

EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling (2005)

Takeo Igarashi, Joaquim A. Jorge (Editors)

© The Eurographics Association 2005

A Sketching Interface for Modeling and Editing Hairstyles

Shahzad Malik

Department of Computer Science, University of Toronto, Toronto, ON, Canada

smalik@cs.toronto.edu

Abstract

This paper presents interaction techniques and algorithms for modeling and editing virtual 3D hairstyles with a

user-friendly sketching interface. Using a pressure-sensitive tablet, a user makes freeform strokes to mimic a num-

ber of real-world hairstyling operations such as cutting, combing, curling, frizzing, and twisting. Additionally, the

user can perform other localized operations such as implanting new hair strands onto a 3D surface (usually the

scalp), lengthening the strands, and adjusting hair density. Virtual hairpins can also be placed onto strands to

temporarily fix the position of hair which allows for the creation of more advanced styles such as ponytails. The

system runs at interactive rates, thereby providing instant visual feedback to users as they work. Unlike existing

hair modeling systems that require hours of complicated control point manipulations and parameter tweaking, our

interface allows for creating expressive hairstyles quickly and easily, even for first-time users.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry

and Object Modeling - Modeling Packages; I.3.6 [Computer Graphics]: Methodology and Techniques - Interaction

Techniques.

1. Introduction

With computer-generated virtual characters now appearing

in everything from blockbuster Hollywood films to 3D

computer games, it is extremely important that these

virtual humans each have their own unique identities and

characteristics. It can be argued that hair is one of the

most important physical attributes that we use to

differentiate and characterize those around us, so it seems

reasonable to assume that virtual characters should be

created with equally realistic and varying hairstyles.

While researchers have made significant advancements

in realistic virtual hair synthesis from a rendering and

animation standpoint, modeling hair is still a difficult and

time-consuming process. This is largely a consequence of

the complex properties of hair, such as the large number of

strands (typically 100,000 on an average human head),

artificial styling techniques (gel, mousse, curlers, hairpins,

etc.), and external forces (such as hair-hair collisions, hair-

head collisions, gravity, and static charge).

In this paper we present a set of interaction techniques

for modeling realistic and expressive hairstyles quickly

and intuitively using a sketching interface. Using a tablet

the user draws freeform strokes on and around a 3D head

model to perform a number of hairstyling operations such

as cutting, combing, curling, frizzing, and twisting. Due to

the volumetric nature of hair, we leverage the pressure-

sensing capabilities of tablets in order to quickly and flu-

idly access different layers of hair. In addition to the styl-

ing operations, hair can be implanted onto the 3D head,

strands can be lengthened, and hair density can be modi-

fied, all using simple command strokes. Finally, sections

of hair can be temporarily fixed in certain positions using

virtual hairpins so that advanced styles such as ponytails

can be created.

Figure 1 shows two hairstyles each created with our sys-

tem in less than two minutes by an experienced user.

Unlike most commercial 3D hair modeling tools that re-

quire time-consuming control point manipulations and

parameter tweaking, our techniques are designed to allow

exploration of a variety of hairstyles quickly and easily

during the character design process. Our informal user

feedback shows that even first-time users can create inter-

esting hairstyles after only a few minutes of use.

S. Malik / A Sketching Interface for Modeling and Editing Hairstyles

© The Eurographics Association 2005.

Figure 1: Hairstyles created in less than two minutes.

2. Related Work

The graphics community has been interested in virtual hair

modeling, animation, and rendering for the past two dec-

ades [MHK00]. Unfortunately most hair modeling sys-

tems described in the graphics literature make use of the

ubiquitous Windows, Icons, Menus, and Pointers (WIMP)

paradigm for their user interfaces. Thus for explicit hair

modeling systems, where hair strands are defined indi-

vidually, the user is required to manipulate control curves

for each strand using the mouse in a graphical interface in

order to generate a full head of hair [DM93]. Cluster/wisp

hair systems [WS92, XY01, KN02] are somewhat more

efficient from a user interface perspective since they re-

quire a user to only specify the control curve for an entire

group of strands contained within a cylindrical region. In

both cases, manipulating these control curves usually re-

quires the user to edit control points in 3D space using a

combination of viewpoints (perspective, side view, top

view, front view), along with setting properties such as

hair colour, density, or length using dialog boxes, pull-

down menus, and scroll bars/sliders. As a result, many of

these systems are extremely difficult to use without sig-

nificant training, and even experienced artists typically

require a few hours to design a detailed hairstyle. To

make matters worse, the real-time editing windows in

many of these applications usually only depict a coarse

wireframe outline of the strands that is not representative

of the final hairstyle. While a few do provide some

higher-level editing operations such as cutting [LK01],

combing [KN00], or curling, twisting, and braiding

[KN02], they still rely on the user to perform these opera-

tions with a standard 3-button mouse which is cumber-

some and unintuitive. Many of the popular commercial

hair editing tools and plug-ins available today implement

variations of the WIMP-based interfaces as described

above.

Only recently have researchers considered developing

more user-friendly interactive tools for modeling virtual

hair. The HairPaint system described in [HR04] presents

an alternative approach to modeling an explicit hair model

by using a familiar 2D painting interface combined with a

set of color scale images to specify hair characteristics.

Therefore by drawing in some particular color on a flat-

tened 2D representation of a 3D head model, geometrical

attributes such as hair root position, density, and hair

length can be established. While the system allows inter-

esting hairstyles to be created fairly quickly, there are still

some shortcomings. From a user interface perspective,

having to draw in a 2D canvas window while observing

the corresponding changes in a 3D view can be confusing

as well as inefficient, since it requires the user to continu-

ously change the focus of attention. Additionally, drawing

on the flattened 2D representation of the head does not

allow for accurate hair placement or hair orientation since

the mapping between the 2D and 3D views is indirect.

This results in the user having to frequently make guesses

as to where a point on the 2D canvas maps to the 3D view.

Instead of manipulating individual strands or clusters,

the vector-field and fluid-flow hair systems presented in

[Yu01] and [HM00] propose a radically different approach

to hair modeling. A user interactively places a number of

field primitives such as streams, sources, and vortexes

around a 3D head. These primitives are then used to con-

trol the growth direction of hair emanating from the scalp

in a post-process. While the final rendered results are

impressive, these field-based approaches make it almost

impossible to generate artificial effects such as braids or

ponytails. Additionally, the hair generation process takes

a significant amount of processing time, so it is difficult to

determine how the final hairstyle will look just from the

positioning of the primitives.

Recent work has shown that it is possible to capture hair

from multiple images of a real hairstyle using computer

vision techniques [GSML02, PBS04, WOQS05] which

opens up the possibility of completely automating the hair

design process. While the current results are impressive,

the systems require about an hour of processing time to

reconstruct the hairstyles. Additionally the existing sys-

tems have difficulty capturing complex styles such as

spiky hair, braids, or ponytails. Therefore efficient inter-

active tools are still required to complement these com-

puter vision techniques in order to enhance or modify the

captured styles.

Our hair sketching interface is motivated by recent work

that shows intuitive techniques for the rapid exploration

and design of 3D models [IMT99, TBSR04], clothing

manipulation [IH02], garment design [TCH04], and char-

acter animation [Osh04]. Mao et al. [MKKI02, MKIA04]

were the first to show freeform strokes being used to

model hair, but their system is extremely limited in the

hairstyles it is capable of generating since all hairstyles are

assumed to be symmetric about a partition line located at

the center of the top of the scalp. In other words, the user

draws a partition line on the scalp, followed by a single

silhouette line on one side of the head. The system then

generates a symmetric hairstyle based on these input

strokes. As a result, short hairstyles such as a Mohawk are

impossible to create with their system. Also, fine editing

of the generated hairstyles is not possible since hair is

generated in a single shot. In contrast, our system allows

S. Malik / A Sketching Interface for Modeling and Editing Hairstyles

© The Eurographics Association 2005.

for hair to flow in any user defined direction and without

any restrictions on how the hair strands are distributed on

the scalp. Additionally, our system allows for advanced

editing operations to be performed at any time such as

lengthening, cutting, combing, curling, frizzing, and twist-

ing.

3. Hair Representation

In our system, hair is represented using clusters as first

proposed in [XY01]. Therefore large groups of strands

can be manipulated simultaneously by simply adjusting

the control curve for the cluster that contains them (Figure

2). We use generalized cylinders to represent the

boundary of hair clusters, while 3D Catmull-Rom splines

are used to represent the underlying control curve since

they guarantee that the curve will pass through the

corresponding control points. The control curve passes

through the center of the generalized cylinder, with the

root of the control curve located on some surface (usually

the scalp of a 3D head model). We assume the polyline

consisting of the curve control points has equal length

segments of 2cm, which provides a nice tradeoff between

curve smoothness and efficient processing time for

interactive control.

 Figure 2: A group of strands is contained within a hair

cluster whose shape is controlled by a curve.

Each cluster has a set of parameters that affect the dis-

tribution of the strands contained within it. The first pa-

rameter is density, which ranges from 0 to 1. A density

value of 0.0 denotes no hair strands inside of the cluster,

while a value of 1.0 denotes a maximal number of hair

strands (Figure 3). We currently set the maximum number

of hair strands per cluster to 512, which works reasonably

well for our fixed-size clusters with a radius of 1cm.

Figure 3: Left to right: low density cluster (0.1), me-

dium density cluster (0.5), high density cluster (1.0).

The second cluster parameter is twist, which is a rotation

value (in degrees) set per control point. This twist parame-

ter allows cross-sections of the cluster to be rotated about

the corresponding control point as shown in Figure 4 and

Figure 5.

Figure 4: Twisting is specified at each curve control

point (except the root), allowing strands to be locally ro-

tated about the control curve.

Figure 5: (Left) Cluster with twisting set to 0; (Right)

Cluster with twisting set to 45 degrees for every control

point.

Hair clusters also have a frizziness parameter ranging

from 0 to 1 that is used to control the amount of shape

variation of strands within the cluster. A frizziness of 0.0

denotes no shape variance, while a value of 1.0 denotes

high shape variance (Figure 6).

Figure 6: (Left) Cluster with low frizziness (0.1); (Right)

Cluster with high frizziness (0.9).

Based on these parameters, hair strands can be generated

inside of each hair cluster using the following equation:

),dc(twistp
1

kkk ∑
=

+=
k

i

iθ

control curve

root

control points

with twist

parameters

hair cluster

control curve

hair strand

S. Malik / A Sketching Interface for Modeling and Editing Hairstyles

© The Eurographics Association 2005.

where pk is the k-th control point for some hair strand, ck

is the k-th control point for the control curve, dk is a dis-

placement from ck, θk is the k-th twist value in degrees,

and twist is a function to rotate ck+dk about the axis

formed from ck-1 to ck.

The displacement dk is computed iteratively similar to

the approach described by Choe and Ko [CK05]:

edd 1kk += −

where e is a noise vector. To ensure that |dk| is less than

the radius r of the cluster, we compute e=yx, where x is a

random unit vector and y is randomly chosen from the

range [0, min(L,σ·r)] where L is the intersection of the

vector e with the cluster’s generalized cylinder, and σ is

the cluster’s frizziness value.

Note that we still need to compute the initial displace-

ment of hair strands d0. Assuming the root position c0 of

the control curve is located on the surface of a 3D head

model, we uniformly distribute the desired number of

strand root positions p0 (based on the density parameter)

around c0 so that they remain within the cluster’s radius.

To guarantee that these new strand roots emanate from the

scalp as well, we use a pre-computed distance field [JS01].

A distance field provides a fast lookup of the distance and

gradient to the closest point on a 3D model for some query

point. Therefore for each new strand root position p0, we

determine the distance d to the closest point on the 3D

model, and if the distance is not zero we extract the gradi-

ent∇ to the closest point and set the strand’s new root

position to:

∇−= d0new pp

The distance field is also used in a similar manner to pre-

vent cluster and strand control points from penetrating the

3D head model.

4. Hair Sketching User Interface

In this section we describe the hair sketching interface

from a user’s perspective, along with the corresponding

algorithms for creating and styling hair clusters. We

assume the system is being used with a pressure-sensitive

tablet along with a stylus that has at least one button along

its edge and a pressure-sensitive eraser tip. The interface

features a single perspective view of a 3D head model that

can be rotated using the virtual trackball technique

described in [Hul90] by pressing the button on the edge of

the stylus. The tablet input space is mapped such that the

corners of the interface window are mapped to the corners

of the tablet. Hair is rendered on the 3D head model in

real-time with realistic lighting and shadows to provide

instant feedback on the results of styling operations. The

shape of the cursor in the interface window dynamically

changes based on the action the user is performing (see

Figure 7). Figure 8 shows a snapshot of the user interface,

which consists of the 3D head model, a cursor, and three

buttons (load, save, and exit).

Figure 7: The cursor changes dynamically based on sty-

lus position and/or pressure. From left to right: default

cursor, implanting cursor, cutting/density cursor, styling

cursor, and color selection.

Figure 8: A snapshot of the hair sketching interface.

The cursor is currently in hair color selection mode.

Hairstyling operations are performed using the tip of the

stylus with varying amounts of pressure. Ramos et al.

[RBB04] showed that dividing the pressure range of a

tablet into six or less discrete levels instead of using it as a

continuous value produces the best user performance and

control. We leverage this information by defining three

equal pressure levels for performing styling operations in

different layers of hair:

Level 1 (light pressure): Styling operations occur on the

hair cluster closest to the stylus tip’s cursor position in the

perspective view. The closest cluster is determined by

casting a ray through the cursor position in the viewing

plane, and computing the closest intersection point with a

hair cluster.

Level 2 (medium pressure): Styling operations occur on all

hair clusters that are intersected by the ray cast through the

stylus tip’s cursor position. The intersection point with the

3D model is also computed, and only clusters between the

viewer and the 3D model are considered.

Level 3 (heavy pressure): Styling operations occur on the

surface of the 3D model.

In all cases, the pressure level and affected clusters are

determined based on the average pressure at stroke

locations within 2 pixels of the stroke’s start position.

Therefore as a stroke is drawn, subsequent changes in

S. Malik / A Sketching Interface for Modeling and Editing Hairstyles

© The Eurographics Association 2005.

pressure do not alter the pressure level that was detected at

the start of the stroke.

In the following sections we describe how the user can

interactively implant hair onto the head, lengthen and cut

strands, adjust hair density, and style/comb hair in various

ways. The user is provided with continuous visual

feedback based on the position of the cursor and the

pressure of the stylus on the tablet.

4.1 Hair Implanting

To place hair onto the 3D head model, the user moves the

cursor tip to the desired location on the scalp from which

strands should emanate. With the pressure at level 3, the

user then draws a freeform stroke that defines how the hair

should flow. When the tip of the stylus is raised above the

tablet surface, the root position r of the cluster is

determined by computing the intersection point between

the 3D head model and a ray going through the stroke’s

start position on the image plane. The system then

generates a hair cluster that follows the user defined curve

as shown in Figure 8.

Figure 8: Implanting a hair cluster.

In the case where the selected scalp location lies within

an existing hair cluster, the existing cluster is deleted and a

new cluster is created in its place based on the input

stroke.

Visual feedback is provided to the user based upon the

pressure level. At pressure level 3, all existing hair on the

3D model is rendered semi-transparently so that the scalp

is visible. All new clusters are created with a fixed radius,

and the user can see an approximate outline of the cluster’s

position and dimensions on the scalp surface before

beginning the stroke.

Converting a 2D stroke into a 3D curve for the hair

cluster is an illposed problem, since there is an entire

family of 3D curves with different depth variations that

can all map to the same 2D stroke. To remedy this

ambiguity somewhat, we assume that hair exhibits some

spatial coherence. Therefore, if there are other hair

clusters closeby that have control curves which flow in

similar directions to the user-drawn 2D stroke, then the

system averages the 3D orientation of those nearby

clusters to determine the 3D representation of the new hair

cluster. This allows for faster sketching of new clusters,

since an initial cluster can be positioned as desired using

detailed styling strokes (as described in Section 4.5), while

subsequent clusters (which users typically draw close to

previously placed clusters) can be created with single

implanting strokes without the need for detailed styling. If

there are no nearby clusters with similar 2D control

curves, the new cluster is created assuming the 3D curve

lies in the view plane, with the depth value based on the

position of the cluster’s root on the scalp. Figure 9 shows

the benefit of this feature.

Figure 9: 3D curve estimation based on neighboring

hair clusters: (a) An initial cluster viewed from the side;

(b) A front view of the initial cluster; (c) A 2D stroke is

drawn from the front view that flows similarly to the initial

cluster; (d) The new 3D cluster flows similarly to the ini-

tial cluster.

Before converting the 2D input stroke into a 3D

Catmull-Rom spline, the input stroke is first converted into

a 2D polyline with equal length segments. All other

existing hair clusters are then transformed into camera

space and projected into image space. The new cluster’s

first spline control point c0 is then set to r, while

subsequent control points ci are computed iteratively as

follows:

 Extract the endpoints of the 2D polyline segment

1ip − and
ip .

 Compute the normalized orientation vector
ip̂ for the

polyline segment
i1i pp − .

 From each cluster j, find the closest control point j

ad to

1ic − in camera space below some maximum distance τ,
if one exists.

 Compute the 2D image points j

a 1q −
and j

aq by

projecting j

a 1d −
and j

ad .

 Compute the normalized orientation vector
jq̂ for the

2D vector j

a

j

a qq 1−
, discarding those vectors with zero

length.

(a) (b)

(c) (d)

S. Malik / A Sketching Interface for Modeling and Editing Hairstyles

© The Eurographics Association 2005.

 If the angle θi between
ip̂ and

jq̂ is above some

threshold (we use 30 degrees), we discard the

corresponding j

a 1d −
 and j

ad control points.

 Using all other N remaining closest control points, we

compute

1ii1ii pp)(c)(c −− −+= ibzz

where

∑

∑

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
−

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−

−
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
−

=
−

−

N

j

i

N

j
j

a

j

a

j

a

j

a

i

i

i

zz

b

τ

θ
τ

j

a1-

1

1

j

a1-

dc
0.1

dd

)(d)(d
)cos(

dc
0.1

 In the case where there are no valid nearby control

points from other clusters, set)(c)(c 1ii zz −= .

 Back project the image point at
ip using)(c i z as the

depth value to retrieve the 3D coordinates for ci.

The basic idea behind this algorithm is to compute a

weighted average of the depth variations of neighboring

clusters that flow in a similar direction to the input stroke

(in 2D). This weighted average can then be used to

compute the depth variations for the new cluster. Note

that our formulation interpolates depth values linearly in

image space, which is inaccurate. However, for our

chosen control curve segment lengths we have found this

approach to work sufficiently well in practice.

Once the control points for a new cluster have been

determined, a simple smoothing operation is performed to

eliminate sharp angles in the corresponding 3D polyline.

Individual hair strands are then generated from the control

curve as described in Section 3.

4.2 Lengthening Hair

Existing hair clusters can be lengthened by placing the

cursor near the end of the desired cluster and drawing a

stroke with pressure level 1. For visual feedback, the

closest cluster becomes highlighted with a green tint as

soon as pressure is applied to the tablet, to help the user

determine the end position of the cluster. When the stylus

tip is raised above the tablet surface, the system grows the

cluster so that it follows the path of the drawn stroke

(Figure 10). As with implanting, the lengthened 3D

segments of the cluster are determined by averaging any

existing nearby clusters that have similar 2D control

curves.

 Figure 10: Lengthening a hair cluster.

4.3 Cutting Hair

Hair can be cut by drawing a relatively straight stroke

across the boundary of a hair cluster using the pressure-

sensitive eraser tip. The stroke must start on one side of

the cluster and then exit on the other side in image space in

order for the cutting operation to be performed. The cut-

ting operation effectively works by computing the inter-

section between the drawn stroke and a cluster’s control

curve in image space (Figure 11). At pressure level 1,

only the closest hair cluster that is intersected by the stroke

in the perspective view is cut. If the stroke is drawn at

pressure level 2, all clusters that are intersected by the

stroke down to the scalp are cut. A cutting stroke at pres-

sure level 3 completely removes any hair clusters inter-

sected on the scalp surface. Before a cluster is cut, its

existing hair strands are removed. After the cut, a new set

of hair strands is computed based on the existing cluster

parameters, as described in Section 3.

 Figure 11: Cutting hair clusters.

4.4 Controlling Hair Density

By default, all new hair clusters are created so that their

density is a weighted average of the densities of

neighboring hair clusters. The weight assigned to each

neighbor is based on the distance between the root

positions so that closer clusters are weighted higher. In the

case where there are no proximal clusters, density is set to

a default value of 0.5. To interactively increase the

density of hair on existing clusters, the user draws a

clockwise circular stroke with the eraser tip. At pressure

level 1, the hair cluster closest to the center of the drawn

circle in the perspective view has its density value

increased by a fixed amount (we currently use an

increment of 0.05). A counter-clockwise circle decreases

the density value. At pressure level 2, all clusters

image

plane

camera
cutting

stroke

intersected

clusters

S. Malik / A Sketching Interface for Modeling and Editing Hairstyles

© The Eurographics Association 2005.

contained within the drawn circular stroke have their

densities increased or decreased. Finally, at pressure level

3 only the clusters emanating from the scalp area that falls

inside of the drawn circle have their densities increased or

decreased. Similar to the way cutting works, hair density

adjustments are accounted for by first removing all hair

strands from the cluster and then recomputing new strands

as described in Section 3 (which takes the new density

parameter into account). Unlike previous operations,

however, density adjustments are performed each time a

full circle is drawn, regardless of whether or not the stylus

has been raised off of the tablet surface (Figure 12).

 Figure 12: Adjusting hair density. A full circle estab-

lishes density adjustment mode, while subsequent circles in

the same stroke continuously modify density.

4.5 Styling Hair

Our system allows a user to perform a number of advanced

styling operations on an existing set of clusters to refine

the look of a hairstyle. The first such styling operation is

twisting, which causes strands in a cluster to locally rotate

about the cluster’s control curve as described in Section 3.

The twisting parameters for a cluster can be interactively

modified by drawing a twirl stroke with the tip of the

stylus as shown in Figure 13. When the stroke is

completed, the system first determines the clusters to

affect based on the stroke’s start position and the pressure

level. The system then determines the points where the

stroke overlaps itself. For each of these overlap positions,

the distance to the closest control point in each affected

cluster is found. If an overlap position falls within the

silhouette of an affected cluster, the closest control point’s

twist parameter is adjusted by 15 degrees. A clockwise

twirl stroke increments the twist parameter, while a

counterclockwise twirl stroke decrements the twist.

Therefore by adjusting the frequency of twirls the strength

of the twisting can be interactively controlled.

Frizzing is a hairstyling technique used to introduce

small, tight curls onto individual strands. In our system

the user can control the frizziness parameter of a hair

cluster by drawing a scribble stroke as shown in Figure 14.

The affected clusters are determined based on the pressure

level and position at the start of the scribble stroke. If the

average amplitude for the scribble is greater than or equal

to the projected diameter of the affected cluster, the

frizziness is set to 1. If the average amplitude is less than

or equal to one-quarter of the projected diameter, the

frizziness is set to 0. All average amplitudes in between

these extremums linearly map to intermediate frizziness

values. Unlike twisting, frizzing adjustments affect a

cluster globally as outlined in Section 3.

Figure 13: Twisting hair. Each overlap of the twirl

stroke contributes a 15 degree rotation to the closest con-

trol point for the cluster.

Figure 14: Frizzing hair.

Hair can also be combed or curled by drawing smooth

strokes that act as forces which push or deform the control

curve of the underlying hair clusters in the viewing plane.

Since such combing strokes are similar to those used to

implant hair, pressure is used to determine what action the

user wishes to perform. At pressure level 1, combing only

affects the cluster closest to the start of the stroke in the

viewing plane, while at pressure level 2 all clusters that are

intersected by the ray through the start of the stroke are

affected. Pressure level 3 is used to implant hair on the

scalp as described earlier.

To deform the control curve of affected clusters, the

system first converts the input stroke into a polyline with

uniform length segments of size ρ (we currently use ρ=30

pixels which works quite well). Each segment of this

polyline then acts as a force vector that slightly nudges

cluster control points located within ρ pixels from the

segment start position. Let vi represent the normalized

direction vector for segment i of the input stroke, and qi

the start position of segment i. Let cj represent the j-th

control point of an affected cluster (not the root), and let pj

represent the projection of cj on the image plane. We first

compute the distance d between qi and pj. If d > ρ then

we consider pj to be out of the influence range of vi. If it

is less than ρ, we compute w=1.0-d/ρ as the attenuated

force magnitude. pj is then displaced by wvi as shown in

Figure 15, and then back projected to compute a new cj

(using the depth value of the original cj). After all control

twirl stroke

control curve
twirl overlap

S. Malik / A Sketching Interface for Modeling and Editing Hairstyles

© The Eurographics Association 2005.

points for a particular cluster have been displaced by the

appropriate force vectors, the system performs relaxation

steps on the control curve’s polyline so that segment

lengths are approximately uniform and there are no sharp

angles. Adjustments are also made to prevent penetrations

with the 3D model as discussed in Section 3. Finally, hair

strands are regenerated for the entire cluster based on the

cluster parameters.

While the current approach of using fixed-size segments

for our combing forces works well in most instances, there

is a tradeoff to be made with respect to speed and

accuracy. Clearly, we could use much larger segments to

increase speed, but this increases the chance that a

combing stroke will have little or no effect on a cluster.

Similarly, decreasing the segment lengths would improve

the effect of the combing operation, but processing time

would dramatically increase, preventing the system from

operating in real-time.

Figure 15: Combing hair.

4.6 Virtual Hairpins

The combing operation can potentially affect the entire

length of a hair cluster depending on the size of the user-

drawn stroke. Therefore only the root of the cluster is

guaranteed to remain in its original location. In certain

instances the user may desire other sections of a hair

cluster to remain in-place. By double tapping the tip of the

stylus on some part of a cluster, a virtual hairpin is

activated which locks the position of the closest control

point for the underlying cluster much like the root.

Subsequent combing operations will not affect the cluster

between two hairpin locations, allowing for the creation of

styles such as ponytails which will maintain their shape as

long as the hairpins are active. Hairpins are rendered on-

screen as simple green highlights (Figure 16). A hairpin

can be removed by simply double tapping it again with the

tip of the stylus.

The system maintains hairpin constraints during the

combing relaxation phase. At each iteration, the control

points that lie between two hairpinned locations are simply

moved back to their locked positions so that the remaining

segments of the control curve can converge to a smooth

state.

Figure 16: Hairpins (denoted as green highlights) can

be used to lock the positions of clusters.

4.7 Changing Hair Color

If the cursor is moved to a position on the screen at which

there are no 3D objects (hair or head) within a 30 pixel

radius, a semi-transparent color wheel is drawn around the

cursor (Figure 17). This color wheel can be used to select

the hair color for subsequent implanting operations. The

color wheel moves with the cursor as long as pressure

remains in the level 1 range and the cursor is still

sufficiently far away from any 3D geometry. If pressure

increases into the level 2 or 3 range, the color wheel

appears fully opaque and detaches from the cursor so that

it no longer moves with it. The user can therefore select a

color by first applying and holding medium to high

pressure with the stylus, selecting a color on the color

wheel, and then releasing pressure. While a fixed color

wheel in some region of the screen could provide similar

functionality, we feel that attaching it to the cursor leads to

a less cluttered interface as well as reduces the number of

focus changes required by the user.

Figure 17: Color wheel for changing the active color.

5. Implementation and Results

The system was implemented in C++ under Windows XP,

using OpenGL for rendering and a Wacom Graphire3

pressure-sensitive tablet for input. We used the shading

model described by Kajiya and Kay [KK89], along with

opacity maps for hair shadowing [KN01]. Hair strands

were rendered as anti-aliased OpenGL lines in a back-to-

force vector

original curve combed curve

input stroke

S. Malik / A Sketching Interface for Modeling and Editing Hairstyles

© The Eurographics Association 2005.

front order similar to the approach described in [KN02].

Interactive frame rates were achieved throughout the

modeling and editing process using a PC equipped with a

Pentium 4 processor running at 3.0 GHz and an ATI

Radeon 9800 video card.

While we have not yet performed any detailed usability

study of our interface, we did allow three professional 3D

artists to use the system in order to gauge their feedback.

Each of the artists had experience in character design using

a number of popular commercial modeling tools, including

basic experience with some existing hair design plugins.

After a brief 5 minute introduction to our hair sketching

interface, each artist was allowed to freely use the system.

Within 5-10 minutes each artist was creating interesting

and detailed styles with relative ease, using about 20-30

clusters. Figure 18 shows three actual hairstyles created

by each of the artists. The artists all commented that the

interface was much more intuitive and required

significantly less time to create detailed styles than the hair

tools they had used in the past.

While overall feedback was positive, one of the artists

felt that the cutting operation wasn’t as precise as he

would like it to be when making cutting strokes that were

non-orthogonal to the cluster. This is a result of the

cutting stroke only affecting the underlying control curve

of a hair cluster instead of the actual strands. Regarding

the combing operation, one of the artists commented that

in some instances it would be nice if it also took

neighboring cluster directions into account much like the

implanting and lengthening operations, since the current

implementation (which combs in the viewing plane)

occassionally leads to strange styles when observed from

different viewpoints. Another minor gripe shared by all

artists was that it was sometimes difficult to implant all of

the initial clusters when creating a new hairstyle from

scratch. They felt that a simple tool to quickly copy an

existing cluster to other parts of the head would further

reduce the time needed to create detailed hairstyles.

Figure 18: Three different hairstyles created by first-

time users in under 10 minutes.

6. Conclusions and Future Work

In this paper we presented interaction techniques and algo-

rithms for quickly modeling detailed hairstyles using an

intuitive sketching interface. While our tool achieves its

goal of allowing artists to quickly explore a number of

different hairstyles when designing 3D characters, there

are still areas where the system can be improved. In par-

ticular, the use of hair clusters prevents the user from con-

trolling individual hair strands, which is useful for adding

fine details. The hierarchical cluster model presented by

Kim and Neumann [KN02] would help resolve this limita-

tion, but it is not immediately clear what sort of interac-

tions or gestures could be used to easily traverse the dif-

ferent detail levels.

Hair-hair collision is currently ignored in our system

since the extra processing power it requires would prevent

the system from operating in real-time. Nevertheless, it

would be beneficial to incorporate an efficient hair-hair

collision algorithm into the current system to further in-

crease the realism of the generated hairstyles.

Our cluster generation algorithm currently assumes that

the radius remains fixed for the entire generalized cylin-

der. This reduces the realism of locks or ponytails since

hair strands do not come together at the tips as expected.

While the cluster representation presented in [CK05] can

be used to facilitate such styles, we must still develop the

interaction techniques that can provide an intuitive inter-

face to these extra control parameters. One possible solu-

tion is to allow clusters to be created by drawing their

silhouettes instead of just specifying the internal skeleton

curve. This would be similar to the extrusion operation

presented in [IMT99] where the generalized cylinder of a

hair cluster could be swept along the outline of a curve

whose endpoints both emanate from locations on the scalp.

While our user interface currently only allows a user to

rotate the viewpoint around the 3D model, it is reasonably

simple to incorporate translation and zooming to the view-

point control. This would be useful for creating large furry

creatures or animals, since our system is general enough to

allow hair to be placed on any arbitrary 3D model.

7. Acknowledgements

We would like to thank Allan Jepson, Joe Laszlo, and

Abhishek Ranjan for thoughtful discussions. Financial

support by the Natural Science and Engineering Research

Council of Canada (NSERC) and the Government of On-

tario is gratefully acknowledged.

References

[CK05] CHOE B., KO H-S.: A Statistical Wisp Model and

Pseudophysical Approaches for Interactive Hairstyle

Generation. In IEEE Transactions on Visualization and

Computer Graphics, 11(2), 2005, pp. 160-170.

[DM93] DALDEGAN A., MAGNENAT-THALMANN N.: Cre-

ating Virtual Fur and Hair Styles for Synthetic Actors”.

In Communicating with Virtual Worlds, Springer-Verlag,

1993, pp. 358-370.

[GSML02] GRABLI S., SILLION F., MARSCHNER S.,

LENGYEL J.: Image-based Hair Capture by Inverse Light-

ing. In Proceedings of Graphics Interface, 2002, pp. 51-

58.

S. Malik / A Sketching Interface for Modeling and Editing Hairstyles

© The Eurographics Association 2005.

[HM00] HADAP S., MAGNENAT-THALMANN N.: Interac-

tive Hair Styler based on Fluid Flow. In Proceedings of

Eurographics Workshop on Computer Animation, 2000,

pp. 87-100.

[HR04] HERNANDEZ B., RUDOMIN I.: Hair Paint. In Pro-

ceedings of IEEE Computer Graphics International

(CGI), 2004. pp. 578-581.

[Hul90] HULTQUIST J.: A Virtual Trackball. Graphics

Gems (ed. A. Glassner), Academic Press, 1990, pp. 462-

463.

[IH02] IGARASHI T., HUGHES, J. F.: Clothing Manipulation.

In Proceedings of ACM UIST, 2002, pp. 91-100.

[IMT99] IGARASHI T., MATSUOKA S., TANAKA H.: Teddy:

A Sketching Interface for 3D Freeform Design. In Pro-

ceedings of ACM SIGGRAPH, 1999, pp. 409-416.

[JS01] JONES M., SATHERLEY R.: Using Distance Fields

for Object Representation and Rendering. In Proceed-

ings of Eurographics Annual Conference (UK Chapter),

2001, pp. 37-44.

[KK89] KAJIYA J., KAY T.: Rendering fur with three-

dimensional textures. In Proceedings of ACM

SIGGRAPH, 1989, pp. 271-280.

[KN00] KIM T-Y., NEUMANN U.: A Thin-Shell Volume for

Modeling Human Hair. In Proceedings of IEEE Com-

puter Animation, 2000, pp. 104-111.

[KN01] KIM T-Y., NEUMANN U.: Opacity Shadow Maps.

In Proceedings of Eurographics Workshop on Rendering

Techniques, 2001, pp. 177-182.

[KN02] KIM T-Y., NEUMANN U.: Interactive Multiresolu-

tion Hair Modeling and Editing”. In Proceedings of

ACM SIGGRAPH, 2002, pp. 620-629.

[LK01] LEE D-W., KO H.: Natural Hairstyle Modeling and

Animation. In Graphical Models, 2001, 63(2), pp. 67-

85.

[MHK00] MAGNENAT-THALMANN N., HADAP S., KALRA

P.: State of the Art in Hair Simulation. In Proceedings of

International Workshop on Human Modeling and Anima-

tion, 2000, Korea Computer Graphics Society, pp. 3-9.

[MKKI02] MAO X., KASHIO K., KATO H., IMAMIYA A.:

Interactive Hairstyling Modeling using a Sketching Inter-

face. In Proceedings of International Conference on

Computer Science (ICCS), 2002. Lecture Notes in Com-

puter Science (LNCS) 2330, pp. 131-140.

[MKIA04] MAO X., KATO H., IMAMIYA A., ANJYO K.:

Sketch Interface Expressive Hairstyle Modeling and

Rendering. In Proceedings of IEEE Computer Graphics

International (CGI), 2004, pp. 608-611.

[Osh04] OSHITA M.: Pen-to-mime: A Pen-based Interface

for Interactive Control of a Human Figure. In Proceed-

ings of Eurographics Workshop on Sketch Based Model-

ing, 2004, pp. 43-52.

[PBS04] PARIS S., BRICENO H., SILLION F.: Capture of Hair

Geometry from Multiple Images. In ACM Transactions

on Graphics (Proceedings of ACM SIGGRAPH), 2004,

pp. 712-719.

[RBB04] RAMOS G., BOULOS M., BALAKRISHNAN R.: Pres-

sure Widgets. In Proceedings of ACM CHI, 2004, pp.

487-494.

[TBSR04] TSANG S., BALAKRISHNAN R., SINGH K., RANJAN

A.: A Suggestive Interface for Image Guided 3D Sketch-

ing. In Proceedings of ACM CHI, 2004, pp. 591-598.

[TCH04] TURQUIN E., CANI M-P., HUGHES J. F.: Sketching

Garments for Virtual Characters. In Proceedings of Eu-

rographics Workshop on Sketch Based Modeling, 2004.

pp. xx-xx.

[WS92] WATANABE Y., SUENAGA Y.: A Trigonal Prism-

based Method for Hair Image Generation. In IEEE Com-

puter Graphics and Applications, Volume 12, Issue 1,

1992, pp. 47-53.

[WOQS05] WEI Y., OFEK E., QUAN L., SHUM H-Y.: Mod-

eling Hair from Multiple Views. In ACM Transactions

on Graphics (Proceedings of ACM SIGGRAPH), 2005.

To appear.

[XY01] XU Z., YANG X-D.: V-HairStudio: An Interactive

Tool for Hair Design. In IEEE Computer Graphics and

Applications. Volume 21, Issue 3, 2001, pp. 36-43.

[Yu01] YU Y.: Modeling Realistic Virtual Hairstyles. In

Proceedings of Pacific Conference on Computer Graph-

ics and Applications (PG), 2001, pp. 295-304.

