University of Wollongong Research Online

A skew-Hadamard matrix of order 92

Jennifer Seberry

University of Wollongong, jennie@uow.edu.au

Publication Details

Jennifer Seberry Wallis, A skew-Hadamard matrix of order 92, Bulletin of the Australian Mathematical Society, 5, (1971), 203-204.

A skew-Hadamard matrix of order 92

Abstract

Previously the smallest order for which a skew-Hadamard matrix was not known was 92 . We construct such a matrix below.

Disciplines

Physical Sciences and Mathematics

Publication Details

Jennifer Seberry Wallis, A skew-Hadamard matrix of order 92, Bulletin of the Australian Mathematical Society, 5, (1971), 203-204.

A skew-Hadamard matrix of order 92

Jennifer Wallis

There is a skew-Hadamard matrix of order 92.

Previously the smallest order for which a skew-Hadamard matrix was not known was 92 . We construct such a matrix below. The orders < 200 which are now undecided are $100,116,148,156,172,188,196 ;$ see [2], [3]. The existence of any Hadamard matrix of order 92 was unknown until 1962 [1].

We construct a skew-Hadamard matrix of Williamson-type by using the matrix

$$
W=\begin{array}{rrrr}
A & B & C & D \\
-B & A & D & -C \\
-C & -D & A & B \\
-D & C & -B & A .
\end{array}
$$

Then if A is a (1, -l) skew-type cyclic matrix of order 23 (that is $a_{i+1, j+1}=a_{i, j}$ where the subscripts are taken modulo 23), B, C, D ar ϵ (1, -I) anticyclic matrices of order 23 having symmetrical first rows (that is $b_{i, j}=b_{i+1, j-1}, b_{11}=1, b_{1 j}=b_{1,25-j}$ and so on, subscripts modulo 23) and

$$
A A^{T}+B B^{T}+C C^{T}+D D^{T}=92 I_{23}
$$

W is a skew-Hadamard matrix of order 92 .
Suitable first rows for the blocks A, B, C, D are

Received 31 March 1971.


```
C: l l -l -1 -1 l -1 l -l l -1 l l l -l l -1 l -1 l -l -l -1 l
D : l -1 -l -l -l l -l -l l -l -l l l -1 -l l -l -l l -l -l -1 -l
    If W=U + I is a skew-Hadamard matrix of order }92\mathrm{ where I is
```

the identity matrix then

$$
\begin{array}{cc}
U+I & U+I \\
U-I & -U+I
\end{array}
$$

is a skew-Hadamerd matrix of order 184.

References

[1] Leonard Baumert, S.W. Golomb and Marshall Hall, Jr, "Discovery of an Hadamard matrix of order 92", Buil. Amer. Math. Soc. 68 (1962), 237-238.
[2] Jennifer Wallis, "(v, k, λ) configurations and Hadamard matrices", J. Austral. Math. Soc. 11 (1970), 297-309.
[3] Albert Leon Whiteman, "An infinite family of skew Hadamard matrices", (to appear).

University of Newcastle,
New South wales.

