triangle in-
equality. We will show that for any set S of nodes |d(u, S)−
d(v, S)| ≤ d(u, v). It is sufficient to show that d(u, S) −
d(v, S) ≤ d(u, v) (as by symmetry this will also imply that
d(v, S) − d(u, S) ≤ d(u, v)). To see this, let d(v, S) =
d(v, v′) where v′ is the closest node to v in S. d(u, v′) ≤
d(u, v)+d(v, v′) by triangle inequality, which gives d(u, v′) ≤
d(u, v) + d(v, S). So d(u, v) ≥ d(u, v′) − d(v, S) ≥ d(u, S) −
d(v, S) since u′ is the closest node to u in S. Now the esti-

mate d̃(u, v) is obtained by taking the maximum of |d(u, S)−
d(v, S)| over different sets S used in the offline phase. But
since for each S, the difference is bounded by d(u, v), the
maximum is also bounded by d(u, v)
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Matousek [17] proved that Bourgain’s algorithm Online-

Bourgain gives a 2c − 1-approximation to distances using
sketches of size Õ(n1/c) However, note that this result holds
only for undirected graphs.

Theorem 3.4. The distance estimate d̃(u, v) computed by

Online-Bourgain(u,v) for k = Θ(n1/c) in the sketch com-
putation is with high probability an O(2c− 1) factor approx-

imation; Ω( d(u,v)
2c−1

) ≤ d̃(u, v) ≤ d(u, v).

Proof. Given in [3]

4. GENERALIZATION TO DIRECTED
GRAPHS

The algorithms presented in the previous section can be
easily extended to the directed case. However, there are
no known theoretical guarantees except for the upper and
lower bounds we have shown. We state the main differences
in the directed algorithms as compared to the undirected
algorithms by rewriting the changed subroutines.

Modification to Online-Common-Seed
As before, the accuracy of the upper bound improves with
the number of sets sampled in the offline sketch computing
phase. It is important to choose sets of different sizes (to
capture the right distance) as well as multiple sets of each
size (to reduce the sensitivity of finding exactly the same
nearest node from both u and v).

In the directed version of Offline-Sample, we compute
two sketches for each vertex u, one capturing distances to
the closest seeds, and one capturing distances from the clos-
est seeds. For each sampled S, we find w1 in S so that
d(u, w1) = d(u, S) (i.e. d(u, w1) is minimized over w1 ∈ S),
and w2 such that d(w2, u) = d(S,u) (i.e. d(w2, u) is min-
imized over w2 ∈ S). One can obtain this efficiently for
all nodes u with just two BFS runs from S. One run starts
with S and iterates by traversing along incoming edges. The
other run uses the outgoing edges.

The online distance computation algorithm then considers
all w in the sketches of u and v. However, to compute the
directed distance d(u, v), we consider all w in the sketch cor-
responding to the distance from u to S and for v, the sketch
corresponding to the distance from S to v. The distance esti-
mate is then computed as before, d̃(u, v) = d(u, S)+d(S, v).

The proof of the upper bound for the directed case fol-
lows in the same way as the undirected case, using triangle
inequality for directed distances.

Modification to Online-Bourgain
The algorithm for finding the lower bound estimate of d(u, v)
in directed graphs is a minor modification of the algorithm
for undirected graphs. We describe it in Online-Bourgain-

Directed(u,v) (see Algorithm 5).
One difference is that when we consider d(u, S)− d(v, S),

we use the maximum between this and 0 and not the abso-
lute value. This is crucial since directed graph distances do
not satisfy the symmetry property of a metric. We did not
have to consider this in the undirected algorithm as there
always was a path between every node and every S and dis-
tances are symmetric. However, in directed graph, there
may not be a path from/to a node to/from the set (as the
input graph need not be strongly connected). Therefore,
the quantity we are subtracting may turn out to be ∞ (so

Algorithm 5 Online-Bourgain-Directed(u,v)

Input: Nodes u and v from G between which the distance
is to be estimated.
Output: An estimate of d(u, v).

1: Obtain Sketch[u] and Sketch[v].
2: For each set distance in sketch corresponding to a set S,

extract d(u, S), d(S,u) and d(v, S), d(S, v).
3: Compute max{0, d(S, v)−d(S,u), d(u, S)−d(v,S)} and

find the maximum of this quantity over distances corre-
sponding to all sets used to compute sketch from outgo-
ing edge and incoming edge BFSs.

4: Maximum of the above two steps is returned as d̃(u, v).

taking max eliminates obtaining negative values). Notice
that we do not need to worry about the distance becom-
ing positive ∞ (this can be verified from the correctness of
the lower bound observation). Another minor difference is
that we compute two quantities here, d(S, v) − d(S, u) as
well as d(u, S)− d(v, S). This only gives us a stronger lower
bound, as we shall show that both quantities independently
are lower bounds.

Observation 4.1. The distance estimate d̃(u, v) returned
by Online-Bourgain-Directed(u,v) is a lower bound on
the actual distance d(u, v) from u to v.

Proof. We need to show that the triangle inequality
holds for both steps. Since we are taking the max with 0, it
is sufficient to show that both d(S, v)−d(S,u) ≤ d(u, v) and
d(u, S) − d(v, S) ≤ d(u, v). It is important to maintain the
directed distances here. Rearranging, these follow from tri-
angle inequality, using the sequence of arguments described
in Observation 3.3, for every set S. Since we are taking
the maximum over certain sets to compute d̃(u, v), this is a
lower bound of d(u, v).

In the following section, we compare the performance of
the algorithms on large web graphs.

5. EXPERIMENTS
Our experiments are performed on a large crawl of the web

graph. We present some basic statistics here. The crawl
was conducted in 2002 and is the result of a breadth-first
search crawl starting at www.yahoo.com. We conducted our
experiments on prefixes of the crawl. The number of crawled
web pages is 65,581,675 and the number of distinct URLs is
419,545,168. This means that there are about five times as
many nodes in the uncrawled “frontier” as in the explored
part of the graph. The total number of edges in the graph
is 2,371,215,893. The average out-degree of crawled pages
is 36.16, and the average in-degree of all pages (whether
crawled or not) is 5.65. The maximum out-degree and in-
degree are 27,764 and 1,402,576 respectively.

In order to evaluate our algorithm on a given graph, we
sampled 100 nodes at random. For each node v, we com-
puted the distance between v node and all other nodes u. In
the directed case, we computed the distance from all nodes
u to v (which is ∞ if there is no path from u to v). We
grouped the u’s by distance and selected (up to) 10 nodes
at random from each group, i.e. for each given distance.
This left us with a test set of (u, v, d) triples for each given
graph.
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Figure 1: Estimates of undirected distances
with k = 1
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Figure 2: Estimates of directed distances using
with k = 1
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Figure 3: Estimates of undirected distances us-
ing as a function of k
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Figure 4: Estimates of directed distances using
as a function of k

In order to conduct our experiments, we used the Scalable
Hyperlink Store [18], a distributed system that partitions
the web graph across many SHS servers, with each server
maintaining a portion of the graph in main memory. Our
implementation consists of an offline phase and an online
phase. During the offline phase, we select the log n seed
sets of exponentially increasing sizes and compute distances
between every node in the graph and its closest seed using
Dijkstra’s algorithm. For each seed set, we output a tem-
porary file consisting of a seedid, distance pair for each
vertex in the graph. At the conclusion of the offline phase,
we merge all the temporary files into a single sketch file con-
sisting of log n pairs for each vertex. In directed graphs, we
run the offline phase twice – once to compute distances from
seeds to vertices, and once from vertices to seeds. To imple-
ment Online-Common-Seed, we repeat the offline phase k
times. Finally, we merge the k (or 2k) files into a single file.

During the online phase, we read the seedid, distance

vectors of both the source and the destination vertex from
disk. So, each query involves two disk seeks. Given that
a disk seek takes several milliseconds while the subsequent

processing of the sketches takes only microseconds, our al-
gorithm is as fast in practice as Thorup’s and Zwick’s al-
gorithm, despite the fact that from a theoretical complex-
ity perspective, their algorithm has better time bounds for
the online computation, requiring O(c) time for a (2c − 1)-

approximation while ours requires Õ(n1/c).

Single seed set sampling (k=1)
In our data set, true pairwise undirected distances vary be-
tween 1 and 15. We sample pairs to cover most of these
distances and then query their sketches to find approximate
distances. The directed graph is not strongly connected.
But for pairs where there is a directed path, the distance
spans the range of 1 to 100.

Figure 1 plots the estimates obtained from the algorithms
Online-Common-Seed and Online-Bourgain respectively.
In both plots, the x-axis denotes the actual distance of the
sampled pair, the y-axis denotes the estimated distance.
Therefore, the x = y line corresponds to a perfect predic-
tion of the actual distance. We show curves for the mean,
median, 75th percentile and 25th percentile.
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Figure 5: Ratio of estimated distance to true
distance for different values of undirected true
distance
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Figure 6: Ratio of estimated distance to true
distance for different values of directed true
distance
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Figure 7: Distributions of the ratio of esti-
mated distance to true distance for undirected
distance d = 10
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Figure 8: Distributions of the ratio of esti-
mated distance to true distance for directed
distance d = 50

The same plot for directed distances is shown in Figure 2.
We note that only one set of each of the sizes has been sam-
pled to compute the sketch (i.e., k = 1). Recall that the dis-
tance returned by Online-Common-Seed is based on find-
ing common nodes in the sketches of the two query nodes.
On the other hand, the lower bound algorithm Online-

Bourgain is based on computing the L∞ distance between
distances of query nodes to sampled sets.

Consider the plots for undirected distances first. Notice
in Figure 1 that all the three quartiles produced by Online-

Common-Seed are fairly close to x = y. In fact, even
around the maximum true distance of 15, we obtain an upper
bound of about 18 even at the 75th percentile. This suggests
a 1.2-approximation ratio. Considering that all the previous
approaches can only guarantee a O(log n)-factor approxima-
tion (sometimes with large constants) and do not scale well,
this is a very good approximation. In the same figure, we
see that the lower bound produced by Online-Bourgain

is also reasonably good (steadily increasing). However, it is

noisier than the upper bound, and with a weaker guarantee,
of about 15/7 which is 2.14-approximate.

In the case of directed distances (again with just one set
sampled for each of the log n sizes), Figure 2 illustrates
a large gap between the estimates produced by Online-

Common-Seed and Online-Bourgain. While Online-

Common-Seed produces an extremely good 1.05-approximate
estimate of the true distance, Online-Bourgain performs
rather poorly. This is due to the fact that the number of
sampled sets was not enough to capture a directed path be-
tween many pairs of nodes. Indeed, it is very difficult to
capture a directed path through a sampled seed set when
there may be very few directed paths. In the following set
of experiments, we study the effect of larger sketches on the
performance of both algorithms.

Using larger sketches to improve the bounds
We can improve the large gap in the directed distance esti-
mation by additional sampling. We construct k = 20 sets of
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Figure 10: Effect of graph size on the estimated
undirected distance
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Figure 11: Effect of graph size in the estimated
directed distance
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Figure 12: Effect of the number of bits per seed
on the number of false positives - undirected
case

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0  4  8  12  16  20  24  28  32

fr
ac

tio
n 

of
 m

is
m

at
ch

es

number of bits per seed

fractional mismatches for k=3
fractional mismatches for k=5

fractional mismatches for k=10
fractional mismatches for k=15
fractional mismatches for k=20

Figure 13: Effect of the number of bits per seed
on the number of false positives - directed case

each of the log n different sizes, and use them to construct
the sketch of every node. The hope is to capture many more
directed paths between query nodes and the sets (which are
available in the sketch) since the total number of sets in the
sketch has gone up from Θ(log n) to Θ(k log n). This in turn
yields better estimates of the directed distance between the
two query nodes. The bounds computed using a larger num-
ber of sampled sets are plotted in Figure 3 and 4. Instead of
plotting the actual estimated distance, we plot the ratio of
estimated distance to true distance on the y-axis. Thus, this
value will be above the ideal y = 1 line for the upper bound
and below this line for the corresponding lower bound.

The sampling turns out to dramatically improve the upper
bounds. All three – median, 75th percentile, and 25th per-
centile approach y = 1 as the number of samples increase.
Note that the upper bound estimate reduces from a 1.6-
approximate value for k = 1 to a 1.25-approximate value for
k = 20. This shows that the algorithm Online-Common-

Seed is successful in computing directed distance estimates
to a high accuracy as well, provided sufficient sampling is

done in the offline sketching phase. On the other hand, the
lower bound from Bourgain’s algorithm still does not quite
match the performance of Online-Common-Seed though it
does produce a 1.85-approximate distance value for k = 20.

In the above experiment, we compute the quartile values
for the ratios over all distances. To visualize the effective-
ness of our algorithms for any given distance, we plot the
median value of the ratio of the estimated distance to the
actual distance for the undirected and directed cases in Fig-
ures 5 and 6 respectively. Further, we consider three values
of k, 1, 10, and 20, to also illustrate the effect of the num-
ber of samples. As these figures show, the accuracy of the
upper bound increases as the true distance increases. This
is explained by the low likelihood of two vertices having a
common seed in one of the smaller seed sets. This trend is
not observed for the lower bound where, in fact, the ratio
for the lower bound approaches a value close to 0 for large
distances. The second observation is that the number of
samples also helps in improving the distance estimates in
both directions, albeit more in the case of the upper bound.
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Figure 9: Fraction of non-covered (u, v) pairs for dif-
ferent k using Online-Common-Seed

We note that a sample size of k = 10 gives a good approx-
imation for true distances above 10. This suggests that we
can achieve good performance from Online-Common-Seed

using a reasonably small number of samples.
To illustrate the spread of the error in distance estimation,

we compute the distribution of the estimated distances for
a given distance. Figures 7 and 8 show the distribution of
the error for the lower and upper bounds where the distance
d = 10 is chosen for the undirected case and distance d = 50
is chosen for the directed case. We chose these values of
distance from the middle of the range for each case. Again,
we run the experiment for three values of k: 1, 10, and 20.
As we can see from the figures, there is a sharp concentration
of around 0.5 (2-approximate) for the lower bound that does
not change much with k. Further, the value of k does not
affect the the sharpness of the concentration. On the other
hand, for values produced by Online-Common-Seed, we
observe two trends. First, the sharpness of the concentration
increases with k. Second, the concentration shifts toward the
ideal value of 1 as k increases.

In the case of directed distances, Online-Common-Seed

produces a much better distribution with a concentration
around 1.05 while Online-Bourgain produces a concen-
tration close to 0.1. We see the concentrations shift slightly
toward the ideal value of 1.0 (from both directions) as the
value k increases showing the effectiveness of using more
number of samples.

In the earlier experiments, we ignored all pairs between
which our algorithms could not find a path. In the undi-
rected case there are no such pairs as our graph is connected.
To show that there are not many such entries in the directed
case, we compute for different values of k the fraction of sam-
pled pairs for which the algorithms fail to estimate a finite
distance. Figure 9 illustrates the trend in the fraction of
uncovered pairs as the number of samples increases. This
value quickly drops to 0 even as k increases slightly above 2.
This trend is observed for almost all the graphs. This result
combined with that in Figure 4 shows that our algorithm
finds a good approximation to the actual directed distance
between any given pair of vertices.

Effect of graph size
In another set of experiments, we varied the graph sizes by
choosing different prefixes of the breadth-first-search crawl
and estimated both directed and undirected distances for
a sampled set of vertex pairs. Specifically, we considered
graphs of sizes between 47 million and 419 million nodes.
The corresponding number of edges varied from about 171
million to 2.3 billion. Figures 10 and 11 illustrates the effect
of graph size on the estimation of undirected and directed
distances respectively. While there is no noticeable effect
on the estimated distance in the undirected case, Online-

Common-Seed tends to do better with larger graph sizes.
One explanation for this phenomenon could be that there
are likely to be more paths between nodes in a larger graph
and hence can be captured by the seed sets.

Effect of seed size
So far we have used 32-bit unique node identifiers to repre-
sent the seeds in our sketch computation. We will now ex-
plore the effect of lossy compression of the seeds. We hash
the 32-bit seed representation to a representation with fewer,
say b, bits. Note that the seeds are not used in Online-

Bourgain and hence the performance of this algorithm is
not affected. In the algorithm Online-Common-Seed, we
use the seeds in the sketch to identify the common seed in
the sketches of a given pair of nodes. Hashing the seed ID
into a representation with fewer bits might produce false
positives of common seeds in the process. In fact, the prob-
ability of two seeds hashing to the same value is 1/2b and
since the number of distinct pairs of seeds across the two
sketches grows quadratically in k, the total probability of a

false positive is proportional to k2

2b . Note that because of
such false positives, the algorithm may not necessarily re-
turn an upper bound of the true distance. Not surprisingly,
we observe that for small values of k and b, we obtain rea-
sonable accuracy in the estimates of the upper bound, i.e.,
we see a tiny fraction of false positives. Figures 12 and 13
show the fractional mismatches for different values of b and
k. In the undirected case, we need fewer bits to achieve the
same accuracy compared to the directed case. However, as
k increases, the number of bits required to reduce the false
positives also increases as the probability of a false positive
is proportional to k2. We observe that for k = 3 and 12
bits per seed, the fraction of mismatches is almost negligi-
ble. Further, the error in the estimated distance for k = 3
is also small (see Figures 3 and 4). This sketch size (in bits)
can be computed as (s + 8)k log n, where the log n factor
comes from the number of seed sets and s is the number
of bits per seed. The additional 8 bits store the distance.
Setting k = 3, s = 12 and the number of seed sets to 32, we
get a sketch size of 240 bytes for undirected graphs and 480
bytes for directed graphs.

6. CONCLUSIONS
We present an algorithm for obtaining sketches that sup-

port efficient distance queries. The sketches are computed
offline and distances between any pair of nodes can be es-
timated online by looking at their sketches. While there
has been theoretical work for this problem, few of the ap-
proaches scale to web graphs. We present an algorithm that
can approximate true distances and provide strong theoret-
ical guarantees for the upper bound achieved by our algo-
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rithm Online-Common-Seed. Furthermore, while all pre-
viously suggested algorithms estimated distances on undi-
rected graphs, our techniques can be extended to estimate
distances on directed graphs as well. We compare our algo-
rithm with Bourgain’s well-known algorithm based on em-
bedding graphs into low-dimensional metric spaces. The
lower bound given by Bourgain’s algorithm turns out to be
significantly weaker. It is unable to predict directed results
with any precision. For undirected graphs, while it is unable
to match our upper-bound algorithm in terms of accuracy,
it does give a reasonably good prediction.

We conduct extensive experiments of all the algorithms
proposed in this paper and compare it with true distances for
sampled pairs of nodes. The experiments are run on a crawl
of a large web graph. As far as we are aware, this is the first
practical work on distance oracles that has been adapted to
real data at this scale. We plan to run these algorithms on
other large graphs such as an Instant Messenger graph.
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