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Abstract

We propose a sketch-based sampling algorithm, which effectively exploits the data sparsity. Sam-

pling methods have become popular in large-scale data mining and information retrieval, where

high data sparsity is a norm. A distinct feature of our algorithm is that it combines the advan-

tages of both conventional random sampling and more modern randomized algorithms such as

local sensitive hashing (LSH). While most sketch-based algorithms are designed for specific sum-

mary statistics, our proposed algorithm is a general purpose technique, useful for estimating any

summary statistics including two-way and multi-way distances and joint histograms.

Keywords: Random Sampling, Sketches, Data Sparsity

1. Introduction

In databases, information retrieval, and machine learning, there has been considerable interest in

sampling techniques (Vempala, 1997; Indyk and Motwani, 1998; Lee et al., 1998; Surajit Chaud-

huri, 1998; Manku et al., 1999; Srinivasan, 1999; Achlioptas et al., 2001; Achlioptas and McSherry,

2001; Domingo et al., 2002; Charikar, 2002; Gilbert et al., 2003; Drineas and Mahoney, 2005) for ef-

ficiently computing summary statistics, useful for numerous applications including association rules

(Brin et al., 1997b,a; Sarawagi et al., 2000; Ravichandran et al., 2005), clustering (Sudipto Guha,

1998; Broder, 1998; Aggarwal et al., 1999; Haveliwala et al., 2000, 2002; Rocke and Dai, 2003),

histograms (Gilbert et al., 2002), query optimizations (Matias et al., 1998; Chaudhuri et al., 1999;

Dasu et al., 2002; Wu et al., 2003), duplicate detections (Brin et al., 1995; Broder, 1997), and more.

We consider a data matrix A of n rows and D columns. For example, A can be the term-by-

document matrix with n word types and D documents. In modern search engines, n ≈ 106 ∼ 107

and D ≈ 1010 ∼ 1011. In general, n is the number of data points and D is the number of “features.”

Three are at least three reasons why sampling can be useful.

1



LI, CHURCH, AND HASTIE

• Sampling can speed up computations. For example, the cost of computing AA
T can be

reduced from O(n2D) to O(n2Ds) by sampling Ds columns from A. AA
T is often called

“Gram matrix” in machine learning (especially kernels). Several methods for approximating

Gram matrix have been proposed, e.g., (Achlioptas et al., 2001; Drineas and Mahoney, 2005).

• Sampling can save memory space. The original data are usually so large that they have to

be stored on disks. Disk operations are often the bottleneck in databases and search engines,

e.g., (Brin and Page, 1998). A sample may be small enough to reside in the main memory.

• Sampling can generate stable fingerprint. Various hashing or sketching algorithms, e.g., (Ra-

bin, 1981), can produce a “sketch” of the data, which is relatively insensitive to changes in

the original data. In a broad sense, these sketching algorithms (including Latent Semantic

Indexing (Deerwester et al., 1999)) can be considered as sampling methods.

There are two basic strategies of sampling. The conventional approach is to draw random sam-

ples from the data. This approach is simple but often suffers from inaccuracy (i.e., large variances).

A different strategy is sketching, which may be regarded as special-purpose lossy data com-

pressions. Sketching involves scanning the data at least once. For example, random projections

(Vempala, 2004) multiply A with a random matrix R ∈ R
D×k, whose entries are (typically) i.i.d.

samples of standard normals. AR preserves pairwise distances in the expectation at the cost of

O(nDk+n2k), a significant reduction when k ≪ min(n,D). Sketching algorithms are often more

accurate than random sampling because each “sample” of sketches contains more information than

a mere random sample. See (Indyk and Motwani, 1998; Indyk, 2000, 2001; Charikar, 2002) for

more examples of sketching , local sensitive hashing (LSH), and geometric embedding.

The disadvantage of sketching methods is that they are designed for specific summary statistics.

For example, random projections may not be used to estimate 1-norm distance, which is often more

robust than 2-norm. Database query optimization requires estimating multi-way joins while many

distance-preserving techniques including random projections are restricted to pairwise distances.

There has been interest in combining random sampling with sketching, for example, data

squashing, (DuMouchel et al., 1999; Madigan et al., 2002; DuMouchel and Agarwal, 2003; Owen,

2003) which generates pseudo data points with weights to approximate the original data distribution.

We propose a new sketching-based sampling algorithm that effectively exploits the data sparsity.

1.1 Data Sparsity

Large-scale datasets are often highly sparse, for example, the term-by-document matrix. While

functional words such as “THE” and “A” occur in almost every English document, most words only

appear in a very small fraction of documents (Dhillon and Modha, 2001). It is often the case that

these infrequent, words such as names, are interesting (e.g., in search engines). Another example

is the market basket data, which are also very sparse because typically a customer only purchases a

very small fraction of products.

For sparse data, convectional random sampling may not work well because most of the samples

are zeros. Sampling fixed Ds columns from the data matrix is also inflexible because different rows

may have very different sparsity factors, defined as the percentages of non-zero elements.
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1.2 Our Method, A Brief Introduction

Our sketch-based algorithm only samples the non-zero elements with flexible sample sizes for dif-

ferent data points. To better explain our method, we start with constructing random samples from a

data matrix as shown in Figure 1. Then we show how to generate equivalent random samples using

sketches in Figure 2.

In Figure 1, assuming that the column IDs are uniform at random (we will soon discuss how to

achieve this), we can simply take the first Ds columns from the data matrix of D columns (Ds ≪ D
in real applications).

 

1   2   3   4   5   6   7   8   9   10  11  12  13  14  15

0   1   0   2   0   1   0   0   1    2    1    0    1    0    2    

1   3   0   0   1   2   0   1   0    0    3    0    0    2    1     

1

2

u

u

u3 0   0   1   4   2   0   1   0   3    0    0    2    0    1    0     

Figure 1: A data matrix with D = 15. If the column IDs are random, the first Ds = 10 columns

constitute a random sample. ui denotes the ith row in the data matrix.

.

For sparse data, we only need to store the non-zero elements in the form of a tuple “ID (Value),”

where “ID” is the column ID of the entry in the original data matrix and “Value” is the value of that

entry. This structure is often called “postings” (or inverted index). We denote the postings by Pi for

each row ui. Figure 2(a) shows the postings for the same data matrix in Figure 1. The tuples are

sorted ascending by the IDs.

P  :   1 (1)   2 (3)   5 (1)   6 (2)     8 (1)   11 (3)   14 (2)   15 (1)  2

2

1P  :   2 (1)   4 (2)   6 (1)   9 (1)   10 (2)   11 (1)   13 (1)   15 (2)

P  :   3 (1)   4 (4)   5 (2)   7 (1)     9 (3)   12 (2)   14 (1)     

(a) Postings

2K  :   1 (1)   2 (3)   5 (1)   6 (2)     8 (1)   11 (3)   
1

K  :   2 (1)   4 (2)   6 (1)   9 (1)   10 (2)   

3K  :   3 (1)   4 (4)   5 (2)   7 (1)   9 (3)     12 (2)  

(b) Sketches

Figure 2: (a) Postings consist of tuples in the form “ID (Value),” where “ID” is the column ID of

the entry in the original data matrix and “Value” is the value of that entry. (b) Sketches

are simply the first few entries of postings. In this example, K1, K2, and K3, are the

first k1 = 5, k2 = 6, and k3 = 6 elements of P1, P2, and P3, respectively. Let Ds =
min(max(ID(K1)),max(ID(K2)),max(ID(K3))) = min(10, 11, 12) = 10. We should

then exclude the entries 11(3) in K2 and 12(2) in K3 from the samples.

We sample directly from beginning of the postings as shown in Figure 2(b). We call the samples

“sketches.” A sketch, Ki, of postings Pi, is the first ki entries (i.e., the smallest ki IDs) of Pi. The

central observation is that if we exclude all elements of sketches whose IDs are larger than

Ds = min (max(ID(K1)),max(ID(K2)),max(ID(K3))) ,

we can get exactly the same samples as if we directly sampled the first Ds columns from the data

matrix in Figure 1. This way, we can convert sketches into random samples by conditioning on Ds,
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which we do not know in advance. For example, when estimating pairwise distances for all n data

points, we will have
n(n−1)

2 different values of Ds.

Our algorithm consists of the following steps:

• Construct sketches for all data points.

• Construct equivalent random samples from sketches online. Depending on the goal, we can

construct different random samples from the same sketches.

• Estimate the original space. This step can be very simple, by scaling up (by a factor of D
Ds

)

any summary statistics computed from the samples. In this study, we will show that we can

often do better if we take advantage of the marginal information. The estimation task will be

slightly more involving but still follows simple statistical principles.

Readers may have noticed that our sketch construction is similar to Broder’s approach(Broder,

1997) with some important distinctions. We will compare with Broder’s sketches in Section 3.4.

1.3 Paper Organization

2. Theoretical Framework

This section studies in more details why our sketch-based sampling algorithm works.

Compared with conventional random sampling, which randomly selects Ds columns from the

data matrix A of D columns, our algorithm only samples the non-zero elements and offers the

flexibility of varying the sample (sketch) sizes according to the sparsity of each row of data.

Compared with other sketching algorithms, our method has the distinct advantage that we con-

struct random samples online. Thus, our algorithm can estimate any summary statistics, not re-

stricted to, say, pairwise distances. Statistical tools for random sampling are abundant.

As indicated in Figures 1 and 2, in order for our algorithm to work, we have to make sure that

the columns are random. This can be achieved in various ways, e.g., hashing (Rabin, 1981; Broder,

1997). For simplicity, we apply a random permutation1 , denoted by π, on the column IDs, i.e.,

π : Ω → Ω, Ω = {1, 2, 3, ...,D}. (1)

Let π(Pi) denote the postings Pi after permutation. Recall a sketch Ki is the ki smallest elements

in π(Pi). Thus, we have to scan π(Pi) to find the ki smallest. This takes time O(D) assuming

ki ≪ D. Therefore, generating sketches for A ∈ R
n×D costs O(nD), or O(

∑n
i=1 fi), where fi is

the number of non-zero elements in the ith row, i.e., fi = |Pi|.
Apparently it is reasonable to assume that fi’s are known. In general, we can assume that all

marginal information (e.g., marginal norms, marginal histograms) are known.

2.1 Properties of Ds

The effective sample size Ds is computed online. Suppose we are interested in some summary
statistics (e.g., multi-way associations) involving data u1, u2, ..., um, then

Ds = min (max(ID(K1)), max(ID(K2)), ...,max(ID(Km))) . (2)

1. Generating a uniform sample of random permutation on Ω = {1, 2, 3, ..., D} is similar to card shuffling (Aldous and

Diaconis, 1986). A well-known algorithm in (Knuth, 1997, Algorithm 3.4.2.P) takes O(D) time.
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We have two important approximations, justified in Appendix A.

E

(

Ds

D

)

≈ min

(

k1

f1
,
k2

f2
, ...,

km

fm

)

, (3)

E

(

D

Ds

)

≈ max

(

f1

k1
,
f2

k2
, ...,

fm

km

)

, (4)

which are quite intuitive. Since the column IDs are assumed to be uniform in Ω = {1, 2, ...,D} at

random, it is expected that E
(

max(ID(Ki))
D

)

≈ ki

fi
. From (2), we can expect that (3) holds with high

accuracy. (4) is just the reciprocal. In fact, in our experiments, we observe that (3) and (4) are very

accurate when ki ≥ 10 ∼ 20. We will use (3) and (4) as if they were exact.

We define fi

D
to be the sparsity factor of row ui. The more sparse, the more efficient our algo-

rithm. From (3) and (4), we can infer that Ds ≈ kD
f

(suppose all fi = f and ki = k). If f
D

= 10−3,

then Ds ≈ 103k, i.e., 10 sketch samples can be equivalent to 104 regular random samples!

2.2 Estimation Methods

The estimation task can be very simple. Since our algorithm generates equivalent random samples,

we can estimate the original space from samples by a simple scaling.

An important part of our work is to develop estimators taking advantage of the marginal infor-

mation, which in many situations, can improve the accuracy substantially. For example, estimating

two-way contingency tables may benefit considerably from knowing the margins.

We will focus on the following scenarios:

• Two-way and Multi-way associations in boolean data.2

• Histograms in binned data (including integer-valued data).

• Inner products in general (real-valued) data.

2.3 Evaluations

Although some MSN Web crawl data are tested to verify the theoretical results, most of our eval-

uations will be based on comparisons with well-known algorithms in terms of the estimation vari-

ances.3 We will show that

• In boolean data, our algorithm is roughly twice as accurate as Broder’s well-known (min-

wise) sketch method in estimating two-way associations or resemblance.

• In boolean data, our algorithm is (almost) always more accurate than random projections.

• Our algorithm is about the same as random projections in normal-like data. Random projec-

tions can be more accurate in heavy-tailed data, while our algorithm can be more accurate in

nearly independent data or highly sparse data.

2. Some of the results on two-way and multi-way associations in boolean data were reported in a technical report (Li

and Church, 2005). We include these results to give a complete description of our algorithm.

3. The variances serve two main purposes. First, we can compare our method with other algorithms by the variances.

Second, we can choose sample sizes by controlling variances. Because all estimators we study are single-modal and

either unbiased or asymptotically unbiased, variances often suffice for analyzing the estimation errors in practice.
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3. Two-way and Multi-way Associations in Boolean Data

Boolean data (i.e., taking values in {0, 1}) are important in many applications. For example, the

market basket data are often boolean. The term-by-document matrix is sometimes quantized to be

boolean. In databases, multi-way set intersections often do not consider duplicates (if any) hence

also involve only boolean data. With boolean data, the representation of sketches, i.e., the tuple “ID

(Value)” can be simplified because we only need the column IDs.

Suppose we are interested in the associations (intersections) among m rows of boolean data,

which in terms of postings, are denoted by P1, P2, ..., Pm. There are N = 2m different combinations

of intersections, denoted by x1, x2, ..., xN :

a = x1 = |P1 ∩ P2 ∩ ... ∩ Pm−1 ∩ Pm|,
x2 = |P1 ∩ P2 ∩ ... ∩ Pm−1 ∩ ¬Pm|,
...,

xN−1 = |¬P1 ∩ ¬P2 ∩ ... ∩ ¬Pm−1 ∩ Pm|,
xN = |¬P1 ∩ ¬P2 ∩ ... ∩ ¬Pm−1 ∩ ¬Pm|,

which can be directly related to the binary representation of integers (see Table 1). Here we also

denote x1 = a, which is our symbol for intersections and inner products.

Table 1: We number x1, x2, ..., xN according to binary numbers. A “0” indicates that Pj is included

in the intersection, a “1” indicates the complement. This way, the binary representation of

the subscript of xi minus 1 (i.e, i− 1) corresponds to the set intersections. For example, if

m = 3, the binary representation of 4 is “1 0 0,” indicating x5 = |¬P1 ∩ P2 ∩ P3|.

P1 P2

x1 0 0
x2 0 1
x3 1 0
x4 1 1

(a) m = 2

P1 P2 P3

x1 0 0 0
x2 0 0 1
x3 0 1 0
x4 0 1 1
x5 1 0 0
x6 1 0 1
x7 1 1 0
x8 1 1 1

(b) m = 3

For each Pi, we take the smallest ki elements to form a sketch, Ki. Let

Ds = min{max(K1),max(K2), ...,max(Km)}.

After excluding the elements in all Ki’s that are larger than Ds, we intersect the trimmed sketches

to generate the sample counts. The samples are denoted by S = [s1, s2, ..., sN ]T. Similarly, we

let the original space X = [x1, x2, ..., xN ]T. Conditioning on Ds and assuming “sample-with-
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replacement4 ,” the samples follow a multinomial distribution (conditional on Ds, which is random)

Pr(S|Ds;X) ∝
N
∏

i=1

(xi

D

)si ∝
N
∏

i=1

xsi

i . (5)

The most straightforward (unbiased) estimator would be

x̂i,MF =
D

Ds

si, 1 ≤ i ≤ N (6)

where we use the subscript “MF” to indicate “Margin-free,” i.e., not using any marginal information.

From the property of a multinomial distribution, we can compute the variance of x̂i,MF

Var (x̂i,MF ) = E (Var (x̂i,MF |Ds))

=E

(

D2

D2
s

Ds

(xi

D

) (

1 − xi

D

)

)

= E

(

D

Ds

)

1
1
xi

+ 1
D−xi

≈max

(

f1

k1
, ...,

fm

km

)

1
1
xi

+ 1
D−xi

. (7)

3.1 A Margin-constrained MLE Estimator

We can improve the estimates using the margins, denoted by F = [f1, f2, ..., fm,D]T, where fi =
|Pi|. The margin constraints can be represented in a linear matrix equation CX = F, where C is

the constraint matrix, e.g.,

C =

⎡

⎣

1 1 0 0
1 0 1 0
1 1 1 1

⎤

⎦ , (m = 2) C =

⎡

⎢

⎢

⎣

1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1

⎤

⎥

⎥

⎦

, (m = 3) (8)

which basically revert the bit values in Table 1. Note that C is generated automatically.

The margin-constrained maximum likelihood estimator (MLE) amounts to a standard convex

optimization problem,

minimize − Q = −
N

∑

i=1

si log xi,

subject to CX = F, and X 
 S, (9)

where X 
 S is a compact representation for xi ≥ si, 1 ≤ i ≤ N . This program can be solved by

standard methods such as the Newton’s method (Boyd and Vandenberghe, 2004, Chapter 10.2).

Note that the total number of constraints is m + 1 and the total number of variables (cells) is

N = 2m, i.e., the number of degrees of freedom would be 2m − (m + 1), increasing exponentially

4. Since Ds ≪ D, it is reasonable to assume “sample-with-replacement” for simplicity. However, this assumption

is not necessary if we do not intend to take advantage of the margins, as the margin-free estimator x̂i,MF is still

unbiased by the property of a multivariate hypergeometric distribution. Assuming “sample-with-replacement” will

slightly over-estimate the variance. See (Rosen, 1972a,b) for rigorous analysis of “sample-without-replacement.”
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fast. Therefore, we expect that margins will not help much when (e.g.,) m > 4. Margins help the

most when m = 2, i.e., only one degree of freedom. When m ≤ 4, this small optimization problem

can be solved very easily.

Historical note Estimating contingency tables under marginal constraints dated back to 1940’s,

in studying the census of population data (Deming and Stephan, 1940), where the marginal infor-

mation was available. Deming and Stephan (1940) developed a straightforward iterative estimation

method called iterative proportional scaling. They first scaled the contingency table row-wise to sat-

isfy the row marginal constraints then scaled the table column-wise to satisfied the column marginal

constraints and repeated the procedure iteratively till convergence. They hoped that this procedure

could minimize a chi-square statistic (in the same form of a weighted least square problem), which

is different from the maximum likelihood approach. Later Stephan (1942) proved the convergence

of the iterative proportional scaling algorithm in the case of two-way contingency tables and also

showed that this algorithm only gave an approximate solution to the least square problem. Fienberg

(1970) further proved the convergence of iterative proportional scaling in the general case.

We experiment with the iterative proportional scaling algorithm and find out that its solutions

are often close to the solutions given by (9).

It turns out that for the important special case of m = 2, there is a closed-form solution. The

estimator for x1 = a = |P1 ∩ P2| is the solution to a cubic equation

s1

x1
− s2

f1 − x1
− s3

f2 − x1
+

s4

D − f1 − f2 + x1
= 0. (10)

3.2 Covariance Estimation

In Appendix B, we provide the (asymptotic) covariance matrix ofX̂ estimated by MLE. In particu-

lar, for m = 2, we can write down the variance of x̂1,MLE explicitly as

Var(x̂1,MLE) = E

(

D

Ds

)

1
1
x1

+ 1
f1−x1

+ 1
f2−x2

+ 1
D−f1−f2+x1

. (11)

Figure 3 plots the ratio
Var(x̂1,MLE)
Var(x̂1,MF ) (for m = 2), indicating that considering the margins may

significantly improve the estimates in certain region of the data.

3.3 Some Experimental Results

We randomly picked words from some MSN Web crawl data (quantized to be binary). We computed

all two-way, three-way, and four-way associations and averaged the results in Figure 4. As expected,

margins help the most for the two-way case.

3.4 Comparisons with Broder’s Sketches

Our sketch construction is the same as Broder’s sketches, when estimating two-way associations in

boolean data. Broder’s sketches (Broder et al., 1998, 2000; Charikar, 2002; Broder et al., 2003) were

originally introduced to remove duplicate documents from the Alta Vista Web crawl (Broder, 1997;

Broder et al., 1997), though they have been applied subsequently to a variety of applications (Broder,
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Figure 3: The ratio
Var(x̂1,MLE)
Var(x̂1,MF ) indicates that Var(x̂1,MLE) ≤ Var(x̂1,MF ) and margins may im-

prove estimates considerably in certain region of the data. Here we consider f2 = 0.2f1

and f2 = f1 in panels (a) and (b), respectively, which are quite similar. We do not see

much change in other cases (e.g., f2 = 0.5f1). In each panel, different curves are for

different f1’s, ranging from 0.05D to 0.95D spaced at 0.05D. Recall a = x1.
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Figure 4: We combine the results of estimating two-way, four-way, and four-way associations, us-

ing some MSN Web crawl data. The average relative improvement of the mean square

error (MSE) of x̂1, suggests that the MLE is consistently better but the improvement de-

creases monotonically as the order of associations increases. The sampling rate = ki

fi
,

ranging from 0.2% to 100%.

1998; Chen et al., 2000; Haveliwala et al., 2000; Mitzenmacher and Owen, 2001; Haveliwala et al.,

2002; Ramaswamy et al., 2003; Poon and Chang, 2003) in data mining and information retrieval.

Border’s sketches was designed for estimating the resemblance between sets P1 and P2, defined

as
|P1∩P2|
|P1∪P2| , which can be written as a

f1+f2−a
. Although it is not impossible to extend the concept

of resemblance to multiple sets, no prior literature has done that and it appears not straightforward

to convert multi-way resemblance to multi-way associations. Extending Broder’s sketches to real-

valued data does not seem straightforward either, though (Charikar, 2002) pointed out such an

extension may be possible as shown in (Kleinberg and Tardos, 1999).
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We shall point out that even in the case of two-way associations (for boolean data), our esti-

mation method is always more accurate than Broder’s sketches, by roughly halving the estimation

variances. Appendix C derives the variance formula for Broder’s sketches

Var(x̂1,B) =
1

k

a(f1 + f2 − 2a)(f1 + f2 − a)2

(f1 + f2)2
, (12)

where k is the sketch size, which has to be fixed in Broder’s construction, while our method offers

more flexibility. For example we can let k1 = |K1| and k2 = |K2|, with k1

f1
= k2

f2
, i.e., so-called

“proportional sampling.”

We plot
Var(x̂1,MLE)

Var(x̂1,B) in Figure 5 (with k1 = k2 = k) and Figure 6 (with “proportional sam-

pling”). These figures indicate that our algorithm always has smaller variances, as can be shown

algebraically. The ratios are roughly 1
2 .
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Figure 5: The ratios
Var(x̂1,MLE)

Var(x̂1,B) indicate that our algorithm always has smaller variances than

Broder’s sketches (when k1 = k2 = k). The panels (a), (b), (c) and (d) correspond

to f2 = 0.2f1, f2 = 0.5f1, f2 = 0.8f1 and f2 = f1, respectively. Different curves are

for different f1’s, from 0.05D to 0.95D, spaced at 0.05D.

4. Histograms In Binned Data

In this section, we generalize the concept of associations to histograms. Histograms are useful for

answering queries like Pr(1 < u1 < 2 & u2 > 2). Histograms contain more information than
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Figure 6: Compared with Figure 5, proportional sampling can reduce
Var(x̂1,MLE)

Var(x̂1,B) .

the inner product a = uT
1u2, which measures the similarity between data points. While univariate

histograms are easy to compute and store, joint histograms are much more difficult especially for

high-order joins.

Our sketch algorithm provides a simple solution for sparse data. In this case, the sketches store

“ID (Binned data value).” Without loss of generality, we number each bin {0, 1, ...} as shown in

Figure 7(a). We can also consider the data are the generalization of boolean data. For example, the

data may take values in {0, 1, 2} instead of only in {0, 1}.

u1

u2  

1   2   3   4   5   6   7   8   9   10  11  12  13  14  15

0   1   0   2   0   1   0   0   1    2    1    0    1    0    2    

1   3   0   0   1   2   0   1   0    0    3    0    0    2    1     

(a) A data matrix (integers)

u2
u1       0    1    2    3

1    2    0    1    2     5 

2    2    1    0    0     3 

0    3    3    1    0     7 

      7    4    2    2      

(b) Contingency

table

u2
u1       0    1    2    3

 1    1    0    1    1     3
0    2    3    0    0     5 

2    2    0    0    0     2 
      5    3    1    1      

(c) Sample table

Figure 7: (a): A data matrix of binned (integers) data, D = 15. The entries of u1 ∈ {0, 1, 2} and

u2 ∈ {0, 1, 2, 3}. We can construct a 3 × 4 contingency table for u1 and u2 in (b). For

example, in three columns (j = 3, j = 7, and j = 12), we have u1,j = u2,j = 0, hence

the (0,0) entry in the table is 3. Suppose the column IDs of the data matrix are random, we

can construct a random sample by taking the first Ds = 10 columns of the data matrix.

A corresponding sample contingency table is then constructed in (c).

Histograms can be conveniently represented by contingency tables, e.g., Figure 7(b). Here, we

only consider two-way histograms for the simplicity of presentation. The notation in this section

is slightly different from that in Section 3. We denote the original contingency table by X =
{xi,j}I

i=0
J
j=0. Similarly, we denote the sample contingency table by S = {si,j}I

i=0
J
j=0. An example

of sample contingency table is shown in Figure 7(c) by taking the first Ds = 10 columns from the

binned data matrix. Of course, we generate the equivalent sample table online using sketches.

11
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4.1 Estimations

Conditioning on Ds and assuming “sample-with-replacement,” the sample contingency table S =
{si,j}I

i=0
J
j=0 follows a multinomial distribution. Therefore we can estimate the original table in a

straightforward fashion:

x̂i,j,MF =
D

Ds

si,j, (13)

Var (x̂i,j,MF ) = E

(

D

Ds

)

1
1

xi,j
+ 1

D−xi,j

. (14)

Next, we would like to take advantage of marginal histograms, i.e., the row and column sums

of the contingency table. There are I + 1 row sums and J + 1 column sums. The total number of

degrees of freedom would be (I + 1) × (J + 1) − (I + 1) − (J + 1) + 1 = I × J .5

When all margins are known, we expect to estimate the table more accurately, especially when

the number of degrees of freedom I × J is not too large. Denote the row sums by {xi+}I
i=0 and the

column sums by {x+j}J
j=0. We use a maximum likelihood estimator (MLE) to estimate xi,j under

marginal constraints, which amounts to a convex program:

Minimize −
I

∑

i=0

J
∑

j=0

si,j log xi,j

such that

J
∑

j=0

xi,j = xi+,
I

∑

i=0

xi,j = x+j , xi,j ≥ si,j, (15)

which can be solved easily using any standard algorithms such as Newton’s method. We can also

use the more straightforward iterative proportional scaling algorithm for approximate solutions.

The estimated table cells are denoted by x̂i,j,MLE.

One can also estimate the inner product a = uT
1u2 from the estimated contingency table because

a = uT
1u2 =

I
∑

i=1

J
∑

j=1

(ij)xi,j . (16)

Therefore, we can estimate a by

âMLE,c =

I
∑

i=1

J
∑

j=1

(ij)x̂i,j,MLE , (17)

where the subscript “c” indicates that a is computed from contingency tables. Similarly, we can

have âMF,c.

Appendix D derives the variances of x̂i,j,MLE and âMLE,c.

4.2 Numerical Examples

Two words “THIS” and “HAVE” are taken from a chunk of MSN Web crawl data (D = 216). The

data are quantized into a few histogram bins. Two experiments are conducted, with 5 bins and 3

bins, respectively, as shown in Table 2.

5. Note that the sum of the row sums has to be equal to the sum of the column sums, which is equal to D (sum of all

cells). Therefore, the effective number of constraints is I + J + 1, instead of I + J + 2.

12
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Table 2: The two word vectors “THIS” and “HAVE” are quantized. (a) Exp #1: 5 bins numbered

from 0 to 4. (b) Exp #2: 3 bins from 0 to 2.

Bin ID Data

0 0
1 1 ∼ 2
2 3 ∼ 4
3 5 ∼ 10
4 > 10

(a) Exp.#1

Bin ID Data

0 0
1 1 ∼ 2
2 > 3

(b) Exp.#2

The two (quantized) word vectors are sampled by sketches with sketch sizes ranging from 5

to 200. Sample contingency tables are then constructed (online) from sketches and the original

contingency tables are estimated using both margin-free (MF) and MLE estimators.

How to evaluate the results? A chi-squared statistic is probably appropriate, but we prefer not to

deal with the case in which some of cells are zeros. For simplicity, we evaluate the results in terms

of a, the inner product.

Figure 8 compares the empirical variances with the theoretical predictions for âMF,c and âMLE,c.

The figure verifies that our theoretical variances are accurate at reasonable sketch sizes (e.g., ≥ 10 ∼
20). The errors are mostly due to the approximation E

(

D
Ds

)

= max
(

f1

k1
, f2

k2

)

. Also, notice that in

n this case, the marginal histograms help considerably.
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(a) Exp. #1
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(b) Exp. #2

Figure 8: The inner product a (after quantization) between “THIS” and “HAVE” is estimated by

both âMF,c and âMLE,c. Results are reported in

√
Var(â)

a
. The two thin dashed lines both

labeled “theore.” are theoretical variances, which match the empirical values well espe-

cially after sketch sizes ≥ 10 ∼ 20. In this case, marginal histograms help considerably.

5. Inner Products In General Data

This section concerns general (real-valued) data, in particular, estimating pairwise inner products.

We assume that the data are also highly sparse (mostly zeros) hence our sketch-based sampling

algorithm can be useful.
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Again, we construct sketches for all data points {ui}n
i=1 ∈ R

D. We then construct equivalent

random samples (online) when we need to estimate a = uT
1u2. Suppose the computed effective

sample size is Ds. We use ũi,j , j = 1 to Ds, to denote these random samples in ui.

The obvious estimator of a = uT
1u2 is

âMF =
D

Ds

Ds
∑

j=1

ũ1,j ũ2,j, (18)

Var (âMF ) = E

(

D

Ds

)

⎛

⎝

D
∑

j=1

u2
1,ju

2
2,j −

a2

D

⎞

⎠ . (19)

Basically, âMF estimates the population correlation from the sample correlation.

We would also like to consider the marginal information such as m1 = ‖u1‖2, m2 = ‖u2‖2.

However, without making further assumptions on the data distribution, we can not conduct conven-

tional maximum likelihood estimations. We have many options. We could quantize the data so that

we can use the contingency table estimation technique described in Section 4. We could also use

a non-parametric maximum likelihood such as the “Empirical Likelihood,” (Owen, 2001) which

amounts to solving a convex optimization problem. A Bayesian approach is also reasonable. This

is a general statistical model selection/inference problem.

A practical solution is to assume some parametric form of the data distribution based on prior

knowledge; and then solve an MLE considering various of constraints. For example, when the data

are not “too far” from normal, we could assume normality on the data. This is often the case in

many important applications. Take the term-by-document matrix as an example. When the popular

logarithmic weighting is applied, the data become approximately normal.6 Therefore, we consider

the following estimator based on the normality is practically useful.

5.1 An MLE Assuming Normality

Suppose the samples (ũ1,j, ũ2,j) are i.i.d. normal with moments determined by the population

moments, i.e.,
[

ṽ1,j

ṽ2,j

]

=

[

ũ1,j − ū1

ũ2,j − ū2

]

∼ N

([

0
0

]

, Σ̃

)

, (20)

Σ̃ =
1

Ds

Ds

D

[

‖u1‖2 − Dū2
1 uT

1u2 − Dū1ū2

uT
1u2 − Dū1ū2 ‖u2‖2 − Dū2

2

]

=
1

Ds

[

m̈1 ä
ä m̈2

]

,

where ū1 =
∑D

j=1 u1,j/D, ū2 =
∑D

j=1 u2,j/D are the population means. m̈1 = Ds

D

(

‖u1‖2 − Dū2
1

)

,

m̈2 = Ds

D

(

‖u2‖2 − Dū22
)

, ä = Ds

D

(

uT
1u2 − Dū1ū2

)

. Suppose that ū1, ū2, m1 = ‖u1‖2 and

m2 = ‖u2‖2 are known, an MLE for a = uT
1u2, denoted by âMLE,N (the subscript “N” for “nor-

mal”), is then

âMLE,N =
D

Ds

ˆ̈a + Dū1ū2, (21)

6. Although heavy-tailed data are ubiquitous (Leland et al., 1994; Faloutsos et al., 1999; Newman, 2005), it is a common

practice to carefully weight the data. Various term weighting schemes have been proposed e.g., (Yu et al., 1982; Salton

and Buckley, 1988; Dumais, 1991; Greiff, 2003; Liu et al., 2001). It is well-known (e.g., (Leopold and Kindermann,

2002; Rennie et al., 2003; Lan et al., 2005)) that choosing an appropriate term weighting method is vital.
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where ˆ̈a is the solution to a cubic equation:

ä3 − ä2
(

ṽT
1 ṽ2

)

+ ä
(

−m̈1m̈2 + m̈1‖ṽ2‖2 + m̈2‖ṽ1‖2
)

− m̈1m̈2ṽ
T
1 ṽ2 = 0. (22)

The proof is not difficult though a little tedious. In a similar idea and with detailed proofs,

the authors’ recent work on random projections (Li et al., 2006a,b) describes using the marginal

information to improve random projections.

âMLE,N is fairly robust unless the data are very far from normal (e.g., heavy-tailed). Evaluating

Var (âMLE,N), however, is difficult, because theoretical variances are very sensitive to model mis-

specification(White, 1982). In our experiments, we observe that âMLE,N actually works well even

in heavy-tailed data. Our concern is that âMLE,N may be highly biased in certain heavy-tailed data,

although we have not observe this phenomena. We only recommend this estimator when the data

are known to be approximately normal (e.g., after careful term weighting).

5.2 Numerical Experiments

Two pairs of words “THIS - HAVE” and “MONDAY - SATURDAY” are selected from the MSN

Web crawl data. We estimate the inner products by both sketches and random projections. We will

soon give a brief introduction to random projections in Section 6.

We test both the original unweighted data (heavy-tailed), and the weighted data with “logarith-

mic weighting,” i.e., any non-zero counts is replaced by 1 + log(original count).

With no term weighting (Figure 9), sketches exhibit large errors, although considering marginal

information (i.e., using âMLE,N ) can significantly reduce the errors. With logarithmic weighting

(Figure 10), sketches are about as accurate as random projections.
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Figure 9: No term weighting. Random projections (RP) are more accurate (smaller MSE) than

sketches (SK). Without using marginal constraints, sketches have large errors. In (b), the

solid curve for “RP” is lower than the solid curve for “SK.” Results are presented in terms

of

√
MSE(â)

a
.

6. Theoretical Comparisons With Random Projections

Random projections (Vempala, 2004; Achlioptas, 2003) have been widely used in Machine Learn-

ing, data mining, and bio-informatics (Papadimitriou et al., 1998; Arriaga and Vempala, 1999; Bing-
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Figure 10: Logarithmic weighting. Sketches are about as accurate as random projections.

ham and Mannila, 2001; Achlioptas et al., 2001; Fradkin and Madigan, 2003; Fern and Brodley,

2003; Liu et al., 2006; Charikar, 2002; Buhler and Tompa, 2002; Leung et al., 2005).

Random projections multiply the original data matrix A ∈ R
n×D with a random matrix R ∈

R
D×k, whose entries are typically i.i.d. normals N(0, 1).7 1√

k
AB preserves all pairwise distances

of A in expectations.

(Li et al., 2006a) provides two estimators of a = uT
1u2, a margin-free (MF) estimator, denoted

by âRP,MF , and a maximum likelihood estimator (MLE), denoted by âRP,MLE , assuming that

m1 = ‖u1‖2 and m2 = ‖u2‖2 are known. Their variances are

Var (âRP,MF ) =
1

k

(

m1m2 + a2
)

, (23)

Var (âRP,MLE) =
1

k

(m1m2 − a2)2

m1m2 + a2
. (24)

The cost of random projections is O(nDk) for processing and O(n2k) for computing all pair-

wise distances. Recall that the processing time for our sketch algorithm is O(nD). We are particu-

larly interested in comparing their variances because estimators with smaller variances require less

samples to achieve the specified level of accuracy.

Our comparisons show that

• In boolean data, sketches are almost always more accurate than random projections.

• In normal-like data, both sketches and random projections are roughly the same.

• In heavy-tailed data, sketches have larger errors.

• In nearly independent data, random projections have larger errors.

• In highly sparse data, sketches tend to be more accurate than random projections, depending

on how heavy-tailed the data are.

7. See (Achlioptas, 2003; Li et al., 2006b) for different variations of random projections.
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6.1 The Margin-Free Case (âRP,MF v.s. âMF )

We compare Var (âRP,MF ) in (23) with Var (âMF ) in (19) since both have closed-form expressions.

Here we assume equal samples, i.e., k1 = k2 = k. Rewrite

Var (âRP,MF ) =
1

k

(

m1m2 + a2
)

=
D2

k

(

E
(

ũ2
1,j

)

E
(

ũ2
2,j

)

+ (E (ũ1,jũ2,j))
2
)

, (25)

Var (âMF ) = max

(

f1

k1
,
f2

k2

)

⎛

⎝

D
∑

j=1

u2
1,ju

2
1,j −

a2

D

⎞

⎠

=
max(f1, f2)

D

D2

k

(

E
(

ũ2
1,j ũ

2
2,j

)

− (E (ũ1,jũ2,j))
2
)

. (26)

Recall that ũ1,j and ũ2,j denote random samples from u1 and u2, respectively; f1 and f2 are the

numbers of non-zero elements in u1 and u2, respectively.

Comparing (25) with (26), we can see immediately that if the data are very sparse, i.e.,
max(f1,f2)

D

is small, then Var (âMF ) tends to be smaller than Var (âRP,MF ).

When the data are exactly normal, then E
(

ũ2
1,jũ

2
2,j

)

− (E (ũ1,j ũ2,j))
2 = E

(

ũ2
1,j

)

E
(

ũ2
2,j

)

+

(E (ũ1,j ũ2,j))
2
, and the sparsity factors f1

D
= 1 and f2

D
= 1, almost surely, hence Var (âMF ) =

Var (âRP,MF ).

We can take a look at two extreme cases.

First, when ũ1,j and ũ2,j are independent, then E
(

ũ2
1,jũ

2
2,j

)

= E
(

ũ2
1,j

)

E
(

ũ2
2,j

)

, which implies

that Var (âMF ) ≤ Var (âRP,MF ), even ignoring the sparsity factors.

Next, we can consider when u1 = u2. In this case, neglecting the sparsity factors, we have

Var (âMF ) − Var (âRP,MF ) ≤D2

k

(

E
(

ũ4
1,j

)

− 3
(

E
(

ũ2
1,j

))2
)

=
D2

k

⎛

⎜

⎝

(

E
(

ũ2
1,j

))2

⎛

⎜

⎝

E
(

ũ4
1,j

)

(

E
(

ũ2
1,j

))2 − 3

⎞

⎟

⎠

⎞

⎟

⎠
. (27)

If u1,j has zero mean, the term

(

E(ũ4

1,j)

(E(ũ2

1,j))
2 − 3

)

is the “kurtosis,” which measures the tail thickness.

In general, this term also contains information about the “skewness.” Therefore, when the data are

heavy-tailed (or highly-skewed), random projections can be more accurate, if the sparsity factors

are not small enough to compensate.

6.2 The Boolean Data Case

This comparison only considers boolean data. In this case, the marginal norms are the same as the

numbers of non-zero elements, i.e., mi = ‖ui‖2 = fi.

We have derived the variance formula for sketches with and without using margins, in (7) and

(11), respectively.
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Figure 11 plots the ratio
Var(âMF )

Var(âRP,MF )
, verifying that sketches are (considerably) more accurate:

Var (âMF )

Var (âRP,MF )
=

max(f1, f2)

f1f2 + a2

1
1
a

+ 1
D−a

≤ max(f1, f2)a

f1f2 + a2
≤ 1.

Now we consider the margins. Figure 12 plots
Var(âMLE)

Var(âRP,MLE)
. In most range of the data possible,

this ratio is less than 1, especially when f1 = f2. When u1 and u2 are very close (e.g., a ≈ f2 ≈
f1), random projections appear more accurate than sketches. However, when this does occur, the

absolute variances are so small (even zero) that the variance ratio does not matter.

Note that here we assume equal sampling: k1 = k2 = k. Sketches can be improved by propor-

tional sampling: k1

f1
= k2

f2
.
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Figure 11: The variance ratios,
Var(âMF )

Var(âRP,MF )
show that our algorithm has smaller variances than

random projections, when no marginal information is used in both methods. Here we

assume f1 ≥ f2 and consider f2 = αf1 with α = 0.2, 0.5, 0.8, 1.0 in (a), (b), (c), and

(d), respectively. For each α, we plot from f1 = 0.05D to f1 = 0.95D spaced at 0.05D.

7. Conclusion

We propose a sketch-based sampling algorithm, which only samples the non-zero data with the

sample sizes flexibly adjusted according to data sparsity. Our method differs from many sketching

algorithms in that we convert sketches into random samples online. Therefore, we can conduct
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Figure 12: The ratios,
Var(âMLE)

Var(âRP,MLE)
show that our sketch algorithm usually has smaller variances

than random projections, except when f1 ≈ f2 ≈ a.

estimations just like conventional random sampling. Based on well-understood statistical principles,

we have developed various estimators taking advantages of the marginal information, which can

often improve the estimates considerably.
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Appendix A. Analysis of Ds

D
and D

Ds

Recall we compute the effective sample size Ds from sketches:

Ds = min (max(ID(K1)),max(ID(K2)), ...,max(ID(Km))) .

We will show that the following two approximations hold with high accuracy.

E

(

Ds

D

)

≈ min

(

k1

f1
,
k2

f2
, ...,

km

fm

)

,

E

(

D

Ds

)

≈ max

(

f1

k1
,
f2

k2
, ...,

fm

km

)

,

where fi are the number of non-zero elements in ui and ki the number of sketches taken from

postings Pi.

Substituting Zi = max(ID(Ki)), Ds = min(Z1, Z2, ..., Zm). It is clear that Zi is the (ki)th

order statistics of the set ID(Ki) ∈ Ω = {1, 2, ...,D}, with the probability mass function (PMF)
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and moments (Siegrist, 1997):

P (Zi = t) =

(

t−1
ki−1

)(

D−t
fi−ki

)

(

D
fi

) , E (Zi) =
ki(D + 1)

fi + 1
≈ ki

fi

D,

Var (Zi) =
(D + 1)(D − fi)ki(fi + 1 − ki)

(fi + 1)2(fi + 2)

≈ D(D − fi)ki(fi − ki)

f3
i

≤ 1

ki

fi − ki

fi

(E (Zi))
2 .

=⇒
√

Var (Zi)

E (Zi)
≤

√

1

ki

fi − ki

fi

→ 0 very quickly

Therefore Zi is sharply concentrated about its mean.

By Jensen’s inequality, we know that

E (Ds) = E (min (Z1, Z2, ..., Zm))

≤min (E(Z1), E(Z2), ..., E(Zm)) = min

(

k1

f1
D, ...,

km

fm

D

)

.

Assuming E(Z1) is the smallest among all E(Zi),

min (E(Z1), E(Z2), ..., E(Zm)) − E (Ds)

=E (max(E(Z1) − Z1, E(Z1) − Z2, ..., E(Z1) − Zm)

≤E (max(E(Z1) − Z1, E(Z2) − Z2, ..., E(Zm) − Zm)

≤
m

∑

i=1

E (E(Zi) − Zi) ≤
m

∑

i=1

√

Var (Zi) ≤
m

∑

i=1

√

1

ki

fi − ki

fi

E(Zi),

which is very crude but nevertheless shows that our approximation of E (Ds) is asymptotically

exact. For convenience, we write

E

(

Ds

D

)

≈ min

(

k1

f1
,
k2

f2
, ...,

km

fm

)

,

Again by Jensen’s inequality, we have

E

(

D

Ds

)

≥ 1

E
(

Ds

D

) ≥ max

(

f1

k1
,
f2

k2
, ...,

fm

km

)

From statistical results, we know that we can approximate E
(

1
X

)

by 1
E(X) , with errors deter-

mined by Var(X), which vanishes very quickly in our case. Thus, we can approximate

E

(

D

Ds

)

≈ max

(

f1

k1
,
f2

k2
, ...,

fm

km

)

.

25



LI, CHURCH, AND HASTIE

Appendix B. Covariance Matrix of Margin-constrained Multi-way Tables

This section derives the covariance matrix for the margin-constrained maximum likelihood estima-

tor in Section 3.

Recall the log likelihood function is

log Pr(S|Ds;X) ∝ Q = si

N
∑

i=1

log xi,

whose Hessian (▽2Q) is :

▽2Q =

[

∂2Q

∂xixj

]

= −diag

[

s1

x2
1

,
s2

x2
2

, ...,
sN

x2
N

]

.

Normally, the (asymptotic) covariance matrix of a maximum likelihood estimator (MLE), X̂

is Cov
(

X̂

)

= (I(X))−1
, where I(X), the expected Fisher Information, is I(X) = E

(

−▽2 Q
)

(Lehmann and Casella, 1998, Theorem 6.3.10). Our situation is more special because the log like-

lihood is conditional on Ds and we need to consider the margin constraints.

We seek a partition of the constraint matrix C = [C1,C2], such that C2 is invertible. In our

construction, the jth column of C2 is the column of C such that last entry of the jth row of C is 1.

An example for m = 3 would be

C1 =

⎡

⎢

⎢

⎣

1 1 1 0
1 1 0 1
1 0 1 1
1 1 1 1

⎤

⎥

⎥

⎦

, C2 =

⎡

⎢

⎢

⎣

1 0 0 0
0 1 0 0
0 0 1 0
1 1 1 1

⎤

⎥

⎥

⎦

,

where C1 is the [1 2 3 5] columns of C and C2 is the [4 6 7 8] columns of C. C2 constructed

this way is always invertible because its determinant is always one. Corresponding to the partition

of C, we partition X = [X1,X2]
T. For example, when m = 3, X1 = [x1, x2, x3, x5]

T, X2 =
[x4, x6, x7, x8]

T. Note that all these partitions are done systematically. We can then express X2 to

be

X2 = C
−1
2 (F −C1X1) = C

−1
2 F − C

−1
2 C1X1.

The log likelihood function Q, which is separable, can then be expressed as Q(X) = Q1(X1)+
Q2(X2).

By the matrix derivative chain rule, the Hessian of Q with respect to X1 would be

▽2
1Q = ▽2

1Q1 + ▽2
1Q2 = ▽2

1Q1 +
(

C
−1
2 C1

)T ▽2
2 Q2

(

C
−1
2 C1

)

,

where we use ▽2
1 and ▽2

2 to indicate the Hessians are with respect to X1 and X2, respectively.

Conditional on Ds,

I(X1) =E
(

−▽2
1 Q|Ds

)

= − E(▽2
1Q1|Ds) −

(

C
−1
2 C1

)T
E(▽2

2Q2|Ds)
(

C
−1
2 C1

)

.

26



SKETCHES, SAMPLING

Therefore, the (asymptotic) unconditional covariance matrix would be

Cov(X̂1) = E
(

I(X1)
−1

)

= E

(

D

Ds

)

×
(

diag

[

1

xi

, xi ∈ X1

]

+
(

C
−1

2
C1

)T
diag

[

1

xi

, xi ∈ X2

]

(

C
−1

2
C1

)

)

−1

.

E
(

D
Ds

)

is approximated by E
(

D
Ds

)

≈ max
(

f1

k1
, f2

k2
, ..., fm

km

)

.

B.1 A Special Case for m = 2

When m = 2, we have

▽2 Q = −diag

[

s1

x2
1

,
s2

x2
2

,
s3

x2
3

,
s4

x2
4

]

,

▽2
1 Q1 = − s1

x2
1

, ▽2
2Q2 = −diag

[

s1

x2
1

,
s2

x2
2

,
s3

x2
3

]

,

C =

⎡

⎣

1 1 0 0
1 0 1 0
1 1 1 1

⎤

⎦ , C1 =

⎡

⎣

1
1
1

⎤

⎦ , C2 =

⎡

⎣

1 0 0
0 1 0
1 1 1

⎤

⎦

(

C
−1
2 C1

)T ▽2
2 Q2C

−1
2 C1

= −
[

1 1 −1
]

⎡

⎢

⎣

s2

x2

2

0 0

0 s3

x2

3

0

0 0 s4

x2

4

⎤

⎥

⎦

⎡

⎣

1
1
−1

⎤

⎦ = − s2

x2
2

− s3

x2
3

− s4

x2
4

Hence,

−▽2
1Q =

s1

x2
1

+
s2

x2
2

+
s3

x2
3

+
s4

x2
4

Cov(X̂1) = Var(x̂1) = E

(

D

Ds

)

1
1
x1

+ 1
f1−x1

+ 1
f2−x2

+ 1
D−f1−f2+x1

Appendix C. Broder’s Sketches

Broder’s sketches can be conveniently explained by a set intersection problem. Suppose there are

two sets of integers (e.g., postings), P1 and P2, ranging from 1 to D, i.e., P1, P2 ⊆ Ω = {1, 2, ...,D}.

Broder’s min-wise sketch algorithm applies k random permutations (π1, π2, ..., πk) on Ω. Upon each

permutation πi, the probability that the minimums in πi(P1) and πi(P2) are equal is

Pr (min(πi(P1)) = min(πi(P2))) =
|P1 ∩ P2|
|P1 ∪ P2|

= R, (28)
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where R is referred as “resemblance” or “Jaccard coefficient.” With k min-wise independent ran-

dom permutations, the resemblance R can be estimated without bias.

Broder’s original sketches described in (Broder, 1997), however, required only one permutation

π hence more efficient although the estimation is slightly more sophisticated. After a permutation π
on Ω, a sketch Ki for Pi is the k smallest elements from π(Pi). (Broder, 1997) provided an unbiased

estimator of R:

1

k
(|{k smallest in K1 ∪ K2} ∩ {K1 ∩ K2}|) , (29)

Why (29)? Our explanation is slightly different from the one in (Broder, 1997). Within the set

{k smallest in K1 ∪K2}, the elements that belong to P1 ∩P2 are: {k smallest in K1 ∪K2}∩{K1 ∩
K2}, whose size is denoted by aB

s . This produces a hypergeometric sample. That is, we sample k
elements from P1∪P2 randomly without replacement, obtaining aB

s elements that belong to P1∩P2.

Then

E
(

aB
s

)

= k
|P1 ∩ P2|
|P1 ∪ P2|

= kR, ⇒ E

(

aB
s

k

)

= E(R̂B) = R.

The variance of R̂B is then:

Var
(

R̂B

)

=
1

k
R(1 − R)

|P1 ∪ P2| − k

|P1 ∪ P2| − 1
≈ 1

k
R(1 − R).

We can estimate the association (a = |P1 ∩ P2|) from the resemblance (R), by the definition:

R = |P1∩P2|
|P1∪P2| = a

f1+f2−a
, i.e., one can get an estimator of a: 8

âB = (f1 + f2)
R̂B

1 + R̂B

,

Var (âB) =
1

k

a(f1 + f2 − 2a)(f1 + f2 − a)2

(f1 + f2)2
.

C.1 Our improvement

Broder’s sketches used only half (k out of 2k) of the samples, as can be easily seen from (29). The

other half discarded still contain useful information. Throwing out half of the samples and using a

fixed k make the analysis easier, of course.

In contrast, our method always uses more samples because only the samples larger than Ds =
min (max(K1),max(K2)) are discarded. If we sample the postings proportional to their lengths,

we expect that almost all sketch samples can be utilized.

Therefore, it is intuitive why our method can halve the variance of Broder’s sketches.

Less obviously, another reason why our estimator improves Broder’s is that we are working with

a four-cell contingency table while Broder worked with a two-cell model. Considering more refined

structure of the data allows for more effective use of the higher order interactions of the data, hence

further improves the results.

8. If â is an unbiased estimator of a, then Var (h(â)) = Var (â) (h′(a))2, asymptotically, for any continuous function

h(a), provided the first derivative h′(a) exists and non-zero. This is the so-called “Delta method.”
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Appendix D. Variances For Histogram Estimation

This section derives the variances for estimating histograms under marginal constraints as described

in Section 4.

We represent joint histograms as contingency tables. Recall that S = {si,j}I
i=0

J
j=0 denotes

the sample contingency table and X = {xi,j}I
i=0

J
j=0 denotes the original contingency table to be

estimated. We vectorize the tables row-wise, i.e., Z = vec{X} = {zm}(I+1)(J+1)
m=1 for the original

table and H = vec{S} = {hm}(I+1)(J+1)
m=1 for the observed sample table. We will give a simple

example for I = J = 2 to help visualize the procedure at the end of this section.

There are I + J + 1 constraints, i.e., row sums {xi+}I
i=1, column sums {x+j}J

j=1, and the

total sum
∑(I+1)(J+1)

m=1 zm = D. Since the effective number of degrees of freedom is I × J , we

will partition the table into two parts: Z1 and Z2. Z1 corresponds to X1 = {xi,j}I
i=1

J
j=1 and Z2

corresponds to the rest of the table. The trick is to represent Z2 in terms of Z1 so that we can apply

the multivariate large sample theory for the asymptotic covariance matrix of Z1. It is not hard to

show that

Z2 = C1 − C2Z1,

where

C1 =

⎡

⎢

⎢

⎢

⎢

⎣

x0+ + x+0 − D

{x+j}J
j=1

{xi+}I
i=1

⎤

⎥

⎥

⎥

⎥

⎦

, C2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1T
IJ

IJ IJ ... IJ

1T
J 0T

J ... 0T
J

0T
J 1T

J ... 0T
J

...
0T

J 0T
J ... 1T

J

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

where IJ denotes the identity matrix of size J × J , 1J denotes a vector of ones of length J and 0J
denotes a vector of zeros of length J .

Assuming “sample-with-replacement,” Z follows a multinomial distribution, with a log likeli-

hood function (let N = (I + 1)(J + 1)):

Q(Z) ∝
N

∑

m=1

hm log zm, ▽2Q = −diag

[

h1

z2
1

,
h2

z2
2

, ...,
hN

z2
N

]

.

The log likelihood function Q, which is separable, can then be expressed as

Q(Z) = Q1(Z1) + Q2(Z2).

By the matrix derivative chain rule, the Hessian of Q with respect to Z1 would be

▽2
1Q = ▽2

1Q1 + ▽2
1Q2 = ▽2

1Q1 + C
T
2 ▽2

2 Q2C2,

where we use ▽2
1 and ▽2

2 to indicate that the Hessians are with respect to Z1 and Z2, respectively.
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Since we estimate Z by MLE, the expected Fisher Information of Z1 is

I(Ẑ1) = E
(

−▽2
1 Q|Ds

)

= −E(▽2
1Q1|Ds) − C

T
2E(▽2

2Q2|Ds)C2.

Because E (hm|Ds) = Ds

D
zm, we can evaluate the above expectations, i.e.,

E(−▽2
1 Q1|Ds) = diag

[

E

(

hm

z2
m

|Ds

)

, zm ∈ Z1

]

=
Ds

D
diag

[

1

zm

, zm ∈ Z1

]

,

E(−▽2
2 Q2|Ds) =

Ds

D
diag

[

1

zm

, zm ∈ Z2

]

.

By the large sample theory, the asymptotic covariance matrix ofẐ1 would be

Cov(Ẑ1) = E
(

I(Ẑ1)
−1

)

=E

(

D

Ds

) (

diag

[

1

zm

, zm ∈ Z1

]

+ C
T
2
diag

[

1

zm

, zm ∈ Z2

]

C2

)

−1

.

The following example for I = J = 2 may help visualize the above formulations.

D.1 An Example with I = 2, J = 2

Z = [z1 z2 z3 z4 z5 z6 z7 z8 z9]
T

= [x0,0 x0,1 x0,2 x1,0 x1,1 x1,2 x2,0 x2,1 x2,2]
T

Z1 = [z5 z6 z8 z9]
T = [x1,1 x1,2 x2,1 x2,2]

T ,

Z2 = [z1 z2 z3 z4 z7]
T = [x0,0 x0,1 x0,2 x1,0 x2,0]

T .

C1 =

⎡

⎢

⎢

⎢

⎢

⎣

x0+ + x+0 − D
x+1

x+2

x1+

x2+

⎤

⎥

⎥

⎥

⎥

⎦

, C2 =

⎡

⎢

⎢

⎢

⎢

⎣

−1 −1 −1 −1
1 0 1 0
0 1 0 1
1 1 0 0
0 0 1 1

⎤

⎥

⎥

⎥

⎥

⎦

,

Cov(Ẑ1) = E

(

D

Ds

)

×

⎛

⎝

diag
[

1
x1,1

, 1
x1,2

, 1
x2,1

, 1
x2,2

]

+

C
T
2diag

[

1
x0,0

, 1
x0,1

, 1
x0,2

, 1
x1,0

, 1
x2,0

]

C2

⎞

⎠

−1

.
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D.2 The Variance of âMLE,c

Recall we can estimate the inner product from the contingency table:

âMLE,c =

I
∑

i=1

J
∑

j=1

(ij)x̂i,j,MLE ,

whose variance would be

Var (âMLE,c) = e
TCov

(

Ẑ1

)

e,

where e is a vector:

e
T = [(ij)]Ii=1

J
j=1 = [1, 2, ..., J, 2, 4, ..., 2J, ..., I, ..., IJ ]T .
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