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Abstract: Robot navigation in indoor environments has become an essential task for several applica-
tions, including situations in which a mobile robot needs to travel independently to a certain location
safely and using the shortest path possible. However, indoor robot navigation faces challenges, such
as obstacles and a dynamic environment. This paper addresses the problem of social robot navigation
in dynamic indoor environments, through developing an efficient SLAM-based localization and navi-
gation system for service robots using the Pepper robot platform. In addition, this paper discusses the
issue of developing this system in a way that allows the robot to navigate freely in complex indoor
environments and efficiently interact with humans. The developed Pepper-based navigation system
has been validated using the Robot Operating System (ROS), an efficient robot platform architecture,
in two different indoor environments. The obtained results show an efficient navigation system with
an average localization error of 0.51 m and a user acceptability level of 86.1%.

Keywords: SLAM; robot navigation; Pepper robot; social robot; Robot Operating System (ROS);
map production

1. Introduction

Social robots have recently gained attention for their perceived ability to solve several
challenges faced by modern society. They aim to enhance the living conditions of people
who interact with them; as social robots, they have the ability to interact with humans in
collaborative settings, such as homes, shopping malls, and hospitals, in which the robot
may perform domestic services and healthcare tasks [1]. Therefore, social robots have
interested both academics and practitioners for real-life applications.

For this, robot mapping and navigation in indoor environments are essential abili-
ties [2–4]. In general, navigation systems consist of the following two major components:
a mapping system, which produces a map of the environment, and a navigation system,
which can plan and execute paths in that environment [5].

The Pepper robot is a social robot released by Softbank Robotics. It is considered as
one of the most advanced social robots that was designed to allow cognitive and physical
interaction with humans [6,7]. This robot has been employed in a diverse range of social
applications, including healthcare, education, entertainment, and domestic settings [8–11].
To be effective, the Pepper robot needs to have a strong awareness of its surrounding
environment, from recognizing individual environment components and structures to
navigating safely in the area of interest, recognizing users and offering information.

Machines 2023, 11, 158. https://doi.org/10.3390/machines11020158 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines11020158
https://doi.org/10.3390/machines11020158
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0001-9377-4897
https://orcid.org/0000-0003-1172-885X
https://orcid.org/0000-0001-6102-3765
https://doi.org/10.3390/machines11020158
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines11020158?type=check_update&version=1


Machines 2023, 11, 158 2 of 17

One of the current uses of the Pepper robot is in the Industrial Innovation and Robotics
Center (IIRC), where it performs receptionist and escort duties for IIRC visitors. It interacts
with visitors through robot–human interaction system, provides a tour of the facility, and
delivers information about the IIRC’s different workstations.

Pepper offers several advantages in human–robot interaction, for instance, its shape,
voice, and kinematics. However, as stated in recent research [12,13], the current applications
for the Pepper robot have been largely restricted due to several technical limitations, such
as limited sensing capabilities, restricted API functionalities, and random, unplanned
motion when turning at speeds. In addition, the NAOqi navigation package is not an open
source and it offers only a limited set of navigation functionalities. Moreover, according to
Reuters [14], almost 27,000 Pepper robots were produced and sold out across the world.
Therefore, it is important, when investigating several methods, to develop an efficient robot
navigation framework for the Pepper robot platform.

Mainly, the Pepper robot platform may be programmed using different development
environments, including Choregraphe, Robot Operating System (ROS), Pepper QiSDK
Android Studio, AskNAO Tablet, and AskNAO Blocky. However, the most advanced
and common development environments are Choregraphe and ROS. Choregraphe offers
diverse functionalities to easily develop complex robot applications, but Choregraphe also
offers limited operations for the mapping, localization, and navigation functions. ROS, on
the other hand, is a set of software libraries and tools that assist the developer to build robot
applications, but it fails to achieve precise map production for navigation mobile robots.
Therefore, it is necessary to exploit these features for both development environments to
develop a reliable robot navigation system.

In order to address the above issues, this research has developed a SLAM-based
navigation system, which allows the robot to self-localize and navigate itself in large
halls. SLAM techniques have enabled social robots to autonomously navigate in indoor
environments through building a map for unknown environments, while simultaneously
keep track of the robot’s position. This paper discusses the design and development of
an efficient robot navigation system in order to help the Pepper robot navigate freely in
complex indoor environments. In addition, the developed system provides an efficient
robot–human interaction method for introducing available devices and services to IIRC
visitors. The main contributions of this paper are as follows:

1. Its review of the recently developed Pepper robot navigation systems for indoor
environments.

2. Its development of a method for generating useful 2D metric maps directly from the
data collected by Pepper’s onboard sensors, which overcomes the limitations in the
current ROS-based map production systems.

3. Its development of efficient navigation and localization systems for navigating com-
plex environments, using Pepper’s limited sensor suite.

4. Its presentation of a set of efficiency metrics to assess the developed systems.
5. Its assessment of user acceptability for the developed navigation system.

The remainder of this paper is organized as follows: Section 2 discusses the recently
developed Pepper-based navigation systems. Section 3 discusses the proposed Pepper
navigation system. Section 4 presents the experimental testbed and the results obtained
from several real experiments. The obtained results are discussed in Section 5. Finally, the
conclusion and future work are presented in Section 6.

2. Related Works

Robot navigation can be categorized into the following three main groups: geometric-
based [15,16], semantic-based [17–19], and hybrid approaches [20,21]. This section discusses
the recently developed robot navigations systems that have been developed for the Pepper
social robot platform.

Only a few research works have considered the Pepper robot platform, due to the high
cost of the Pepper platform, its limited onboard sensors, and complicated API. The existing
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works include the research presented in [22], which involved a complete navigation frame-
work for indoor environments with a collision avoidance function. The collected images
from the robot’s RGB-Depth camera were used to localize the robot within a topological
graph, through adopting an image-based visual servoing (IBVS) control function. Several
experiments have been performed on trails over 14 days, visiting more than 50 destination
points, an experiment that achieved a success rate of approximately 80%.

The authors of [23] proposed a visual SLAM-based localization and navigation ap-
proach for service robots. The proposed system was validated using the Pepper robot
platform, whose short-range LIDARs and RGB-Depth camera did not allow the robot to
navigate in large environments. The system has been validated using the following two
different environments: a medium-sized laboratory, and a large hall. The average success
rate for the developed navigation system was around 70%.

The work presented in [13] involved the development of an automated and interactive
robot system for navigating a robotics laboratory, where the developed system overcame
the limitations of the robot’s sensing capabilities. This work involved several contributions,
including an updated motion controller, which worked with the limited sensor suite
available in the Pepper robot.

The authors of [24] presented a 2D navigation system using an RGB-D camera sensor,
wherein the developed system was able to extract 2D laser scans out of the 3D point
cloud provided by the camera, which were later used by its mapping and localization
systems. This work filled the gap between laser rangefinder (LRF) and RGB-D technology
by presenting an effective mapping system based on the RGB-D camera. The authors
revealed that the results obtained from employing the RGB-D camera were very similar to
the maps generated by the LRF technology.

The work presented in [25] developed an efficient system with reliable navigation and
localization capabilities by adding personalized interaction functions for humans based on
face recognition. The obtained results offered an efficient autonomous robot navigation
system using the Pepper robot.

In [26], the authors presented a real-time system for emotion-aware navigation using
the Pepper robot among pedestrians, with no intensive concentration on the robot’s naviga-
tion function. The developed system aimed to predict the pedestrians’ emotions based on
the pleasure–arousal–dominance model. In [27], the authors proposed a multi-objective
navigation strategy based on machine emotions, which allowed the guide robot to predict
the destinations that visitors expected to visit, based on the emotional state of the tourists.

Cuma was a robotic museum guide application based on the Pepper robot platform,
as presented in [28]. Cuma accompanied visitors on a tour, providing explanations and
interacting with the visitors in order to collect their feedback. The authors revealed that the
provided software platform presented some critical limitations, including navigation, and
thus required the integration of external tools and algorithms.

The work presented in [29] involves the development of an open-source lightweight
navigation system for the Pepper robot platform. The developed navigation package
overcomes several limitations that exist in the ROS development environment, it runs on
the Pepper onboard PC, and offers efficient navigation capabilities.

The NavRep simulation environment has been proposed in [30] for reinforcement
learning applications. NavRep aims to employ any range-based sensors for navigation
purposes, and to allow anyone to reproduce state-of-the-art solutions for learning-based
robot navigation approaches.

As presented above, a few Pepper robot navigation-based systems have been devel-
oped for diverse applications. Table 1 discusses the main differences among these recently
developed systems based on the following parameters:

1. Navigation method: This involves the methods and algorithms that have been em-
ployed in the developed application. The employed navigation methods can be
geometric-based, semantic-based, or hybrid approaches.
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2. Employed sensors: different types of sensors can be integrated in the navigation task,
with diverse levels of computing complexity.

3. Development environment: Pepper robot applications can be developed using either
Chorgraphe or ROS. Each environment has its own advantages and drawbacks.

4. System’s efficiency: this involves analyzing the developed robot navigation efficiency
in terms of success rate, absolute trajectory error (ATE), localization accuracy, map
production, and user acceptability.

Table 1. A comparison between Pepper robot navigation systems.

Research
Work

Navigation
Method

Employed
Sensors

Development
Environment

System’s
Efficiency

[12] ORB-SLAM
LiDAR,

RGB-Depth, and
odometry

ROS ATE: 0.4095 m

[13] SLAM LiDAR ROS/NAOQi NA

[22] IBVS RGB-Depth
camera ROS Success rate: 80%

[23] SLAM LiDAR and
odometry Choregraphe Success rate: 70%

[24] SLAM RGB-Depth
camera ROS Translated error:

0.115 m

[25] SLAM LiDAR and
odometry sensors

ROS + IBM
service NA

[26] NAOQi LiDAR Choregraphe Emotion detection
accuracy: 85.33%

[27] SLAM LiDAR Choregraphe NA
[28] SLAM LiDAR Choregraphe NA

[29]
Monte Carlo

localization and
Dijkstra

Odometry and
laser scanner

C++-based
environment NA

[30] reinforcement
learning LiDAR NavRepSim

environment Success rate: 76%

NA: The authors did not investigate their developed system’s efficiency.

As presented above, these Pepper robot navigation systems did not consider several
significant evaluation parameters, including the map production accuracy, localization
error, success rate, and map trajectory error. For instance, the robot’s localization accuracy
and map production issues were not assessed in most of the existing approaches. There-
fore, this paper developed an efficient social navigation system that has been intensively
assessed, where we enhanced the navigation accuracy for social robot applications through
employing several reliable functions.

3. Proposed Pepper Navigation System

For implementation purposes, the ROS framework has been employed to develop
the proposed robot navigation system. The ROS is not a real operating system, but its
framework consists of a set of libraries and tools that have assisted developers in robot
applications [31]. The ROS has been chosen due to its applicability for developing successful
robotics applications. The localization and navigation functions of the Pepper robot have
been implemented using the ROS framework, whereas the map production function has
been developed using the Choregraphe development kit. Figure 1 depicts the main phases
for this proposed navigation system.
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3.1. Map Production Function

As discussed in the introduction, the maps obtained from the NAOqi_driver are low in
accuracy. To combat this, there is significant demand to develop an efficient map production
function. To solve the problem of low mapping accuracy, this research developed an efficient
method for constructing the map area using the Choregraphe development environment.

The developed map production function works as follows: it starts by employing
the explore navigation function located in the Choregraphe development environment.
This function requires an initial radius value to start its exploration. In the next step, the
GetMetricMap function is adopted to provide an array of pixel values in a .png format.
Then, the format is converted into a program monitor (PGM) format for display purposes.
Finally, the obtained map is fed into the ROS development environment in order to perform
the navigation task.

From the Choregraphe development environment, this paper obtained its array of pixel
values from the package AlNavigationProxy: getMetricalMap function and constructed an
image for the navigation area. After this, a high-resolution map was obtained for the area
of interest. This is a successful solution for the NAOqi_driver’s low accuracy.

3.2. Navigation and Localization Functions

The navigation function has been developed using the ROS framework, based on the
employment of the move_base package, in order to process Pepper’s navigation task. The
move_base package offers the implementation of a global and local planner to achieve the
navigation task. It consists of several methods that allow the robot to move from one point
to another using the navigation stack. An essential node in the move_base package is the
move_base node, which is a major component of the navigation stack.

The navigation stack is a 2D navigation system that obtains information from sensor
streams, odometry, and a goal pose and then yields safe velocity commands that are sent
to the mobile base. This paper used the sensed data from the odometry and rangefinder
sensors that already existed in the Pepper robot. The following equation represents the
navigation function:

F(X) = ∀Mx,y [(x1,y1, . . . , xn,yn)] ⊃ Si ⇒ R (1)

where M denotes movement in the defined area (x, y), Si denotes the sensor input, and R
denotes the result value.

In addition, this research employed the NAOqi_driver ROS driver for controlling
the robot’s motion, and then obtained the required values from Pepper’s sensors. The
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NAOqi_driver package is a common package for Pepper, NAO, and Romeo robot platforms,
where it wraps the required parts of NAOqi API and makes them available in the ROS.

Indoor robot localization is a challenging task due to the existence of walls and obstacles
in environments [32]. For localization, this paper adopted the adaptive Monte Carlo local-
ization (AMCL) approach, which localizes the robot’s position continuously and is able to
estimate the robot’s location during the navigation task. The estimation of the Pepper robot’s
location is based on odometry sensors located in the Pepper robot’s base unit.

For obstacle avoidance issues, this research implemented an obstacle_avoidance node
that collects sensed data from the odometry and laser sensors to determine the obstacles
and allow the robot to avoid collisions, whereas the data received from the odometry sensor
allows the robot to navigate itself around the obstacles.

For the purpose of controlling the path of the Pepper robot, this work developed a new
node named movTopoint, which is responsible for moving the robot from one location to
another. The Pepper robot needs to navigate through several predetermined points, where
each point represents an object (for instance, another robot, a 3D printer, or machines).

3.3. Human–Robot Interaction Function

The proposed robot navigation system requires the Pepper robot to interact with the
surrounding people in an interactive way. In addition, the robot may provide a brief speech
about the station as it moves by. To accomplish this task, this research developed a speech
node in the ROS (speech) that is responsible for establishing a conversation between a
visitor and the Pepper robot system; it then performs speech activities at the requested
positions. The speech node obtains localization information from the mov_Topoint node in
order to give the correct brief speech at the correct station.

Figure 2 shows the implemented structure for Pepper’s navigation system, which
consists of the move_base package, along with the implemented nodes, to achieve the
navigation task. Table 2 presents the main functions that have been implemented to
accomplish the social navigation task. In Figure 2, the new customized nodes are presented
in blue (speech, moveTo_point, and obstacle_avoidance).
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Table 2. A summary of the developed navigation functions.

Function Input Output

Obstacle avoidance Rangefinder sensor data New route through
move_base

Move-to-point Area ID from the list
of stations

The area’s coordinates are sent
to the move_base

Speech User interface function Short speech

4. Experiments and Results
4.1. Experimental Setup

For validation purposes, this paper considered the following two different indoor
environments at the University of Tabuk: a study room in the IIRC, as shown in Figure 3
and referred to as Area 1, and second, the FabLab area in the IIRC, as presented in Figure 4
and referred to as Area 2. Area 1 is a study area with a dimension of 14.1× 3.92 m2 that
consists of a number of desks and chairs, whereas Area 2 is a lab area with a dimension
of 20.4 × 7.6 m2 that includes desks, chairs, 3D printers, robots, electronic equipment,
and work tables. The selected environments were different in size, furniture, and visual
appearance complexity.

The Pepper robot platform has been chosen to test the developed navigation system.
Pepper is a child-sized robot platform, as depicted in Figure 5. Its mobile robot platform
can move using three omnidirectional wheels; it has 20 degrees of movement from the
17 joints on its body. Pepper’s body is made from white plastic and is equipped with a
tablet, capacitive sensors, and loudspeakers to assist in its interactions. In addition, Pepper
has four microphones, a sonar sensor, a three-dimensional sensor, two RGB cameras,
infrared sensors, laser sensing modules, and bumper sensors in order to assist the robot
with identifying people and objects around its body. The Pepper robot has the ability to
interact with people through speech, and it has LED lights in its eyes and ears to aid in its
communication of emotions.
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For the development environment, this research employed both Choregraphe and
the ROS. The Choregraphe environment has been utilized to perform the map production
function, whereas the ROS framework has been adopted to implement the navigation
tasks, including localization, obstacle avoidance, and robot–human interaction. ROS
framework has been employed in several robotics applications, including robot navigation
and localization.

Map production is a requirement in mobile robot navigation, as the Pepper robot
needs to localize and navigate itself in the area of interest. The map production function
was carried out autonomously, in which the robot traveled in the area of interest and built
a 2D map area. The map production task was accomplished in the following two ways:
through the ROS and Choregraphe. In the ROS architecture, the map was built using
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only the rangefinder sensors, which obtained an inaccurate map. The combined array of
rangefinder sensors offered a max range of 1.5 m, thus reducing mapping accuracy.

This research initially attempted to employ the ROS gmapping framework. How-
ever, the generated maps were extremely corrupted, even at short distances. Therefore,
to overcome this issue, this paper then employed the Choregraphe development envi-
ronment to generate useful maps at high resolution. The Choregraphe-based generated
map achieved better production accuracy, as the generated map was obtained from both
the rangefinder and the odometer sensors employed in the Pepper platform. The navi-
gation task was accomplished using the global and location planner package in the ROS
development environment.

Figure 6 shows the actual structure for Area 1 (study area), whereas Figure 7 presents
the actual structure for Area 2 (IIRC lab), along with the pre-defined station points that the
Pepper robot needs to visit and provide a brief description.
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4.2. Results

This section presents the efficiency metrics for social robot navigation, and discusses
the results obtained from several real experiments conducted in two different indoor
environments. The authors of [33,34] reviewed the common metrics used to evaluate
socially away robot navigation systems, including navigation efficiency, success rate, and
sociability. Therefore, in this paper, we extended the evaluation metrics in order to precisely
assess the efficiency of social robot navigation systems. The adopted evaluation metrics are
as follows:

• Map production task: this assesses the accuracy of the produced map for the area
of interest.

• Robot localization error: this estimates the difference between the robot’s actual
position and its estimated position.
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• Absolute trajectory error (ATE): this shows the average trajectory error for the robot
when traveling in the area of interest.

• Success rate: This measures the robot’s ability to reach its goal. In addition, the success
rate involves the number of collisions and timeouts.

• Robot path: this shows Pepper’s safe path to navigate from one reference point to
another in the area of interest.

• User acceptability: this refers to the overall acceptability of the social robot navigation
system by its users.

For validation purposes, this research developed a demonstration in which the Pepper
robot would provide autonomous tours in the IIRC laboratory (Area 2). Pepper was
designed to move between 10 different stations within the environment.

The map construction function was performed in both Areas 1 and 2. The obtained
map dimensions for Area 1 were 13.0× 3.54 m2, with a total error size of 9.25 m2, and
an average map production error of 16.7%, whereas the obtained map dimensions for
Area 2 were 20.52× 6.4 m2, with a total error size of 23.72 m2 and an average map produc-
tion error 15.1%. As noted above, the obtained localization error ratios for the two areas
(Areas 1 and 2) are almost the same with a slight variance, with an average of 15.9%.

The developed navigation system allows the robot to perform the map production
task first. Figure 8 presents the map area obtained for Area 1, whereas Figure 9 shows the
obtained map area for Area 2 (IIRC lab). However, the average map production accuracy
was around 84.1% for the two environment testbeds. Hence, the maps generated using
the production function had higher mapping accuracy than the map produced using the
ROS package.
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The maps for Areas 1 and 2 have been generated using Choregraphe, with a resolution
of 0.05 pixel/meter. Figure 10 shows the production map accuracy for Areas 1 and 2
using the Choregraphe- and ROS-based function, respectively. As noticed, the developed
Choregraphe-based function achieved the best map production accuracy for both scenarios
(Areas 1 and 2).
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The robot’s localization accuracy was a critical part of the development of this nav-
igation system, since the Pepper robot needs to travel to different, predefined points in
order to perform its tour task. Therefore, this section analyzes the average localization error
when the Pepper robot system travels in the navigation areas.

The localization accuracy was estimated along 10 reference points, where each ref-
erence point represents a station point that the robot needs to stop at and offer a brief
description. The localization accuracy for each reference point was estimated by calculating
the difference between the robot’s estimated location (xe − ye) and the robot’s real location
(xr − yr), according to the following formula:

LocAcc =

√
(xe − xr)

2 + (ye − yr)
2 (2)

In both experiment testbeds, there were 10 different stations, as presented earlier in
Figure 6. Pepper’s location was estimated at each of these 10 different positions, where, for
each estimation, the differences between the robot’s actual location and the estimated loca-
tion, as obtained from the developed localization function, were calculated. The obtained
results showed average localization errors of 0.43 and 0.60 m for Area 1 and 2, respec-
tively. Figure 11 presents the localization error for Area 1 through several reference points,
whereas Figure 12 shows the localization error for Area 2 through several reference points.
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Absolute trajectory error (ATE) is a metric that calculates the root mean square error
(RMSE) between the estimated trajectory point mei and the actual trajectory point mai [35],
where the ATE is defined as follows:

ATE =

(
1
N

N

∑
i
|mei −mai |

2

) 1
2

(3)

where N refers to the total points in the trajectory. Table 3 presents the ATE for two different
environments (Areas 1 and 2). During the experiments conducted in Areas 1 and 2, the Pepper
robot must move smoothly, and preferably sideways, to estimate the robot’s locations. The
map production function refers to the employment of rangefinder sensors and the odometer
attached to the Pepper robot. The trajectory error was estimated for 10 different points, as
discussed in the previous section. Table 3 shows the ATE results for Areas 1 and 2.

Table 3. Absolute trajectory error (ATE) in centimeters for Areas 1 and 2 and axis (x and y).

Experiment Testbed ATE (x Coordinate) ATE (y Coordinate)

Area 1 54 31
Area 2 66 51

The robot’s success rate measures Pepper’s ability to reach a particular point of
interest within a reasonable period and in a safe manner. Usually, the success rate is highly
dependent upon the environmental characteristics. In our case, the success rate estimates
the ability of the Pepper robot to reach its goal without a collision. The collision rate is the
rate that the Pepper robot terminates its navigation task due to collisions with dynamic
objects and humans. The timeout metric, on the other hand, refers to the rate that the Pepper
robot is unable to reach the destination point within the time limit. Pepper’s success rate has
been evaluated for the following two experimental testbeds: testbed 1 and testbed 2. Table 4
shows the success rate, collision rate, and the timeout for the two experiment testbeds.

Table 4. Quantitative results including the success rate and collision rate for two areas.

Experiment Testbed Success Rate Collision Rate Timeout

Area 1 0.92 0.01 0.001
Area 2 0.89 0.18 0.115

As noticed in Table 4, the success rate for Area 1 is better than Area 2, since Area 1
includes less obstacles and consists of four stations points to travel through. The same
result is observed for the collision rate and timeout, where the collision rate increases when
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more dynamic objects are located in the navigation area, as with Area 2. In addition, the
time needed to reach the destination points in Area 2 is longer than the time needed for
Area 1, due to the existence of dynamic objects, which may cause the robot to fail to reach
the destination point within the required time.

The Pepper robot’s path was also assessed for two experiment testbeds. Estimating
the Pepper robot’s path is an essential task to analyze the success of the developed robot
navigation system. Figure 13 presents the robot’s path for Area 1, whereas Figure 14 shows
the robot’s path for Area 2.
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According to [27], social robot acceptability can be assessed based on the following
several factors: the role assigned to the robot, the robot’s social capabilities, and the robot’s
appearance. Therefore, the work presented in this paper focused on the above three factors.
For instance, the main function of the developed system is to interact with, and navigate
visitors to, the main stations in the IIRC lab. Figure 15 presents the users’ acceptance of
the offered functions by the developed Pepper robot system, with an average acceptability
result of 87.2%. Most of the visitors showed a high level of acceptance when working with
the robot system as a new tool for guiding visitors through the IIRC.

Machines 2023, 11, x FOR PEER REVIEW 14 of 18 
 

 

 
Figure 13. Pepper’s path in Area 1. 

7.60 m

21.20 m
(0, 0)

Start point
Experiment area Workstations

Manufacturing area

Prototypes

CNC

3D printers
PCB engraver

Robot area
Ongoing 
projects

60
0m

m

 
Figure 14. Pepper’s path in Area 2. 

According to [27], social robot acceptability can be assessed based on the following 
several factors: the role assigned to the robot, the robot’s social capabilities, and the robot’s 
appearance. Therefore, the work presented in this paper focused on the above three fac-
tors. For instance, the main function of the developed system is to interact with, and nav-
igate visitors to, the main stations in the IIRC lab. Figure 15 presents the users’ acceptance 
of the offered functions by the developed Pepper robot system, with an average accepta-
bility result of 87.2%. Most of the visitors showed a high level of acceptance when working 
with the robot system as a new tool for guiding visitors through the IIRC. 

 
Figure 15. Assessment of the acceptance of the role assigned to the robot. 

The Pepper robot is considered to be a friendly, social interaction robot, and the em-
ployed system has been developed to interact with visitors in a cooperative way and per-
form different emotions. The authors of [36] even classified the Pepper robot as human-
like; therefore, Pepper succeeds at the task of robot appearance, as Pepper is human-like. 

Figure 15. Assessment of the acceptance of the role assigned to the robot.



Machines 2023, 11, 158 14 of 17

The Pepper robot is considered to be a friendly, social interaction robot, and the
employed system has been developed to interact with visitors in a cooperative way and
perform different emotions. The authors of [36] even classified the Pepper robot as human-
like; therefore, Pepper succeeds at the task of robot appearance, as Pepper is human-like.
As noted in Figure 16, the average acceptance of the robot for its social interaction function
was almost 86.1%. Pepper was able to provide an illustration of the devices and equipment
placed in the IIRC lab, in an interactive way. A high ratio of the visitors found Pepper to be
an efficient device in terms of social capabilities.
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In addition, the Pepper robot’s appearance was assessed from the users’ perspectives.
As presented earlier in Figure 5, Pepper has a plastic shell for skin, colorful eyes, and a
mouth, which increases the robot’s ability to display human-like emotions [37]. Figure 17
presents the acceptability of the robot’s appearance to visitors of the IIRC lab. As noted,
most of the visitors found Pepper to be effective in terms of appearance, with an average
acceptance rate of 90.1%. They found that the Pepper robot has a good shape and is
human-like.
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5. Discussion

The Pepper robot platform can be developed using the Choregraphe and ROS plat-
forms. The Choregraphe development environment offers limited base functionalities for
the navigation and mapping tasks, whereas the ROS fails to obtain an accurate map for the
navigation area [12,13], hence producing an unreliable robot navigation system for indoor
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environments. The authors of [38] further attest to this, arguing that Pepper is not suitable
for autonomous exploration, navigation, or SLAM tasks.

For the purpose of robot navigation, this paper implemented three different functions
(nodes) in order to overcome the aforementioned limitations and perform the tasks of robot
navigation in the IIRC area, with a focus on the following aspects: obstacle avoidance,
move-to-point, and speech nodes.

Vision-based navigation systems [22–24] are efficient in terms of map production
efficacy and navigation accuracy. However, the Pepper robot platform has limited memory
size and processor speed, both of which slow down the processing of vision-based naviga-
tion systems, where there is a high demand for these in order to perform the processing
required for robot vision images.

The work presented in [22,23,27] used the Choregraphe development environment,
which restricts the performance of several functions, including mapping and navigation.
The proposed navigation system developed in this research overcomes several limitations in
the existing navigation systems [12,13], through the employment of a novel map production
method using Choregraphe, which overcomes the limitations of the ROS production
map function. In addition, the proposed navigation system has been implemented and
evaluated in two different environments (a medium-sized area and a large lab), using a
2D laser scanner and odometry sensors. The quantitative experimental results proved
the effectiveness of the proposed system, which was able to generate 2D maps, where the
quality was estimated based on the difference between the real and the generated maps.

According to [39], social assistive robots refer to robots that are designed to aid
people in a way that focuses on social interactions, such as guiding, speaking, reminding,
observing, and entertaining. One of the main domains of social robots is the guiding or
companion robot, where the robot needs to support elderly people, particularly those
who are living alone. Unlike the works presented in [12,23,24,38], this paper investigates
the visitors’ acceptability for the robot application, by adopting a reliable robot–human
interaction system. According to the obtained results, the developed navigation system
offers a reasonable acceptance level.

Moreover, the developed navigation system achieves a low localization error when
navigating indoor environments, with an average localization error of 0.51 m. The devel-
oped navigation system offers efficient localization accuracy, meaning that the Pepper robot
arrives at the required station point with the minimum localization error.

6. Conclusions

The Pepper robot has been employed in diverse types of social applications, in which
robot navigation is essential for such applications. However, Pepper’s navigation task
is challenging with the available development environments. This paper presents the
development of an autonomous robot navigation system for the Pepper robot platform.
This work has been framed in the context of offering interactive tours in an open-plan
laboratory, focusing on the following two main goals: enhancing the Pepper robot’s au-
tonomy and improving its ability to interact with IIRC visitors. The former goal has been
achieved through the development of an efficient navigation system based on the ROS and
Choregraphe, where a new efficient map production function has been developed. The
latter has been accomplished by implementing an efficient speech recognition system. The
developed navigation system has been validated in two different environments, in which
it achieved efficient map production, localization, and navigation. In addition, this paper
offers a set of evaluation metrics for assessing the efficiency of any social robot navigation
system. Future work will aim to develop a semantic navigation system for the Pepper robot
platform by employing an RGB-D camera to further enhance navigation accuracy.
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