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Abstract

Military course-of-action (COA) diagrams are used to depict
battle scenarios and include thousands of unique symbols,
complete with additional textual and designator modifiers.
We have created a real-time sketch recognition interface that
recognizes 485 freely-drawn military course-of-action sym-
bols. When the variations (not allowable by other systems)
are factored in, our system is several orders of magnitude
larger than the next biggest system. On 5,900 hand-drawn
symbols, the system achieves an accuracy of 90% when con-
sidering the top 3 interpretations and requiring every aspect
of the shape (variations, text, symbol, location, orientation)
to be correct.

Introduction

Drawing with pen and paper is a common method for users
to convey visual information. Sketch recognition seeks to
harness the power of pen and paper by automatically under-
standing freehand-sketched input with a stylus and digitizing
screen. Furthermore, sketch recognition attempts to recog-
nize the intent of the user while allowing the user to draw in
an unconstrained manner. This permits the user not having
to spend time being trained how to draw on the system, nor
will the system need to be trained on how to recognize each
users particular drawing style.

The recognition of hand drawings has a variety of uses, in-
cluding symbol recognition in Computer-Aided Design sys-
tems, providing automatic correction or understanding of
diagrams for immediate feedback in educational settings,
functioning as alternative inputs for small keyboard-less de-
vices (such as Palm Pilots), or providing gestural interfaces.
Our aim as sketch recognition researchers is to build systems
using artificial intelligence techniques that recognize drawn-
diagrams with human-recognizer efficiency and accuracy.

One real-world domain that has thousands of symbols is
military course of action (COA) diagrams. Military com-
manders use COA diagrams to plan field operations, where
the symbols represent troops, supplies, obstacles, and move-
ment patterns. Currently, commanders draw COAs by hand
on a map for planning purposes, and then these diagrams are
entered into a computer through typical WIMP interfaces for
purposes of simulation and plan communication. Previous
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attempts to apply sketch recognition to COAs have resulted
in systems that can only recognize a handful of shapes, often
require users to draw each shape with a specific gesture, and
do not allow users to draw freely (Pittman et al. 1996).

In this paper, we present a first-look at an application that
allows military commanders to hand-draw hundreds of COA
symbols directly on a digitized map. The number of symbols
we support is vastly greater than previous sketch recognition
interfaces, and, by utilizing many artificial intelligence tech-
niques, our system can rank the correct interpretation in the
top three returned results 89.9% of the time, for 485 sym-
bols.

Implementation and Methodolgy

The flowchart in Figure 1 shows the steps we take to recog-
nize drawn course of action symbols. The following sections
explain the recognition steps in more detail.

Grouping

In our framework, we have recognizers that work well for
shapes and some that work well for text and decision graph-
ics. PaleoSketch is used to recognize basic geometric shapes
like rectangles, lines, and ellipses, while our handwriting
recognizer (HWR) is responsible for recognizing text, deci-
sion graphics, and echelon modifiers. The job of the group-
ing algorithm is to make sure the right strokes go to the right
recognizer. To perform grouping, we first find the largest
stroke present, which is typically the boundary of a unit sym-
bol. Next, the remaining strokes are grouped into two sets,
depending on whether they are present within or outside of
the bounding box of the largest stroke (Figure 2). Inside

Figure 2: Example results of the grouping algorithm. The largest
stroke is found (red), and the remaining strokes are grouped based
on whether they occur inside (blue) or outside (yellow) of the
bounding box of the largest stroke.
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Figure 1: The recognition process, starting from a stroke represented in an XML datafile, to the final, unique symbol identifiers, SIDCs.

strokes are either going to be decision graphics, text, or type
modifiers that need to be sent to the primitive recognizer.
These strokes are initially run through the HWR and if the
returned confidence is high enough, they are marked as text
or decision graphics. If the confidence is low, then they are
sent to PaleoSketch to be recognized as primitive shapes.
Strokes that occur outside of the bounding box of the largest
stroke are typically echelon modifiers and can recognized by
the HWR.

Segmentation

Stroke segmentation involves breaking drawn strokes into a
set of primitive building blocks, such as lines or arcs. In our
system, we split every drawn stroke into a series of lines.
These polyline representations of the stroke are then sent
into our primitive recognizer, PaleoSketch.

We use a combination of multiple algorithms in or-
der to produce a highly accurate polyline segmentation
(Wolin, Paulson, and Hammond 2010; Wolin, Eoff, and
Hammond 2008; Wolin, Paulson, and Hammond 2009;
Sezgin, Stahovich, and Davis 2001; Kim and Kim 2006;
Douglas and Peucker 1973).

Primitive Recognition

The goal of primitive recognizers is to classify individual
strokes into one of a set of basic building block shapes.
These primitive shapes can then be combined to form more
complex symbols using high-level shape grammars like
LADDER (Hammond and Davis 2005). For primitive recog-
nition, we use an extended version of the PaleoSketch algo-
rithm (Paulson and Hammond 2008). This version of Pale-
oSketch supports 13 different primitive shapes, which can
be seen in Figure 3.

Figure 3: Primitive shapes supported by our modified version of
PaleoSketch.

Dashed Primitives

Many symbols in the COA domain are “anticipated” and
drawn with dashed boundaries containing an arbitrary num-
ber of lines. To search for dashed boundaries, we start by
first finding instances of dashed lines. The algorithm starts
by iteratively cycling through the shapes on the screen in
temporal order and maintaining a stack of lines (and dots)
that make up a possible candidate for a dashed line. As
we encounter conditions that indicate a dashed shape is not
present (e.g. large slope change, large gap between strokes),
the stack is sent to a function that generates a dashed line if
it contains more than one shape. Once all dashed lines have
been found, they are placed into four different bins based
on their orientation: those that are close to vertical (within
15 degrees), close to horizontal, or have a positive or nega-
tive slope. Next, we search within the horizontal and vertical
bins for possible rectangles, and within the positive and neg-
ative bins for diamonds. For dashed ellipses, we perform a
similar operation to that of dashed lines, except that we also
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allow for polylines are arcs to be considered as dashes. Once
we have a stack of candidate dashes for an ellipse, we gener-
ate a temporary stroke using the endpoints and midpoints of
the strokes on the stack. If this generated stroke passes con-
ditions of an ellipse test, then we group the strokes together
as a dashed shape.

Decision Point Recognition

Decision points are typically drawn as 10-line stars in COA
diagrams. Stars are searched for using a similar approach to
dashed shapes. However, in addition to checking the spatial
distances between consecutive strokes, we also verify that
the angles between lines alternates between acute and obtuse
angles.

Handwriting Recognition

The handwriting recognizer uses two pre-built multi-layer
perceptron models from Weka to recognize inner and eche-
lon text, respectively. Echelon text comprises of the symbols
‘x’, ‘+’, ‘-’, ‘1’, and ‘*’. Inner text has the character set A-Z
and 0-9, with some special symbols used in decision graph-
ics (See DecisionGraphics). When strokes are passed to the
handwriting recognizer, they are first grouped to combine
the strokes into logical words and characters based on the
stroke’s spatial separation and overlap, and using the left-to-
right assumptions of handwriting.

After these stroke groupings are formed, a brute-force ap-
proach is taken to compute the character and word possibil-
ities. Our domain has no word more than seven letters, and
each character is no more than five strokes, so the number
of possible words is bounded. A confidence value for each
possible character or word is computed using the multi-layer
perceptrons, and the handwriting with the best confidence
value is used for further symbol recognition.

CALVIN

CALVIN is a heuristic-driven geometric recognizer based
on LADDER (Hammond and Davis 2005). It builds com-
plex high-level shapes by combining shapes (primitves rec-
ognized by PaleoSketch (Paulson and Hammond 2008) or
other high-level shapes) in different combinations. The ways
that shapes can be combined are dictated by geometric con-
straints, such as saying that one shape contains another, or
that the endpoints of two lines are coincident. As an ex-
ample, see Figure 4 LEFT, a sketch of a mechanized infantry
unit. Some of constraints that might be used to specify how
the parts of this shape fit together include the lines having a
positiveSlope and negativeSlopve, as well as the
endpoints being coincident with the corners of the rectangle.

In addition to the basic recognition capabilities found in
LADDER, CALVIN has been hand-tuned using heuristics to
increase the accuracy and efficiency of recognizing course of
action diagrams. It re-analyzes the set of shapes for group-
ing purposes. Although strokes have already been grouped
for recognition at earlier stages, recognition context can help
us re-group strokes more accurately. For instance, if the
primitive recognizer has detected a rectangle with a high
degree of confidence, then we can say that certain strokes

Figure 4: LEFT: Sketch of a mechanized infantry unit. The con-
straints for this symbol dictate that the two diagonal lines that
form the X (the infantry part) are coincident with the re-
spective corners of the rectangle, and that one of the lines has a
positiveSlope and the other a negativeSlope. The el-
lipse (the mechanized part) must be contained within the rectangle,
and all the centers must be roughly coincident with each other.
RIGHT: Sketch of a mechanized infantry unit with various mod-
ifiers. After our recognition algorithms determine there is a rect-
angle in the sketch, it can group strokes according to contextual
placement relative to the rectangle. The two Xs above the rectan-
gle belong to the unit’s echelon, the minus to the right tells us that
the unit is reduced, and the alphanumeric identifier at the lower left
helps us identify this particular unit. Without the context of the
recognized rectangle, identifying these other pieces of information
(especially differentiating the echelon X from the X in the center
of the rectangle) can become difficult.

Figure 5: Examples of phase lines and boundary lines. On the left,
a Phase Line, ‘PL’, is uniquely identified by the identifier, ‘BLUE’.
On the top-right, an ambiguous phase or boundary line is drawn
horizontally. On the bottom-right, a Boundary Line is labeled with
a company echelon, ‘II’, and the unique identifiers ‘1-2’ and ‘4-5’.

in certain positions relative to that rectangle should go to-
gether. After grouping, it is then able to accurately put to-
gether the requisite pieces of a military symbol. In Figure 4
RIGHT, we show the same sketched unit except with modi-
fiers. Once CALVIN determines a rectangle has been drawn,
we use contextual rules to determine the inner portions of the
symbol (the X and ellipse), and the different outer portions
of the symbol. In this case, the user has drawn an echelon
(the two Xs on top), noted that the unit is reduced (the mi-
nus on the right), and assigned an identifier (in the lower
left) to the unit. Without contextual rules, identifying all
these components simultaneously becomes an NP-complete
search problem.

Phase/Boundary Lines

Phase lines and boundary lines define the location steps of
military operations and the boundaries by which military
units are confined, respectively (Figure 5). Phase and bound-
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Figure 6: On the left, we have a General Belt obstacle symbol.
On the right is a Minefield Static obstacle. These obstacles can be
drawn with dynamic patterns, such as with more or less spikes for
the General Belt, or more inner circles in the Minefield Static.

ary lines can be arbitrary contours, and they are recognized
first by determining if there is a long stroke of sufficient
length. If a long stroke exists, then the remaining strokes
are assumed to be text and are sent to the handwriting recog-
nizer. The handwriting recognizer looks for type identifiers,
such as ‘PL’ or ‘BL’, and unique identifiers, such as ‘BLUE’
or ‘ALPHA’ that could distinguish the phase and boundary
lines.

Areas

Areas are large, closed strokes that mark zones of interest,
such as the landing zones (‘LZ’) shown in the penultimate
step of the flowchart (Figure 1). The area recognizer first
determines if the largest stroke in the symbol is closed. If a
large, closed stroke exists, then echelon, type identifier, and
unique identifier text is looked for. Echelons are located at
either the top or bottom of the closed stroke, and identifier
text is located inside of enclosure.

Decision Graphics

Decision graphics are type modifiers that include a combina-
tion of filled and un-filled rectangles and triangles. Because
the primitive recognizer is not equipped to handle filled-in
shapes, we recognize these symbols using the HWR. These
shapes are included in the common dictionary that handles
modifiers that occur within the bounding box of the largest
shape on the screen (as determined by the grouper). If the
HWR detects instances of decision graphic modifiers, it then
analyzes all shape definitions that are of the type “Decision-
Graphic” to find the correct symbol.

Obstacles

Some course of action shapes are drawn using similar draw-
ing patterns, yet can contain a dynamic number of pattern
repetitions (Figure 6). These symbols can be recognized by
looking at the symbols on a micro-level. A set of features
are computed for each symbol, and this “bag of features” is
compared to a set of template patterns. Symbols with similar
patterns can then be recognized.

Arrows

Arrows indicate movement of friendly or hostile forces and
are allowed to have arbitrary paths. We recognize arrows
by looking at the number of strokes drawn, the number of
line segments the strokes can be broken into, and the type of
arrow head used.

Interface

In producing our COA interface, we have identified three
requirements: quick creation, simplicity, and readability.

First, we must design this interface in such a way that
course of action maps can be quickly created. The interface
is critical because this project is intended to be used in a
critical environment under time constraints. Indeed, a major
goal of this project is to speed up creation of course of action
maps, so its interface should facilitate this requirement. All
of the recognizers reported above supply confidence values,
the interface uses these to order the different results.

Second, we require simplicity. Sketch recognition, by
definition, aims to simplify the user experience by allow-
ing all or most user input in the form of sketching. This
implies that our application could be extremely simple, per-
haps consisting of only a drawing surface and a handful of
buttons.

Finally, readability is our third requirement. The sketch
recognition algorithm produces a list of interpretations or-
dered by probability. Usually, the desired shape is returned
at the beginning of the list. However, when dealing with a
large set of possible shapes, the desired interpretation may
in fact be second or third in the list. We therefore have to
display a few top recognition results in a way that keeps the
interface simple and usable. We feel that we have success-
fully incorporated these requirements into the interface.

To fulfill our requirements, our interface consists of a
drawing panel and a few toolbar buttons. We provide quick
creation and simplicity by including few interface elements,
allowing immediate creation upon launching, and automat-
ically performing recognition and displaying results. Also,
after a shape is drawn by the user, recognition automatically
occurs when the hand is removed from the screen. To facili-
tate our readability requirement, the top results are displayed
in panels once recognition finishes. These panels display
textual information about the possible symbols as well as
a preview image. We have displayed this information in a
manner that is easily readable. While these core require-
ments have been implemented, we have added a few more
features to enhance the creation process.

We have included a few intelligent features that help im-
prove the user experience. First, we have included stroke
beautification (Figure 7). This occurs on two levels. In
many symbols, a user’s strokes are replaced by a correct
symbol image file. Some symbols, however, are defined
by user-drawn boundaries and, therefore, do not have im-
age files associated with them. Many of these amorphous
shapes contain some text labels which are written in by the
user. Our interface uses handwriting recognition to convert
handwriting into text while keeping the user-defined bound-
ary in these types of shapes. In addition to stroke beautifi-
cation, we have included a set of basic editing tools includ-
ing move, duplicate, and delete. These tools, while simple,
provide some much needed functionality. We have also im-
plemented a fourth tool to convert a beautified symbol to its
user-drawn strokes and back again. This obviously helps us
in testing our application, but it also can help users under-
stand the sketch recognition process.
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(a) The user drew COA symbols in our interface using a stylus. (b) Drawn symbols are beautified, where some of the symbols are
replaced with their recognized images, and the text becomes typed.

Figure 7: Our interface incorporates stroke beautification, which takes recognized strokes (7(a)) and turns them into cleaned images (7(b)).

Results and Discussion

We trained our recognizers on a set of 485 different sym-
bols, collecting over 6,000 samples drawn by researchers
and course of action diagram experts. We tested on a dif-
ferent set of data consisting of 5,900 samples drawn by 8 re-
searchers (not that none of these users were included in the
data used for the development and training of the system).

We return multiple interpretations for each symbol recog-
nized, since many of the symbols are often similar with only
minor nuances. The correct interpretation is returned as the
top result 84.4% of the time, in the top three results 89.9% of
the time, and in the top ten results 90.8% of the time. These
recognition results are on par with current sketch recognition
systems, and they are phenomenal when considering that we
have an order of magnitude more symbols than other appli-
cations support.

We have not conducted large-scale user interface eval-
uations at this time or deployed our interface with mil-
itary experts, but we hope to do so in future re-
search. A video of the current system is posted here:
http://srlweb.cs.tamu.edu/srlng/research/project/22

Related and Prior Work

Frameworks and systems have been created that either can
specified to handle sketched course of action shapes, or pro-
vide alternative implementations in doing so. We discuss
such works and discuss their limitations that have been im-
proved upon by our implementation.

QuickSet System

An early system that was used for battle plans involving
course of action shapes was QuickSet (Cohen et al. 1997), a

multimodal system utilizing a multi-agent architecture that
can be applied for a number of applications. One such
application was an interface for inputting course of action
shapes was LeatherNet, an interface that requires users to
use a combination of speech and sketch input for drawing
the shapes. The multimodal input activates an over-the-
shelf speech recognizer, as well as a traditional pen-based
gesture recognizer consisting of a neural network and hid-
den Markov models, whenever the user places the pen on
screen. The system therefore listens to both speech and ges-
ture simultaneously during interface usage. While Quick-
Set demonstrated that it can complete the task faster than
existing CAD-style interfaces at the time (Forbus, Usher,
and Chapman 2003), the necessity of speech as a modality
for users using the system to describe the layout of forces
in simulated exercises using course of action shapes have
exhibited shortcomings. Specifically, even current speech
systems are severely limited in noisy environments, and tar-
get users of such a system have repeated reported that they
would not use it if it has a speech recognition requirement
(Forbus, Usher, and Chapman 2003), which is the case for
the QuickSet system.

nuSketch Battlespace Interface

The nuSketch Battle Interface (Forbus, Usher, and Chap-
man 2003) is a more recent system for handling sketched
course of action shapes, and was designed to address the
shortcomings of systems such as QuickSet. The first no-
table contrast of the nuSketch approach to previous systems
is its focus on sketching and the lack of a speech modal-
ity. Despite the systems heavy emphasis on sketching for
drawing up battle plans, the sketch-based interface does not
utilize recognition on the users input. Instead, the system

1785



relies on visual and conceptual understanding of the input to
drive the drawing up of battle plans using sketched course
of action shapes, and relies more on reasoning techniques of
the sketched shapes themselves. In order to address the lack
of recognition techniques, the system also depends heavily
on interface mainstays such as toolbars, combo boxes, and
type-in boxes to facilitate inputting the sketches.

LADDER framework

One framework that has served as the basis to our work is
the LADDER framework (Hammond and Davis 2005), a
domain-independent sketching language that can be used to
describe how shapes and shape groups are drawn, edited,
and displayed in the recognition process. The language is
used as a tool to describe higher level symbols as a combi-
nation of lower-level primitives that fulfill certain geometric
constraints, and is useful for recognizing symbols in a do-
main absent of domain-specific information. Examples of
domains that have successfully utilized LADDER include
biology, music notation, East Asian characters and sketch-
based educational games. A limitation of LADDER though
is that it does not handle symbols that are difficult to de-
scribe geometrically or are ambiguous without context, as is
the case with many course of action shapes.

COA Design Interface

The COA Design Interface is a system that addresses the
limitations of LADDER for sketched course of action shapes
by extending that frameworks capabilities (Stolt 2007). Be-
sides modifying LADDER to make it domain-specific to
sketched course of action shapes, one significant extension
is the use of the Intermediate Feature Recognizer (IFR). This
recognizer serves multiple purposes such as recognizing cer-
tain shapes (e.g., variably-drawn) not handled by LADDER
well, as well as provide error correction. The IFR allows a
larger variety of shapes to be handled with reasonable ac-
curacy, and thus is capable of reporting up to 247 shapes.
The current implementation is still lacking components that
are critical to military planners drawing battle plans, such as
course of action shapes that contain text.

Conclusion

This paper describes a sketch recognition system that recog-
nizes military course of action diagrams. The sketch recog-
nition system recognizes 485 different military course-of-
action diagram symbols, with each shape containing its own
elaborate set of text labels and other variations. Even with-
out the variations and text this is well over an order of magni-
tude more symbols than the next largest system. When one
factors in the variations (not allowable by other systems),
this system is several orders of magnitude larger than the
next biggest system. On 5,900 student hand-drawn symbols,
the system achieves an accuracy of 90-percent when consid-
ering the top 3 interpretations and require every aspect of
the shape (variations, text, symbol, location, orientation) to
be correct.
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