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A Slew Controlled LVDS Output Driver Circuit in
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Abstract—This article presents a power-efficient low-voltage
differential signaling (LVDS) output driver circuit. The proposed
approach helps to reduce the total input capacitance of the LVDS
driver circuit and hence relaxes the tradeoffs in designing a
low-power pre-driver stage. A slew control technique has also
been introduced to reduce the impedance mismatch effect between
the output driver circuit and the line. The pre-driver stage shows a
total input capacitance of 50 fF and also controls the voltage swing
and common-mode voltage at the input of the LVDS driver output
stage. This makes the operation at low supply voltages using a
conventional 0.18 m CMOS technology feasible. The output
driver circuit consumes 4.5 mA while driving an external 100 �
resistor with an output voltage swing of � 400 mV, achieving
a normalized power dissipation of 3.42 mW/Gbps. The area of the
LVDS driver circuit is 0.067 mm� and the measured output jitter
is � 4.5 ps. Measurements show that the proposed LVDS
driver can be used at frequencies as high as 2.5 Gbps where the
speed will be limited by the load time constant.

Index Terms—CMOS integrated circuits, current-mode logic
(CML), low-voltage differential signaling (LVDS), output driver,
source-coupled logic (SCL).

I. INTRODUCTION

H
IGH performance serial transmitters and receivers are

key components in modern chip-to-chip interconnec-

tions. To provide a high density link, tens or hundreds of such

circuits are typically integrated on a single chip [1], [2]. There-

fore, power consumption, crosstalk, and the integration density

are emerging as the key design issues for implementing these

building blocks. These issues underline the existing challenges

in design of fully differential low-power CMOS transmitters

and receivers.

This paper introduces a power-efficient output driver (OD)

circuit based on low-voltage differential signaling (LVDS) stan-

dard [3], [4]. This standard has been developed for high-perfor-

mance chip-to-chip interconnections with the advantage that it

can be applied in very high data rates. Limited voltage swing

as well as differential signaling scheme in this standard helps

to achieve very low noise generation with a good immunity to

the noise. Based on the LVDS requirements, the circuit should

be able to drive an external 100 termination resistor with a

voltage swing of 247 to 454 mV (Fig. 1). Therefore,
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a large amount of current should be driven to the load by the

output driver circuit, which makes the driver circuit design in

low supply voltages very challenging. Meanwhile, the common

mode voltage of the output signal should remain within the

range of 1.125 to 1.375 V [4]. Thus, it is necessary to

balance these conflicting requirements and at the same time en-

sure the correct current switching (or voltage switching [5]) at

the output stage.

Recently demonstrated LVDS drivers operating at reduced

supply voltages either rely on a diminished output swing [6],

[7], or sacrifice the fully differential topology [8]. It is also nec-

essary to apply proper termination schemes to avoid fast tran-

sitions or ringing caused by incomplete impedance matching in

different points of the transmission system [5], [6]. The fast tran-

sitions contain high-frequency components that directly affect

the electromagnetic radiation (EMR) created by the signal and

may create electromagnetic compatibility (EMC) problems [3],

[9]. On the other hand, since the total input capacitance of the

output driver circuit could be very high, a pre-driver circuit is

generally necessary to reduce the total input capacitance.

In this work, the entire circuit including the pre-driver circuit

is designed based on a fully differential topology to reduce the

current spikes on supply lines and have a low sensitivity to the

supply and substrate injecting noise. Meanwhile, a new tech-

nique will be introduced to reduce the total input capacitance of

the LVDS output driver circuit and at the same time to compen-

sate the impedance mismatch effect and hence keeping the total

power consumption low. In the following, after a brief review

and discussion on the existing topologies in Section II, the pro-

posed LVDS driver circuit will be described in Section III and

then the measurement results will be shown in Section IV.

II. LVDS DRIVER CHARACTERISTICS

Fig. 1 shows a general view of an output buffer circuit fol-

lowed by the output driver stages. In this configuration, the pre-

driver (PD) stage isolates the internal circuitry from the output

driver circuit which can have a very high input capacitance. The

total power dissipation in PD stage depends on the speed of op-

eration ( or input data rate) and total input capaci-

tance of the OD stage . Therefore, to have a low-power

PD stage, it is necessary to keep the as low as possible.

The OD stage may switch a differential current or voltage to

the output [10]. In this figure, it is assumed that provides

the necessary matching properties between the OD and external

circuitry. An extended discussion on different types of LVDS

drivers can be found in [5].
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Fig. 1. Complete output driving circuit including pre-driver stage and matching circuitry �� �.

Fig. 2 shows two common topologies that can be utilized as an

LVDS driver. In very high-frequency applications, source cou-

pled logic (SCL)-based circuits (Fig. 2(a)) are generally used

to drive the pads and external components [11]. In this circuit

topology, and are used to adjust the output common-

mode voltage while is the load resistance and is also acting

as the internal termination resistance. By proper control on the

biasing, it is possible to apply this topology as an output driver

with compatibility to the LVDS standard requirements. Due to

the internal termination resistors, this circuit shows a very good

performance from impedance matching point of view. However,

it dissipates a relatively high amount of power. Indeed, this cir-

cuit draws from the supply voltage to

drive the output termination resistance for a voltage swing

of . The total input capacitance of this circuit can be esti-

mated approximately as

(1)

in which stands for the Miller effect

, ( and

are the effective width and length of M1-M2 in Fig. 2(a), and

indicates the gate-drain and gate-source overlap length),

and . Here, it is assumed that for all

MOS devices, the minimum possible device length is

selected. Then, regarding the required bias current in this stage,

the total input capacitance would be

(2)

where and are voltage swings at the input and

output of this circuit, , and indicates the

effective electron mobility in NMOS devices. To derive (2), it

is assumed that the drain-source saturation voltage of all MOS

devices is times smaller than the input voltage

swing or: . This input capacitance should

be driven by the PD stage and hence a larger capacitance at the Fig. 2. (a) SCL-based buffer circuit. (b) Conventional LVDS driver circuit [4].
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Fig. 3. Simulated impulse response of a practical line including non-ideality
effects (solid line that uses distributed model for line) in comparison to the re-
sponse of an ideal line which includes only a termination resistor and parasitic
capacitor (dashed line). In both cases: �� � � ��, � � ��� �.

input means that more power will be consumed by the PD stage

to drive the OD at the desired speed of operation.

To reduce the power consumption, it is possible to use the

LVDS driver topology shown in Fig. 2(b) [4], [10]. In this case

one fourth of the bias current of an SCL-based driver is sufficient

(i.e., ) to achieve the same voltage swing at

the output.

In this circuit, the total input capacitance is

(3)

where , , and indicates the

effective hole mobility in PMOS devices and it is assumed that

the drain-source saturation voltage is the same for all

NMOS and PMOS devices.

Comparing (2) and (3), it can be seen that can be

as high as , due to the additional gate capacitance of

the PMOS devices (see Fig. 2(b)) (in this technology ).

Since the power consumption in the PD stage is proportional to

the input capacitance of the OD stage, the PD stage in both cases

would dissipate almost the same amount of power. As shown

in [5], using an internal termination resistor in the topology

of Fig. 2(b) would increase the bias current of this stage by a

factor of as high as two (i.e., ). This will

also increase the total input capacitor by almost the same factor,

accordingly.

In Section III, a technique for avoiding internal termination,

and hence keeping the power consumption of the LVDS driver

shown in Fig. 2(b) low, will be introduced.

III. PROPOSED CIRCUIT

A. Topology Description

Due to the several non-idealities such as non-ideal transmis-

sion line characteristics, imperfect termination, and pad para-

Fig. 4. Compensating the step response of the driver circuit: (a) a simple driver
model, (b) controlling the output voltage slew by introducing some delay [6].
All � cells are in practice non-linear current switches as shown in Fig. 2(b).

sitic effects, voltage spikes or ringing can be observed at the

output of LVDS driver. The typical impulse response of a prac-

tical line is shown in Fig. 3. As illustrated in this figure, the pulse

response in presence of line parasitics shows a large peaking fol-

lowed by ringing.

To achieve an acceptable output waveform, either internal ter-

mination should be applied (which increases the power con-

sumption considerably), or the output voltage slew should be

controlled to compensate for the effect of impedance mismatch

between the OD stage and its load. Fig. 4(a) shows the simpli-

fied topology of a differential driver where cells are imple-

mented with non-linear differential pair MOS current switches

as shown in Fig. 2(b). Based on this figure, as long as the input

voltage swing is higher than , the tail current will be

switched between the two branches and will be delivered to the

load. As explained before, any impedance mismatch between

the OD and line will cause some reflection and hence it exhibits

overshoot and undershoot at the output. Fig. 4(b) introduces a

possible remedy to control the output slew in fast transitions and

thus, to control the overshoot at the output of the OD circuit [6].

Based on this approach, a part of the output current is delivered

to the load by a delay through while the total current deliv-

ered to the output load remains unchanged. In this configuration,

the total transconductance is

(4)

Based on (4), the zero of the transfer function (i.e.,

) is larger than its pole (i.e.,
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Fig. 5. Compensating the line transfer characteristics using the configuration
shown in Fig. 4(b). Here, � � � pF, � � � pF, � � � nH, � �
� pF, � � ��� �, � ��� � � 	 � ���
�. The circuit transfer
characteristic is normalized to �� �� 	� .

). Hence, this topology has a lower transconduc-

tance at high frequencies (or equivalently in the fast transitions)

which is helpful to control the output voltage slew. Using a sim-

plified model for the line (see Fig. 5 inset), it is possible to show

that the transfer function of the system is

(5)

in which

By properly choosing the position of the pole and zero of the

as well as the ratio of with respect

to the line specifications, it is possible to reduce the amount of

overshoot at the output. It is not possible to derive a closed form

solution to find the proper values for these parameters, however,

it is possible to simplify (5) with respect to the line specifi-

cations and find the proper design parameters. As an approxi-

mation, the peak value of the line impedance occurs in

and is equal to the .

Therefore, one can set to re-

duce the peaking in the transfer function as shown in Fig. 5. It

is worth noticing that and for the quality

factor of the system can be very large.

As described in the previous section, the other issue associ-

ated with the circuit topologies of Figs. 2 and 4 is their relatively

high input capacitance that makes the design of the pre-driver

stage difficult. To alleviate this issue, the circuit topology of

Fig. 6(a) can be applied. Here, only the first part of the transcon-

ductance (i.e., ) is driven by the input voltage, , so the

total input capacitance would be much smaller than in the pre-

vious approach. This makes the design of low-power pre-driver

buffers much simpler. In this case, the second part of the cur-

rent will be provided by the cross coupled transconductor of

. As shown in Fig. 4(b), and can provide the re-

quired delay to control the output overshoot. In this configura-

tion, switching large enough current by produces a large

voltage swing at the output that switches the current flow in

and consequently the total required amount of current will be

delivered to the output load. After this switching takes place,

in Fig. 6(a) operates as a current source. The behavioral

analysis of this circuit is very complicated. Assuming simpli-

fied linear models for the transconductors and the line as shown

in Fig. 6(a) and (b), the system transfer function can be repre-

sented as

(6)

in which

This equation is valid only in transition before com-

pletely switches. Regarding (6), to make sure that the cross-cou-

pled device at the output (i.e., ) will not cause instability, it

is necessary that

(7)

Fig. 6(b) shows the small signal model for the proposed driver

circuit and the load. To have a better understanding, the Norton

equivalent circuit of the driver is shown. During transitions,

capacitors exhibit very low impedance while inductors exhibit

a very high impedance. Therefore, in each transition the load

that is seen by the transconductor would be approximately

equal to . Hence, by proper choice of and also time

constant of it is possible to limit the output voltage

swing in presence of transition. As a complementary effect of

compensating the line characteristics, the second part of the cur-

rent will be delivered to the output by with a delay deter-

mined by . In other words, it can be shown that the maximum

value of the transfer characteristics shown in (6) occurs in

(8)

Generally (internal parasitic capacitance) is much smaller

than the external parasitic capacitance . Increasing can
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Fig. 6. (a) Proposed topology to control the output slew (all � cells are in
practice non-linear current switches as shown in Fig. 2(b)). (b) Small signal
model of the driver and line. Here, the Norton equivalent circuit of the cross-cou-
pled transconductor is shown. (c) Line transfer characteristics and the compen-
sated system transfer function after compensation using the proposed topology.
� stands for voltage at the output of the OD circuit. Here: � � � pF,
� � ��� pF,� � � nH,� � ��� pF,� � ����, � � � ��� �
� 	 � ��
��. The circuit transfer characteristic is normalized to �� �
� 	� .

help to reduce the ringing at the output, however, larger re-

duces the total bandwidth in the signal path which is not desir-

able. Assuming :

(9)

Therefore, by equating it is possible to

control the peaking at the output. An example for compensating

the peaking in the line transfer characteristics is shown in

Fig. 6(c). For a large enough voltage swing in , the tail

bias current of transconductor switches completely to one

branch and hence will act as a simple current source. This

means that after switching, (in Fig. 6(c)) can be replaced

by a constant current source.

In high frequency applications, the overshoot in the transfer

characteristics of the output driver can be created deliberately

to increase the bandwidth of the circuit. This issue can be also

taken into account in the design techniques introduced in this

Section. Indeed, the goal here is to reduce the peaking in the

transfer function of the entire system and have minimum ringing

on the load side (i.e., at the output node ). At the same time, as

shown in Fig. 6(c), the peaking on can be maintained

to have a good performance in high frequencies.

Meanwhile, the low-pass filter at the input of con-

structed by and will reduce the transition time at this

node. Therefore, because of smaller voltage slew at the input

of , the total jitter due to this element at the output will

increase [12]. Hence, the values of and in Fig. 6(a)

should be selected very carefully to have minimum transition

time degradation at the input of . This implies that when

there is little or no peaking in the line transfer characteristics,

the value of should be selected as small as

possible to reduce the contribution of to the output jitter.

B. Circuit Structure

Fig. 7 shows the driver circuit implemented based on Fig. 6.

In this figure, and are implementing the

while and are implementing the cross-coupled

transconductor of . The input capacitance of these transis-

tors is large enough to implement the in Fig. 6(a).

The entire circuit including the pre-driver stage benefits from

a fully differential topology which results in very good power

supply rejection (PSR) as well as very low current spikes on

power supply lines. As shown in Fig. 8, the proposed circuit

exhibits a very smooth and fast settling time while driving the

realistic line. The step response of the circuit compares favor-

ably with respect to the ideal line case (or the case where

and hence there is no problem due to the near end

impedance mismatch). Indeed, using the set of element values

shown in Fig. 8 and if there would be no peaking in the line

transfer function, then the transient response will be similar to

the transient response shown in Fig. 8 (dashed line). However,

because of avoiding internal termination resistance in the pro-

posed topology, the peaking will always occur. Meanwhile, the

size of and are selected with respect to the line speci-

fications (as explained in Section III-A). It means that if there

is no peaking in the transfer characteristics, then very small

and could be selected in order to have a proper transient re-

sponse similar to Fig. 8 (solid line).

As explained earlier, utilizing the cross-coupled switches at

the output helps us to reduce the total input capacitance of the

output stage. Defining:

(10)
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Fig. 7. Proposed output driver stage and common-mode feedback circuit.

Fig. 8. Simulated step response of the proposed LVDS driver with realistic line
model (solid line) in comparison to the ideal termination case (dashed curve).

Fig. 9 shows how much the input capacitance can be reduced by

reducing the . The minimum possible value for depends on

the line specifications and it should be high enough to make sure

that by switching of , the cross-coupled nonlinear transcon-

ductor will also be switched. In this design and

hence the total input capacitance has been reduced by approxi-

mately 30%.

Fig. 10(a) shows the Monte Carlo simulation results (in-

cluding process variations and also mismatch effect of all the

components in Fig. 7). Fig. 10(b) depicts the behavior of the

circuit in different process corners and temperatures to show the

stability of the circuit over process and temperature variations.

C. Power Dissipation

Using a two stage pre-driver stage as shown in Fig. 11(a), the

total current consumption of the circuit can be calculated by

(11)

Fig. 9. Simulated input capacitance reduction of the output stage by increasing
the size of cross-coupled switches (� and � ) with respect to the
size of� and� [see Fig. 7].

Here, is the total bias current of the pre-

driver stage which is implemented by a two stage SCL-based

buffer [as shown in Fig. 2(a)], and is the bias current of the

output LVDS driver:

(12)

It can be shown that is proportional to the as

well as to the voltage swing at the input of LVDS stage called

(as depicted in Fig. 11(a)). This voltage should

be higher than the drain over-drive voltage of the differential

switching transistors to have complete current switching. It can

be shown that these two currents can be expressed approximately

by

(13)
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Fig. 10. (a) Monte Carlo simulation results including process variations and
mismatch effect of all elements �� � �85 C�. (b) Corner simulation results in
different temperature values (� � ��� C to �125 C). In these simulations,
the length of PCB line is assumed to be 20 cm, � � � pF, � � ��� pF,
� � ��� 	, and � � 
 nH [see Fig. 5].

and for the first stage:

(14)

where indicates the voltage swing at the corresponding

nodes, (it is assumed that is the same

for all devices in all stages), is the load resistance in each

stage, is the period of the input data or clock, ,

the parameters and are added to take into account the ef-

fect of wiring or other parasitic capacitors , and

( is the time constant of the corre-

sponding node in Fig. 11(a)). To derive these equations, the set-

tling time in each node is estimated and then the corresponding

bias current is determined such that the time constant at the pro-

posed output node be times smaller than . The other im-

portant parameter for estimating (13) and (14) is the time con-

stant at the output of pre-driver stage which should be much

smaller than the input pulse period , i.e., . Con-

sidering that in the proposed topology reduces by re-

ducing the , the total current drawn from supply can be indi-

cated by

(15)

Based on (15), the power dissipation increases with the

frequency of operation through . It can also be seen that

the total power dissipation can be reduced by increasing the

voltage swing in the intermediate nodes ( and ). The

Appendix shows in more detail the main tradeoffs existing in

design of an SCL buffer chain. Fig. 11(b) shows the estimated

total current consumption of the driver circuit (including the

PD stages without current consumption of the biasing and

common-mode feedback circuits) for different output voltage

swing values. Based on this plot, the total power consumption

can be reduced either by increasing the settling time (which

is not desirable), or by choosing a smaller output voltage

swing. Illustrated in Fig. 11(b), the current consumption of

the proposed topology with is significantly lower

than that of the conventional topology for a given settling

time and output swing. It should be mentioned that this plot

does not take into account the power consumption needed for

satisfying the impedance matching requirement in the conven-

tional topologies. This plot also compares the estimated power

consumption to the measured circuit power consumption for

.

D. Common-Mode Feedback

As shown in Fig. 5, a simple common-mode (CM) feed-

back circuit has been applied to control the output CM value

[13]–[15]. Because of the large size of output transistors, stabi-

lization of this CM feedback loop is difficult. In the proposed

circuit, and are used to compensate the CM feedback

loop frequency response. Meanwhile, the tail current of the

PMOS switching transistors is divided into two parts provided

by and in order to reduce the total CM feed-

back loop gain, and thereby improve the stability. It should be

mentioned that the common-mode feedback control circuit has

a low sensitivity to the output differential load. Hence, the line

impedance would have minor effect on the stability of the CM

feedback.

Operating with a low supply voltage requires a very careful

control on the input CM voltage and also voltage swing at the

input of the LVDS driver circuit. The input CM voltage of the

OD circuit should be controlled such that both NMOS- and

PMOS-side tail bias transistors stay in saturation region. For

this reason, a separate CM feedback loop controls the output

CM voltage of the pre-driver stage (or input CM voltage of the

output stage) which is an SCL based buffer. and in

Fig. 2(a) are used for this purpose. To make sure that both cur-

rent sources are in saturation region:

(16)

and

(17)

meaning that the should be high enough to ensure that

circuit is operational for supply voltages as low as 1.8 V (

stands for threshold voltage of MOS devices).
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Fig. 11. (a) Block diagram of the proposed output driver and pre-driver stages, (b) estimated current consumption of the entire driver circuit including a two-stage
SCL-based PD (excluding the biasing and common-mode feedback circuits). Dashed line shows the current consumption for the conventional topology while the
solid line shows it for the proposed topology with � � ����� (here: � � ��� ����).

IV. MEASUREMENT RESULTS

The proposed circuit has been designed in a conventional

0.18 m CMOS technology with 6 metal layers. Fig. 12 shows

the chip micro-photograph of the driver circuit which occupies

250 270 m . Fig. 13 shows the eye diagram of the output

signal in two different data rates measured by LeCroy SDA6000

Serial Data Analyzer. The total equivalent series inductance

at the output of the OD is 3.5 nH and the input signal is a

PRBS (pseudo random bit stream) 2 1 random data stream.

Fig. 13(a) shows the oscilloscope snapshot. For 1 Gbps input

data stream, as shown in Fig. 13(b), the eye diagram of the

output signal is quite open and there is no overshoot at the

output. The rise and fall time of the output signal are 500 ps

and 750 ps, respectively. The measured output rms (root mean

square) jitter is 4.5 ps. The total current consumption

of the OD stage and common-mode feedback to have a swing

of 430 at the output is 4.8 mA (6.0 mA including PD).

Fig. 13(c) shows the output eye diagram for 2.5 Gbps input data

rate. The time constant of the load is the main limiting factor

for increasing the speed beyond the 2.5 Gbps.

Table I compares these results with some previously reported

works. As can be seen in this table, the proposed approach

achieves a power-efficient design while satisfying the LVDS

standard requirements, and also overcoming the impedance

mismatch problem.

V. CONCLUSION

In this paper, a low-power LVDS driver circuit for serial link

applications has been presented. The proposed circuit includes

input buffers to isolate the input digital circuitry from the output

driver circuit. A technique to reduce the input capacitance of

the output LVDS driver stage and hence reducing the power

consumption of the input buffers has been demonstrated. The

output driver stage draws 4.5 mA (2.5 mA) while driving 100

off-chip differential termination resistor with a swing of 400 mV

(200 mV) with a supply voltage of 1.9 V at 2.5 Gbps. To our

knowledge, this is significantly lower than the power dissipation

of most LVDS drivers reported earlier. A new pre-emphasis cir-

cuit is also suggested to improve the matching properties of the

circuit.
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Fig. 12. Chip micro-photograph of the proposed LVDS output driver circuit
implemented in 0.18 �m CMOS technology.

APPENDIX

TRADEOFFS IN DESIGN OF SCL BUFFER CHAINS

Consider that consecutive SCL-based buffer stages have

been utilized to drive a load capacitance of (Fig. 14). If

the maximum acceptable input capacitance is , then

it is possible to determine the value of for minimum pos-

sible power consumption. Assuming that the time constant at

the output of th stage is times less than (input data pe-

riod), then:

(18)

By applying this constraint to all the intermediate nodes, it

can be shown that the input capacitance of each stage with re-

spect to the input capacitance of the next stage can be repre-

sented by

(19)

in which is a process-dependent constant defined as

(20)

Here, the parameter depends on the speed of operation as

(21)

and is

(22)

Therefore, the total input capacitance can be found as

(23)

Regarding (22) and (23), it can be seen that larger voltage swing

at the preceding stages leads to smaller input capacitance or,

in other words, smaller number of stages is needed to achieve

the desired input capacitance. Meanwhile, (19) implies that to

Fig. 13. (a) Transient of rise- and fall-times, and measured output eye dia-
gram for input data rate of: (b) 1 Gbps (�-axis: 125 ps/div, �-axis: 145 mV/div),
(c) 2.5 Gbps (�-axis: 50 ps/div, �-axis: 100 mV/div).

be able to reduce the total input capacitance by buffering, it is

necessary that: . Assuming that all the stages have

the same voltage swing ( for to ), then this

criteria puts an upper limit on the maximum operation speed of

the circuit as

(24)

This equation means that the voltage swing at the interme-

diate stages should be maximized to achieve a higher speed of

operation. The main reason is that by increasing the voltage

swing at the input of each stage by a factor of , it is pos-

sible to reduce the size of switching transistors of that stage

by a factor of without affecting the switching process. This

voltage scaling leads to times smaller input capacitance.
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TABLE I
PERFORMANCE COMPARISON TO SIMILAR DESIGNS

Fig. 14. SCL-based buffer chain to drive the load capacitance of � at the desired data rate. The load resistance of the stage ��� is � and � is the total
capacitance seen by � .

Meanwhile, should be selected as small as possible to in-

crease the lower limit on . The lower limit on is [16].

In addition, based on (24), should be selected as small

as possible. In a configuration with identical stages, the total

circuit bandwidth can be estimated by

( is the bandwidth of each stage) [17]. Then

should be high enough to satisfy the general requirement of

[10].

To calculate the power consumption, one can show that

(25)

This expression is derived assuming that the time constants of

the all intermediate nodes are satisfying (18). Equation (25) also

shows that the bias current in each stage depends on the voltage

swing at the input and output of that stage

as well as the voltage swing at the output of the next stage

. Assuming a constant voltage swing for all the stages,

the total current drawn from the supply voltage can be evaluated

as

(26)

which would be dominated by the latest stages of the buffer

chain and also increases by . Based on (24) and (26),

choosing a low voltage swing for the last stage and at the

same time higher voltage swing at the intermediate stages can

help achieving a good speed-power consumption compromise.

Fig. 15 shows the total current consumption calculated based on

(26) for different number of stages and different voltage swing

values. Based on Fig. 15, to get the desired input capacitance

it is possible to increase the number of

stages or increase the voltage swing at the intermediate stages.

To have small values, the only possibility is to increase the

voltage swing to 0.5 V. Also, it can be seen that it is possible to

reduce the total current consumption by increasing the voltage

swing for high values.

Fig. 15. Current consumption in an SCL buffer chain for different number of
stages � and different voltage swing values at the intermediate nodes �� �
based on (26). In this simulation:� � � pF,� � ���� and it is assumed
that � should be smaller than 50 fF. In the gray area, it is not possible to
achieve the desired � .
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