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Short Papers 

A Sliding Mode Controller with Bound Estimation 
for Robot Manipulators 

Chun-Yi Su and Tin-Pui Leung 

Abstract-A sliding mode control algorithm combined with an adaptive 
scheme, which is used to estimate the unknown parameter bounds, is 
developed for the trajectory control of robot manipulators. Simulation 
results show the validity of accurate tracking capability and robust 
performance. 

I. INTRODUCTION 

In recent years increasing attention has been given to controller de- 
signs of robot manipulators that utilize the theory of variable structure 
system (VSS) [I]-[ 121. VSS (see [ 131 for a recent review) is based on 
the concept of an attractive manifold of the underlying state or error 
vector space on which the desired dynamic behavior is assured. These 
systems are a special class of nonlinear systems characterized by a 
discontinuous control action which changes structure upon reaching 
a sliding surface s ( s )  = 0. A fundamental property of VSS is the 
sliding motion of the state on the "attractive" manifold. During this 
sliding motion the system has invariance properties, yielding motion 
which is independent of certain system parameter variations and 
disturbances. 

Among developed control algorithms using the theory of VSS, 
several approaches have been considered. Some use the method of 
the hierarchy [I]-[3], others do use the Lyapunov stability method 
[4]-[9], and the linearizable method [IO], [ I  I]. But all the derived 
control laws are based on the restrictive assumption that the bounds 
of the variations of the plant parameters are known a priori. In 
many practical situation. even if the bounds can be learned, they 
may be conservative. The implementation of the control law, based 
on these conservative bounds, may results in impractically large 
control magnitudes. Furthermore, these excessive controls will lead to 
large control chattering which may excite high-frequency unmodelled 
dynamics in the system. 

In this paper, a sliding mode controller with the bound estimation 
is proposed for accomplishing trajectory control of robot manipula- 
tors. The proposed method is based on the linear parameterization 
approach [ 141, [ 151, which decomposes the manipulator dynamic 
equations into the product of two quantities: a constant unknown 
vector of manipulator parameters, and a known nonlinear function 
of the manipulator dynamics, called the regressor matrix. By using 
the regressor, a new sliding mode control law is designed. We 
assume here that the system matrix is completely unknown and no 
information on its possible size is given. The bounds of the unknown 
parameters, which are needed for calculating the switching gain, are 
not required known here. Instead, an adaptive algorithm is constructed 
such that the bounds are generated as a function of the state of the 
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dynamics and the tracking error. The control law then depends on 
these estimates. Therefore, this results in a new version of the sliding 
mode control of robot manipulators. 

Usually, some unmodelled external forces, frictions, etc., may 
effect the stability. Thus, the controller should be robust in the 
presence of such uncertainties. Customarily, the uncertainties in the 
VSS trajectory tracking designs are assumed to be bounded by a 
constant. This assumption may be restrictive as far as friction forces 
are concerned. Uncertainties are, in general, functions of the system 
states. In this paper, the robustness with respect to the uncertainties is 
analyzed, where the uncertainties are assumed to be unbounded and 
fast-varying. Analysis results show that the robustness is guaranteed. 

The organization of this article is as follows. In Section I1 the 
robot dynamics and its structure properties are reviewed. Section 111 
presents a sliding mode control algorithm with bound estimation, 
and the robust analysis with respect to uncertainties is given. The 
elimination of chattering is also discussed in this section. Section IV 
gives the extension to Cartesian space. Finally the simulation results 
are given in Section V. 

11. MANIPULATOR DYNAMIC PROPERTIES 

A manipulator is defined as an open kinematic chain of rigid links. 
Each degree of freedom of the manipulator is powered by independent 
torques. Using the Lagrangian formulation, the equations of motion 
of an n-degree-of-freedom manipulator can be written as 

(1) D(q);i + B(q.q)q  + G(q) = 

where q E R" is the generalized coordinates (joint positions); 
D ( q )  E R'lX7' is the symmetric, bounded, positive definite inertia 
matrix; vector B(q ,q )q  E R" presents the centripetal and Coriolis 
torques; G(q) E R" is the vector of gravitational torques, which is 
bounded C' function; and U E R" is the vector of applied joint 
torques. 

The robot model (1) is characterized by the following structural 
properties, which are of importance to our stability analysis. 

Property 1: There exists a vector a E RnZ with components 
depending on manipulator parameters (masses, moments of inertia, 
etc.), such that 

D(q)u  + B(q.q)v  + G(q)  = @(q.q.v.w)a (2) 

where E R n X m  is called the regressor [14], [15], v E R" is a 
vector of smooth functions. 

This property means that the dynamic equation can be linearized 
with respect to a specially selected set of manipulator parameters, 
thus constituting the basis of the linear parameterization approach 

Property 2: Using a proper definition of matrix B(q .q ) ,  both 
[141, ~ 5 1  

D ( q )  and B ( q , j . )  in (1) satisfy 

z T ( D  - 2B)z  = 0. Vz E R" (3) 

with z r  the transposition of z. That is, ( h - 2 B )  is a skew-symmetric 
matrix [15], [16]. In particular, the elements of B ( q , q )  may be 
defined as [15], [I91 
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Property 2 is simply a statement that the so-calledfictitiousforces, 
defined by B(q,q)q ,  do not work on the system [19]. 

Remark: The structure properties of the robot dynamics presented 
above have been used to design a sliding mode controller for the 
trajectory tracking problem. By using Property 2, a simple sliding 
mode controller was presented [4]. Other classes of the sliding mode 
controllers [7]-[9] were proposed with the help of Properties 1 and 2. 

111. SLIDING MODE CONTROLLER WITH BOUNDS ESTIMATION 

A. Controller Design 

The considered tracking problem is stated as follows: Knowing 
desired trajectory qd E R", qd E R", and qd E R", with some or 
all the manipulator parameters unknown, determine a control law U 
and a sliding surface s = 0 such that sliding mode occurs on the 
sliding surface, the tracking error q = q - qd E R" has a prescribed 
transient response and it goes to zero asymptotically as t -+ 03. 

In this paper the sliding surface s = 0 is chosen as hyperplane, 
where 

(4) s = q + Aq 

where A is a positive definite matrix whose eigenvalues are strictly in 
the right-hand complex plane, and q(t)  = q ( t )  - q d ( t )  is the tracking 
error vector. 

If the sliding mode exists on s = 0, then from the theory of 
VSS, the sliding mode is governed by the following linear differential 
equation whose behavior is dictated by the sliding hyperplane design 
matrix .I: 

Obviously, the tracking error transient response is then determined 
entirely by the eigenvector structure of the matrix A .  Thus, if the 
control law is designed such that the sliding mode exists on s = 0, 
the tracking error transient response is completely governed by the 
linear dynamic equation (5). 

In order to derive the sliding mode control law, which forces the 
motion of the error to be along the sliding surface s = 0, a vector of 
self-defined reference variables is introduced for the succinct formula 
expression in the sequel, that is 

i v ( f )  = - hq(f) .  (6) 

Let cv E R'" be a constant unknown parameter vector from a 
suitable selected set of robot dynamic parameters. Then the linear 
parameterizability of the dynamics (Property 1 )  enables us to write 
the following expression as 

D(cl)q, + B(q.q)q ,  + G(q) = @(q,4,ir3iir).Cy (7 )  

where @(q,q,qT,q,  ) E Rnx"' is the regressor matrix independent 
of the dynamic unknown parameters. 

The sliding mode control law is now defined as 

U = @(q.q,q7,qT)v - I i d S  (8) 

n 

5, = r ~ ~ ~ s ~ @ ~ ~ ( q , q , q ~ . q ~ ) l ,  i = 1 ... m. (10) 

where @ ( q , q , q r , q r )  E R" is defined in (7); qt denotes the i-th 
component of the vector ?p. l i d  is positive definite design matrix; 
r, > 0 are arbitrary constants, which determine the rate of the 
adaptation. 

J=l  

Remark: The role of the linearity-in-parameter expressed by (7) 
is twofold. Firstly, it makes the design possible for isolating the 
unknown parameters from the robotic dynamics. Secondly, by using 
the regressor matrix the explicit sliding mode control form can be 
easily expressed, which is, in general, difficult [1]-[3]. 

With the construction of U in (8), we obtain the following sliding 
mode equation 

(1 1) 

which is obtained by subtracting (7) from both side of (l) ,  and using 
the fact that s = 4 - q,. 

D s  = @$ - @ a  - Bs - I i d s  

Now we are ready to state our main results. 
Theorem 1: Consider robotic system ( 1 )  with sliding surface (4) 

and control laws (8), (9), and (IO), then the tracking error q(t) 
converges to the sliding surface and is restricted to the surface for 
all subsequent time. 

Pro08 Consider the following Lyapunov function 

where 17% is constant satisfying qZ 1 lazlr therein at is the ith 
components of the vector (Y defined in (7). +jz is its estimation. 

Differentiating (12) with respect to time along the solution of (11) 
gives 

; (:t ) V = sT(@$ - @a - I i d s  - Bs)  + -sT -D s 

m 

1=1 

Using the Property 2, (13) becomes 

2 x 1  3=1  

5 - s T I i d s  < 0. (14) 

The function i'(t) is negative semidefinite and vanished if and only if 
s = 0. By applying the Lasalle theorem [ 181, the theorem is proved. 

Since q and s are related by (4), this in turn implies the tracking 
error llqll will also converges asymptotically to zero. 

Remark 

1) As can be seen from the control law (8), (9), and (lo),  
the controller uses only very general information about the 
structure of the robot dynamic equation. The system matrix 
D ,  B,  and G are completely unknown and no information on 
their possible sizes is required. The knowledge on the bounds of 
the unknown parameters to obtain feedback gain is not required 
here, instead, the feedback elements are generated as a function 
of states and tracking errors. 

2) Compared with the adaptive control method [14], [15], there 
is an important difference. We do not update the unknown 
parameters which are related to the regressor matrix, instead, 
a switching function is used. This avoids the difficulties linked 
with the adaptive method [19]. 

B. Robustness with Respect to Uncertainties 

In practice, some uncertainties, e.g., the friction coefficients, resid- 
ual time-varying disturbances, such as stiction or torque ripple, may 
effect the stability of the robot system. The controller must be robust 
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with respect to these uncertainties. In this section, the behavior of 
the robotic system in the presence of uncertainties is analyzed. The 
dynamics equation (1) becomes 

(15) 

where D ,  B, and G are defined in (I) ,  and U, E R" is the vector of 
uncertainties presenting friction, torque disturbance, etc. 

Generally, in the variable structure system, the uncertainties are 
assumed to be bounded. This assumption may be reasonable for 
external disturbances, but it is rather restrictive as far as some 
uncertainties are concerned. For example, the viscous and Coulomb 
friction forces may be modelled as Fvq + Fcsgn(q). Generally 
speaking, uncertainties are functions of the system states and may 
grow beyond any constant bound if the system becomes unstable. 
Therefore, we assume here that the uncertainty effects are presented 

llurll I do + dl11611 + dzlllll (16) 

Concerned with the uncertainties, the controller is modified as 

D(q)q  + B ( q , i ) q  + G(q) + U, = 

by 

where do > 0, d l  > 0, and d2 > 0 are some constants. 

U = @(q,q,qr ,qr)dJ - 60s - C'lsgn(s)  (17) 

(18) 
n 

41% = - 7 j ~ s g n ( C ~ ~ @ ~ ~ ( q , q , q ~ , q ~ ) ) .  i = 1 ... m. 
3 = l  

4, = r ~ i c s ~ @ ~ ~ ( q , q , q ~ , q ~ ) i ,  i = 1 ... m. (19) 

$0 = CoIls1l2 (20) 
61 = 6111s11 (21) 

3 x 1  

where r, > 0, CO > 0, 61 > 0 are arbitrary constants, which 
determine the rate of the adaptation. 

The following theorem can be stated. 
Theorem 2: Consider robotic system defined by (15), with the 

sliding surface s = 0 described by (4), then s approaches zero 
asymptotically provided that the control laws (17)-(21) are used. 

Proof: The following sliding mode equation can be easily 
obtained. 

D s  = @ ( q , i 3 i v , 4 r ) d J  - @(q,i,4r5qrb 
- K d S  - a r S g n ( S )  - B(q,q)S  - U, (22) 

which is obtained by subtracting (7) from both side of (15), and 
using the fact that s = q - 4,. 

A Lyapunov function candidate is chosen as 

- 1  

where n = p l ,  p > 0 is a constant; qt > 0 and nz > 0 are desired 
constant values of 7jz and satisfying qt 2 IaJ, a1 1 do, and no 
guaranteeing that Q is a positive definite matrix. 

P + A M  ( A ) d i + d z  
2 ] (24) 

no - d l  - 

2 PA- (14) 
- P + X M  ( A ) d i  +dz 

Q =  [ 
Differentiating V in (23) with respect to time and using Property 

2 give 
m 

v = s T ~ i  + S ' B ~  + 4'116 + - qz)(-$)/rt 
Z=I 

1 

Thus the theorem i s  proved. 
Remark: For controller design, the existence of qt,  no, and u1 

is necessary to guarantee the stability of the closed-loop system. 
However, these constants are not explicitly involved in the control 
inputs; the existence of q z ,  no, and a1 is sufficient for the validity of 
Theorem 2. The control inputs will rise to whatever level is necessary 
to ensure the stability of the overall system. 

C .  Smoothing the Control Laws 
The control law given above is discontinuous and it is well known 

that synthesis of such a control law gives rise to chattering of 
trajectories about the surface s = 0. This problem can be eliminated 
by smoothing out the discontinuous control law in the neighborhood 
of the sliding surface. To do this, we replace signum nonlinearity by 
a saturation nonlinearity, which is defined as follows 

1 i f s / d >  1 
s a t ( s )  = s/d if -1 < s/d  < 1 { -1 i f s / 4 <  -1 

where 4 is the boundary layer thickness. While the above equation 
leads to small terminal tracking error [2], the practical advantages of 
having smooth control input may be significant. With this boundary 
layer, the adaptive sliding mode control law given by (8), (9), and 
(IO) becomes 

U = @(q,4,qT,qT)dJ - I idSd  (29) 

7n. (30) 

n 

$? = r,l z~+~@~~(q,q,i~,q~)l, i = 1 ... m. (31) 
J=1 

where s+ = (s+ ... s4)' with sdt = sI - qksaf(st/&) is a 
measurement of the algebraic distance of the current state to the 
boundary layer. We can again demonstrate the attractiveness of the 
boundary layer by using the following Lyapunov function 
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instead of (12), and noting that s+ = s outside the boundary layer 
while s+ = 0 inside boundary layer, which yields 

d 
d t  (33) - V ( t )  5 - S ; l i d s +  

It can be shown that inside the boundary layer system is globally 
uniformly ultimately bounded [ 171. 

Remarks: 1) It can be seen from (10) that the updated feedback 
gain ij may keep increasing until s = 0. Theoretically, after sliding 
mode occurs, s maintains zero for the rest of time, but in practice, 
it is not the case. By using boundary layer, we can see from (31) 
that adaptation ceases as soon as the boundary layer is reached. This 
provides a rule for turning the adaptation out [20]. 

2) The technique for eliminating the control chattering is also valid 
for the controller (17)-(21). The detailed discussions are not given 
here in order to save the space. 

where IV. EXTENSION TO CARTESIAN SPACE CONTROL 
In this section, simular to [15] we extend the joint space sliding 

mode controller derived in the above section to the task space. To 
this effect, for a nonredundant manipulator, we simply replace the 
reference variable q, in (6) by 

4, = J-'(Zd - A ( z ~  - 2)) (34) 

and, accordingly 

so that 

The same control law (8), (9), and (10) are then used again with 
(12) as the Lyapunov function. It can be easily verified that relation 
(1 1) is still valid. Following the same derivation as before, one obtain 

17 5 = - [ ~ q  - zd + A Z ] ~ J - ~ ' K ~  
x J - ' [ J q  - Z d  + A 4  < 0 (37) 

which implies convergence to 

J q  - i d  + AZ = 0. (38) 

Using the kinematic relation Z = Jq ,  we recognize that expression 
(38) as the equation of sliding surface z + AZ = 0, which in turn 
guarantees that Z + 0 as t + 03. Therefore, the previous sliding 
mode controller is globally stable and guarantees zero stead-state, 
Cartesian space, position error. 

Note from (34) and (35) that only the desired trajectories in 
Cartesian space Z d ,  i d ,  and x d  have to be given. The quantities to 
be measured are joint positions q and joint velocities q. End-effector 
position z and velocity Z can be obtained from the direct kinematics, 
and therefore do not need to be explicitly measured. Also, note that 
the inverse Jacobian J-' appears in (34) and (35), and therefore 
singularity points should be avoided. 

V. SIMULATION EXAMPLE 

The model chosen for simulation is a two-link planar manipulator 
as shown in Fig. 1. The dynamic equation is given by 

0 
Fig. 1 .  Two-link robot manipulator model. 

Let the equivalent parameter vector (Y be 

01 = (ml + m2)r1 

f f g  = mgr; 

03 = r r i 2 i - 1 ~ 2 .  

Therefore, the regressor matrix @ ( q ,  q, 4,. q r )  defined in (7) is 

ail = 61, + e C O S ( 9 )  

a12 = Ulr + 1'27 

= 24'1, cos(d) + i z r  cos(4) - Oil7. sin(4) 

- (4 + $)4zr sin(4)  + e cos(8 + Q) 

@21 = 0 

@22 = a12 

a23 = O i l , .  sin( 9) + cos( 0) + e cos( 8 + 4 )  

where e = g/r1, and g is the acceleration of gravity. 
The desired joint trajectory is given by 

8 d  = ~d = -90" + 52.5(1 - CO5 1.26 t ) .  

The goal of sliding mode control is to force the trajectory error 
& I  = @ - @ d  and 5 2  = Q - d d  to sliding along the sliding surface 
which is chosen as 

s1 = U s & 1  + c1 

s g  = U S f 2  + e 2  

where us = 4. 

systems 
The resulting sliding mode equations are two decoupled first-order 

et  = - U S E z ,  i = 1 , 2 .  
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In this simulation the control gains l i d  are selected as 

~ d ( l i d  = adl) = 8 

rl = 0.2, r2 = 0.1.5, r3 = 0.1. 

The initial displacements and velocities are chosen as 

O(0) = 80", d(0)  = 70": e(0) = d(0)  = 0. 
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0.20 

0.00 

-0.20 
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Fig. 5. Sliding surface 5 2 .  
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Fig. 6.  Torque at joint one 

we took 7 j , ( O )  (i=1,2,3) in adaptation law ( I O )  as 

7 j i ( O )  = 0.8, l jz (0)  = 0.2 i j s ( 0 )  = 0.2. 

Using control laws (8), (9), and (IO), Figs. 2 and 3 show the tracking 
errors. Figs. 4 and 5 show the sliding surfaces which confirm that 
adaptive sliding mode controller achieves its objective after an initial 
adaptation period. Figs. 6 and 7 show torques developed at the 
manipulator joints which result in undesirable control chattering. 

To test the robustness of the controller, a 0.5kg load was added 
to the joint 2. Changes in the load were not accounted for in the 
controller. Figs. 8 and 9 show the joint tracking errors with the load 
attached. It is confirmed that the validity of the proposed algorithm 
is explicitly for the purpose of the trajectory trackmg in the such 
uncertainty as handling a variable payload. 

To reduce the chattering, we implement the boundary layer con- 
troller given in (29), (30), and (31). Here the boundary layer is taken 
as 91 = 0 2  = 0.05. Figs. 10 and 11 show the tracking errors. Figs. 
12 and 13 show sliding sectors. Figs. 14 and 15 show torques exerted 
at the manipulator. As can be seen from these figures, chattering is 
eliminated. 

VI. CONCLUSION 
A sliding mode control scheme with the bound estimation is 

presented by using the theory of VSS. The major contribution of 
this methodology lies in the use of a special matrix, named regressor, 
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which makes it possible for isolating the unknown parameters from 
the robotic dynamics. Based on the upper bounds of those unknown 
parameters which are estimated by a simple adaptive law, the 
proposed VSS controller guarantees the stability of the closed-loop 
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Fig. 10. Tracking error of joint one with boundary layer. 
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Fig. 11. Tracking error of joint two with boundary layer. 
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Fig. 12. Sliding variable s i l .  
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system. The robustness analysis shows that in the presence of the 
uncertainties, which are assumed to be unbounded and fast-varying, 
the closed-loop system can still be stabilized. Chattering is reduced 
by using the boundary layer technique. Simulation results show the 
validity of the proposed algorithm. 
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