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A Sliding-Mode Duty-Ratio Controller for DC/DC

Buck Converters With Constant Power Loads
Yue Zhao, Student Member, IEEE, Wei Qiao, Senior Member, IEEE, and Daihyun Ha, Student Member, IEEE

Abstract—Incorporating a medium-voltage dc (MVDC) inte-
grated power system is a goal for future surface combatants and
submarines. In an MVDC shipboard power system, dc/dc convert-
ers are commonly employed to supply constant power to electric
loads. These constant power loads have a characteristic of nega-
tive incremental impedance, which may cause system instability
during disturbances if the system is not properly controlled. This
paper proposes a sliding-mode duty-ratio controller (SMDC) for
dc/dc buck converters with constant power loads. The proposed
SMDC is able to stabilize the dc power systems over the entire
operating range in the presence of significant variations in the
load power and input voltage. The proposed SMDC is validated
by both simulation studies in MATLAB/Simulink and experiments
for stabilizing a dc/dc buck converter with constant power loads.
Simulation studies for an MVDC shipboard power system with
constant power loads for different operating conditions with sig-
nificant variations in the load power and supply voltage are also
provided to further demonstrate the effectiveness of the proposed
SMDC.

Index Terms—Buck converter, constant power load, dc/dc
converter, medium-voltage dc (MVDC) system, sliding-mode
controller (SMC), stability.

I. INTRODUCTION

IN ADVANCED shipboard power systems, the continuous

trend toward “more electric ship” or even “all electric ship”

will have a significant portion of the mechanical and hydraulic

power been substituted by electric power. These changes will

increase the efficiency and reduce cost and environmental

impact of shipboard systems. A medium-voltage dc (MVDC)

integrated power system has been established as the U.S.

Navy’s goal in future surface combatants and submarines [1].

The MVDC shipboard power system is a long-term goal for

providing affordable electric power dense systems. However,

the application still requires standardized methods for system
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design, stability analysis, control, fault detection, isolation,

etc. In particular, the interactions among extensively connected

nonlinear power electronic components/modules will increase

the dynamic complexity of this type of “power electron-

ics intensive” power system, where the negative incremen-

tal impedance-induced instability of the system with constant

power loads is one of the main challenges [2], [3].

Most power electronic converters in the MVDC shipboard

power system behave as constant power loads when their

outputs are tightly regulated with little variations around the

reference values. A constant power load has negative incremen-

tal impedance because the load current will increase (decrease)

with the decrease (increase) in the load voltage [2], [4]. This

negative incremental impedance will have a negative impact on

the stability of the dc/dc converters, which may consequently

threat the power quality and stability of the MVDC system.

Therefore, appropriate control methods are needed to ensure

the system stability [1].

Classical linear control methods are commonly used in the

controller design for dc/dc converters. Small-signal models

have been used to analyze the stability and design controllers

for dc/dc converters with constant power loads, in which the

system’s equations are linearized around an equilibrium point

and then analyzed by using classical eigenvalue or frequency-

domain techniques [5], [6]. However, due to the nonlinearity of

the system, the linear control methods can only ensure small-

signal stability, but they are not effective when the system is

experiencing large perturbations, e.g., step load changes. Re-

cently, large-signal analysis methods, e.g., large-signal phase-

plane analysis, Lyapunov analysis, and Brayton–Moser mixed

potential method, have been used for stability analysis of dc–dc

converters [7], [8], [18]–[22]. These methods can provide ana-

lytical estimation of the system’s stability region. Sliding-mode

and feedback linearization methods [4], [5], [8]–[11] have been

used for designing controllers for dc/dc converters. However,

these controllers were designed to only handle the systems at

one constant power condition [4], [5], [8] or with a resistive

load [9]–[11] and cannot guarantee system stability when the

load power significantly changes. To ensure stability of an

MVDC system with constant power loads, a controller that can

guarantee large-signal stability in the presence of both input

voltage and load variations is needed.

This paper proposes a novel sliding-mode duty-ratio con-

troller (SMDC) for a dc/dc buck converter with constant

power loads. The proposed SMDC outputs a duty ratio, which

is used to generate pulsewidth-modulated (PWM) gate sig-

nals for the dc/dc converter. This is different from conven-

tional sliding-mode controllers (SMCs) in the literature, whose
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Fig. 1. DC/DC converter II behaves as a constant power load in a shipboard
dc-ZED system module.

Fig. 2. Buck converter with a constant power load.

outputs were directly utilized as gate signals. The proposed

SMDC is capable of stabilizing the dc power systems over the

entire operating range in the presence of significant variations

in the load power and supply voltage. Simulation studies are

carried out in MATLAB/Simulink to validate the proposed

controller for stabilizing a dc/dc buck converter, as well as an

MVDC shipboard power system with constant power loads.

Experimental results on a practical buck converter with con-

stant power loads are provided to further validate the pro-

posed SMDC.

II. NEGATIVE INCREMENTAL IMPEDANCE-INDUCED

INSTABILITY IN A DC POWER SYSTEM

WITH CONSTANT POWER LOADS

The electric components, e.g., power electronic converters

and motor drives, of advanced MVDC shipboard power sys-

tems, especially those in the shipboard dc zonal electrical

distribution (ZED) modules, behave as constant power loads

when they are tightly regulated. Shown in Fig. 1 is the dc/dc

converter II, whose output voltage is regulated to supply a

load, e.g., a constant resistive load, in a shipboard dc-ZED

module. Consequently, the input power of the dc/dc converter II

is constant.

For a constant power load, the product of the load voltage

and current (i.e., P = V · I) is a constant and the instanta-

neous value of the load impedance is positive (i.e., V/I >
0). However, the incremental impedance is always negative

(i.e., ∆V/∆I < 0). This negative incremental impedance has

a negative impact on the power quality and stability of the

system.

A buck converter in Fig. 2 is used as an example to show the

instability of a dc/dc converter with a constant power load. The

state–space equations of the buck converter when the switch is

on (i.e., 0 < t < dT ) and off (i.e., dT < t < T ) are given by

(1-A) and (1-B), respectively,

⎧

⎨

⎩

diL

dt
= 1

L
(vin − vo)

when 0 < t < dT
dvo

dt
= 1

C

(

iL − P

vo

) (1-A)

⎧

⎨

⎩

diL

dt
= 1

L
(−vo)

when dT < t < T
dvo

dt
= 1

C

(

iL − P

vo

) (1-B)

where d and T are the duty ratio and switching period of the

converter, respectively. Using the state–space averaging method

[12], [13], the dynamic model of the buck converter can be

written as
{

diL

dt
= 1

L
(vind− vo)

dvo

dt
= 1

C

(

iL − P

vo

)

.
(2)

Consider small perturbations in the state variables due to

small disturbances in the input voltage and duty ratio

⎧

⎪

⎨

⎪

⎩

vin = Vin + ṽin
d = D + d̃
vo = Vo + ṽo
iL = IL + ĩL

(3)

where Vin, D, Vo, and IL are the average values of vin, d, vo,

and iL, respectively. Substitute (3) into (2), the dynamic model

of the buck converter becomes

{

dĩL

dt
= 1

L
(Vind̃+Dṽin − ṽo)

dṽo

dt
= 1

C

(

ĩL − P ṽo

V 2
o

)

.
(4)

Note that the following approximation is made due to the fact

that Vo ≫ ṽo:

IL −
P

vo
=

P

Vo

−
P

Vo + ṽo
=

P ṽo
Vo(Vo + ṽo)

=
P ṽo
V 2
o

.

The transfer functions of the system can be obtained from (4)

as follows:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

H1(s) =
ṽo(s)

d̃(s)
=

Vin

LC

s2−

(

P

CV 2
o

)

s+ 1

LC

H2(s) =
ṽo(s)
ṽin(s)

=
D

LC

s2−

(

P

CV 2
o

)

s+ 1

LC

.
(5)

Both transfer functions in (5) have poles in the right half

plane. Therefore, the system is unstable because of the constant

power load. Fig. 3 shows the simulation results of the load

voltage and current of the open-loop-controlled buck converter,

where the initial duty ratio is 0.25, the source voltage is

40 V, the load voltage is 10 V, and the constant load power

is 2 W. A small disturbance in the load current at 1 ms causes

the load voltage to increase in order to maintain the constant

power, which results in further decrease in the inductor and

load currents. This acts as a positive feedback to the circuit.

Therefore, the load current eventually decreases to 0.5 A while

the load voltage increases to 40 V, which is the same as the

source voltage.
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Fig. 3. Simulated load voltage and current of the open-loop-controlled buck
converter with a constant power load.

Linear (e.g., PI) controllers can be designed to stabilize the

system around a specific operating point based on a linearized

small-signal model, such as that described by (5). However,

when the operating point (e.g., the input voltage Vin or the load

power P ) significantly changes, the system, which still contains

unstable poles, may not be able to be stabilized by using the

same linear controller.

As a comparison, under the small perturbations shown in (3),

the transfer function of the buck converter with a resistive load

instead of a constant power load can be obtained as

H3(s) =
ṽo(s)

d̃(s)
=

Vin

LC

s2 + 1
RC

s+ 1
LC

(6)

where the two poles are in the left half plane. Therefore, the

system is stable.

III. SLIDING-MODE CONTROL FOR DC/DC CONVERTER

The SMC is an important robust control approach for nonlin-

ear systems. The most important issue in designing an SMC

is to design a switching control law to drive the plant state

to a switching surface and maintain it on the surface upon

interception [14]. Previous studies have shown that if the sliding

mode is enforced, the closed-loop control system will have

attractive advantages of robustness to disturbances and low

sensitivity to parameter variations [16]. This section presents

the design procedure of the conventional SMC for a dc/dc

converter.

Consider a unified state–space formulation of a dc/dc con-

verter [16]: ẋ = Ax+ uBx, where scalar x is the state of

interest (e.g., the output voltage) of the dc/dc converter; scalar u
is the control signal, which is generated by a switching control

law; and A and B are parameter matrices of the converter.

Suppose that xd is the reference value for x, then state tracking

error can be defined as x̃ = x− xd. The switching control law

is commonly designed as u = usw = 1/2[1 + sign(s)], where

s is a function of the state tracking error defined as s = cT x̃,

and vector c denotes the gradient of s with respect to x̃. More

generally, an nth-order s function [14] can be designed as

s(x; t) =

(

d

dt
+ λ

)n−1

x̃ (7)

where λ is a positive constant. Define a candidate Lyapunov

function V (s) = s2/2. Then, to ensure controller stability and

convergence of the state trajectory to the sliding surface, the

proposed switching control should guarantee that the time

derivative of V (s) is always negative when s �= 0, i.e.,

V̇ (s) = s · ṡ < 0. (8)

According to the definition of s, the time derivative of s can be

calculated as

ṡ=cT ẋ=cT (Ax+uBx)=cTAx+
1

2
cTBx+

1

2
sign(s)cTBx.

(9)

Substituting (9) into (8) yields

sṡ = s

(

cTAx+
1

2
cTBx

)

+
1

2
|s|cTBx < 0.

Then, the necessary condition for the existence of the sliding

mode in the vicinity of s(x; t) = 0 can be derived as follows:
{

cTAx < −cTBx, s > 0
cTAx > 0, s < 0.

(10)

In the SMC controlled system, the dynamics of the state of

interest in the sliding mode can be written as ṡ = 0. By solving

this equation, an expression can be obtained for u, which

is called the equivalent control law ueq [14]. The equivalent

control law can be interpreted as a continuous control law that

would maintain ṡ = 0 if the plant dynamics are exactly known.

For the dc/dc converter, ueq can be calculated by setting (9) to

be 0, which yields ueq = −cTAx/cTBx. To ensure that (10) is

satisfied, ueq needs to satisfy the following inequalities:

0 < ueq = −cTAx/cTBx < 1. (11)

IV. PROPOSED SMDC FOR A BUCK CONVERTER WITH

CONSTANT POWER LOADS

In this section, a conventional SMC is first designed based

on the method presented in Section III for a buck converter

with constant power loads. However, the conventional SMC has

an inherent disadvantage of variable switching frequency. This

is not suitable for converter applications in which a constant

switching frequency is desired. The SMDC is proposed to

solve this problem. The control law of the proposed SMDC

is a summation of a continuous function, i.e., an equivalent

control ueq, and a switching function. The continuous func-

tion gives a good approximation of the switching control law

in the conventional SMC, whereas the switching function is

utilized to handle disturbances and parameter uncertainties of

the converter model. The output of the SMDC will be used

as the duty ratio for a pulsewidth modulator to generate the

control signal for the converter. Thus, the operating frequency

of the proposed SMDC is fixed. The closed-loop stability and

robustness to converter parameter variations are theoretically

validated in this section. The proposed SMDC can stabilize the

system when large disturbances occur in the input voltage and

output power of the converter. This feature is critical to the safe

operation of an MVDC shipboard power system, particularly
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when the dc bus voltage is unstable and the ZED modules have

load variations.

A. Conventional SMC for Buck Converters With

Constant Power Loads

Consider the dc/dc buck converter with a constant power load

in Section II. According to (7), an s function is designed as

follows:

s =

(

d

dt
+ λ

)2
⎛

⎝

t
∫

0

x̃dt

⎞

⎠ = ˙̃x+ 2λx̃+ λ2

t
∫

0

x̃dt (12)

where x̃ is the output voltage tracking error, which is defined

as x̃ = ev = Vref − vo in this paper, and Vref is the reference

value for the output voltage of the buck converter. Then, (12)

can be rewritten as

s = a1ėv + a2ev + a3

∫

evdt (13)

where a1, a2, and a3 are positive coefficients. The switching

control law of the SMC is designed as

u = usw =
1

2
[1 + sign(s)] =

{

1, when s > 0
0, when s < 0.

(14)

To derive a necessary condition to ensure the existence of the

sliding mode and that (8) is always valid, the following proce-

dure is conducted. First, the time derivative of s is calculated as

ṡ = a1ëv + a2ėv + a3ev . According to the dynamic model (2)

of the dc/dc buck converter, the first and second time derivatives

of the voltage tracking error can be derived as

ėv = −v̇o = −
1

C

(

iL −
P

vo

)

(15)

ëv =
P

C2v2o
ic −

vin
LC

u+
vo
LC

. (16)

Substituting (15) and (16) into the expression of ṡ yields

ṡ =

(

a1P

v2oC
2
−

a2
C

)

iC −
a1
LC

(vinu− vo) + a3(Vref − vo).

(17)

According to (8), to ensure controller stability and conver-

gence to the sliding mode, V̇ = sṡ < 0 should be always sat-

isfied by using the proposed switching control law (14). Then,

the following two conditions can be derived by substituting (14)

into (17) and ensuring sṡ < 0.

1) If s > 0, usw will be equal to 1, and ṡ needs to be smaller

than 0, which yields

ṡ =

(

a1P

v2oC
2
−

a2
C

)

iC −
a1
LC

(vin − vo) + a3(Vref − vo) < 0.

(18)

2) If s < 0, usw will be equal to 0, and ṡ needs to be greater

than 0, which yields

ṡ =

(

a1P

v2oC
2
−

a2
C

)

iC +
a1
LC

vo + a3(Vref − vo) > 0. (19)

Based on (18) and (19), the ranges of the coefficients a1, a2,

and a3 in (13) can be determined.

In practical applications of the buck converter, the output

of the conventional SMC, which is a variable-duration binary

signal, can be directly used as the switching signal for the

controllable switches in the circuit. However, the switching fre-

quency of the controllable switches will be variable. Thus, the

system’s operating frequency cannot be determined accurately.

This will cause problems to the design of the circuit compo-

nents and filter. Furthermore, at steady state, the control signal

generated by the conventional SMC will be highly sensitive to

the parameter uncertainties and disturbances of the converter.

To solve these problems, an SMDC using a fixed switching

frequency and robust to converter parameter uncertainties is

proposed.

B. Control Law Design for the Proposed SMDC

Per discussions in Section III, if the converter dynamics are

exactly known, ueq can be used as a continuous control law to

maintain ṡ = 0. According to [17], if the switching frequency

of the converter approaches infinity (in practice, a very large

value), the averaged dynamics of an SMC-controlled system

is equivalent to the averaged dynamics of a PWM-controlled

system. This indicates that ueq = d, where d is the duty ratio

of a pulsewidth modulator. Therefore, it is reasonable to design

an SMDC whose output is utilized as the duty ratio directly for

pulsewidth modulation of the converter using a fixed switching

component. To handle disturbances to the converter, a switching

term with a variable magnitude is added to ueq to form the

complete control law for the proposed SMDC

u = ueq +
|ev|

vin
sign(s) (20)

where ueq is calculated by setting (17) to be zero

ueq =
L

vin

[(

P

Cv2o
−

a2
a1

)

iC +
1

L
vo +

a3C

a1
(Vref − vo)

]

.

(21)

According to (11), ueq should be limited between 0 and 1.

Then, the time derivative of the candidate Lyapunov function is

calculated as

V̇ (s) = s · ṡ = s ·

(

0−
a1vin
LC

·
|ev|

vin
sign(s)

)

= −
a1
LC

|s|.

(22)

In (22), a1 is a positive coefficient of the s function. Thus,

(22) is always negative when s �= 0. This ensures the controller

stability and convergence to the sliding mode.

C. Robustness of the Proposed SMDC to

Converter Parameters’ Variations

The value of ueq given by (21) can be calculated online by

using the system states, e.g., vo, which are measured online

and converter parameters, e.g., C and L, which are usually

determined offline. However, the parameters usually vary with

the operating condition and cannot be always measured accu-

rately enough. Especially, compared to inductance, capacitance

C has larger uncertainties caused by measurement errors under
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a high switching frequency. As a result, ueq cannot exactly

maintain ṡ to be zero. In addition, the disturbance caused by

parameter uncertainties should be considered and well handled

in the SMDC.

Suppose that the measured capacitance Ĉ is different from

the actual capacitance value C, then the equivalent control ûeq

is expressed as

ûeq =
L

vin

[(

P

Ĉv2o
−

a2
a1

)

iC +
1

L
vo +

a3Ĉ

a1
(Vref − vo)

]

.

(23)

The resultant control law of SMDC is

u = ûeq +
|ev|

vin
sign(s). (24)

Substituting (24) into (17) yields

ṡ =

(

a1P

v2oC
2
−

a2
C

)

iC

−
a1
LC

[

vin

(

ûeq +
|ev|

vin
sign(s)

)

− vo

]

+ a3ev

= a3

(

1−
Ĉ

C

)

ev −
a1|ev|

LC
sign(s). (25)

To ensure system stability and meet the requirements of (8)

when s �= 0, the following two conditions should be satisfied.

1) If s > 0, ṡ needs to be smaller than 0, which yields

a3

(

1−
Ĉ

C

)

ev −
a1|ev|

LC
< 0 ⇒

a1
a3

> L(C − Ĉ)
ev
|ev|

.

(26)

2) If s < 0, ṡ needs to be greater than 0, which yields

a3

(

1−
Ĉ

C

)

ev +
a1|ev|

LC
> 0 ⇒

a1
a3

> L(Ĉ − C)
ev
|ev|

.

(27)

To ensure that (26) and (27) are simultaneously satisfied, the

ranges of the coefficients a1 and a2 should be

a1
a3

> L|Ĉ − C|. (28)

The inequality (28) is a necessary condition to ensure the

stability of the controller. In practical applications, (28) is easy

to meet by adjusting a1 and a2, e.g., selecting a1/a2 > LC,

when considering 100% uncertainty in the capacitance.

In conclusion, due to the introduced switching term, by se-

lecting suitable coefficients of the SMDC according to (28), the

resultant SMDC is robust to converter parameters’ uncertainties

and can ensure the stability of the controller and convergence of

the state trajectory to the sliding mode.

D. Implementation of the Proposed SMDC

Per previous discussion, under a high switching frequency,

the duty ratio is basically a smooth analytic function of the

discrete pulses in a PWM-controlled system. The averaged

Fig. 4. Schematic of the buck converter with a constant power load controlled
by the proposed SMDC.

dynamics of an SMC-controlled system is equivalent to the

averaged dynamics of a PWM-controlled system, Therefore,

the output of the proposed SMDC can be used as the duty ratio

d for PWM control of the converter, namely

d = u =
1

vin
[k1iC + k2(Vref − vo) + vo] +

|ev|

vin
sign(s)

(29)

where k1 = L(P/Cv2o − a2/a1) and k2 = a3LC/a1. Due to

the physical limitation, duty ratio d should be limited within [0,

1]. Therefore, the actual duty ratio for the pulsewidth modulator

is designed as

d∗ =

{

1, d ≥ 1
d, 0 < d < 1
0, d ≤ 0.

(30)

The parameter k1 of (29) is adaptive to the load power and

voltage. Since the voltage tracking error is used to design the s
function in (12), which is independent from the load power, the

proposed SMDC can stabilize the load voltage when the load

power changes. The input voltage of the buck converter also

appears in (29). Therefore, the duty ratio is also adaptive to the

variation of the input voltage.

The proposed SMDC is applied to control the buck con-

verter with constant power loads, as shown in Fig. 4. The

output of the SMDC is the desired duty ratio, which is used

by a pulsewidth modulator to generate the control signal to

drive the controllable switch of the converter. Compared to

the conventional SMCs that usually have a variable switching

frequency, the switching frequency of the proposed SMDC

is determined by the frequency of the carrier signal, which

is usually constant. In practical applications, it is difficult to

measure the capacitor current iC , which can be obtained from

the discrete-time derivative of the capacitor voltage.

E. SMDC Parameter Selection and Transient Performance

The three coefficients in (13) will affect the dynamic re-

sponse and reaching time of the controller. Rewrite (13) as

ėv +
a2
a1

ev +
a3
a1

∫

evdt = 0 (31)

which is a typical second-order linear differential equation.

To ensure system stability, (28) should be always satisfied.
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Fig. 5. SMDC with underdamped response.

Fig. 6. SMDC with critically damped response.

Then, according to the standard second-order linear system

equation, ẍ+ 2ςωnẋ+ ω2
nx = 0, the parameters of (13) can

be expressed as a2/a1 = 2ςωn and a3/a1 = ω2
n. Define ωn =

2πfBW, where fBW is the bandwidth and is commonly selected

between 1/10 and 1/5 of the switching frequency. There are sev-

eral choices for the damping ratio ξ according to different types

of response: underdamped (0 ≤ ξ < 1), critically damped (ξ =
1), and overdamped (ξ > 1). Figs. 5 and 6 show the transient

performance of the SMDC with the underdamped and critically

damped responses, respectively.

At first, a constant duty ratio is used for the buck converter

with a constant power load. The limit circles in Fig. 5 clearly

show that the system is unstable at any power levels (e.g.,

10 W/12 V and 20 W/12 V), where both current and voltage

have large oscillations. When the proposed SMDC is added,

the phase trajectory approaches to a stable operating point with

an underdamped response, which however will experience a

relatively long reaching time during the transient stage. As a

comparison, Fig. 6 shows the SMDC with a critically damped

response, where the phase trajectory leaves the limit circle and

settles down to a new stable operating point directly. For both

Figs. 5 and 6, the system is always stable under load changes

when using the proposed SMDC. However, the transient perfor-

TABLE I
PARAMETERS OF THE DC/DC BUCK CONVERTER

Fig. 7. Output voltage responses of the buck converter controlled by the
proposed SMDC.

Fig. 8. Output voltage details of the buck converter controlled by the proposed
SMDC.

mance in Fig. 6 is better than that in Fig. 5. This suggests that a

critically damped response should be used.

V. SIMULATION RESULTS

Simulations are carried out in MATLAB/Simulink to validate

the proposed SMDC for a buck converter with a constant power

load. The parameters of the buck converter are shown in Table I.

The input voltage of the buck converter is step changed from

0 V to the values in Table I to demonstrate the effectiveness

of the SMDC for different input voltage conditions. The out-

put voltage responses are shown in Fig. 7. It shows that the

variations of the input voltage have little impact on the out-

put voltage by using the SMDC. After zooming in the output

voltage responses around 100 V, Fig. 8 shows that the out-

put voltage has a small overshoot (less than 2 V) when the input

voltage is 600 and 800 V, which however does not appear when

the input voltage is 200 or 400 V. The small overshoots at high

voltage levels can be reduced by increasing the sampling rates

of the capacitor and load currents. In this application, the small

overshoots in Fig. 8 are acceptable.

To demonstrate the effectiveness of the SMDC for different

constant load power conditions, the output power of the con-

verter is step changed from 50 to 250 W at 0.04 s and from 250

to 660 W at 0.08 s, as shown in Fig. 9, whereas the input voltage

is kept constant at 400 V. Fig. 10 shows the output voltage
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Fig. 9. Step changes in the output power of the buck converter.

Fig. 10. Output voltage response of the buck converter controlled by the
SMDC during step changes in the output power.

Fig. 11. Block diagram of the test circuits.

response, which is well controlled to be constant at 101 V by

the SMDC during the step changes of the output power.

VI. EXPERIMENTAL RESULTS

A. Experimental Setup

Experimental studies are performed to further validate the

effectiveness of the proposed SMDC for a buck converter with

constant power loads. The block diagram of the test circuits

is shown in Fig. 11 and the experimental setup is shown in

Fig. 12. The input terminal of the buck converter is connected

to a dc source. The converter supplies power to a resistive load

through a voltage regulator (VR) circuit. The output voltage of

the VR circuit is maintained at 12 V. If the load resistance is

not changed, the power flowing into the VR circuit is a constant

value. Therefore, the VR and load resistance act as a constant

power load for the buck converter.

A conventional PID controller is also designed for 15 V/5 W

load condition (the equivalent resistance of the constant power

load is 152/5 = 45 Ω) to show the superiority of the SMDC.

Fig. 12. Experiment setup.

The PID controller has two control modes, namely, a power

control mode and a voltage control mode. In the power control

mode, the PID controller is designed to control the power output

of the buck converter to match the desired power of the constant

power load, whereas in the voltage control mode, the PID

controller maintains the output voltage of the buck converter at

the reference value and stabilizes the system under load changes

by appropriately controlling the duty ratio of the power switch

in the converter.

To implement the linear PID controller, an equivalent re-

sistance calculated from the desired power and voltage levels

of the load is used to linearize the model (2) of the buck

converter with a constant power load. By using classical fre-

quency response techniques, a Bode plot is generated for the

small-signal model of the converter; the PID controller is then

designed by adjusting the Bode plot to obtain the desired loop

gain and phase margin for the close-loop system. This design

procedure ensures small-signal stability of the system around

the designed operating point but cannot stabilize the system

when the load significantly changes. In the power control

mode, the output current and voltage of the buck converter are

measured to calculate the power, which is used as the input for

the PID controller and compared with a reference power value

to generate an error signal. While in the voltage control mode,

only the output voltage of the converter is used as a feedback

signal. The output of the PID controller is the desired duty ratio,

which is then used for PWM control of the converter. Both the

PID controller and the proposed SMDC are implemented in a

dSPACE system.

B. Experimental Results

The following experiments are designed to compare the per-

formance of the PID controller and the proposed SMDC during

load changes. Initially, both switches S1 and S2 are open such

that the buck converter is operated at the no-load condition.

Then, S1 is closed so that the buck converter supplies constant

power to the load resistance R1. After this, S2 is closed so

that another resistance R2 is added to the load and the constant

power supplied to the load from the buck converter increases.
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Fig. 13. Output voltage response of the buck converter controlled by a PID
controller in the voltage control mode during load changes.

Fig. 14. Output voltage response of the buck converter controlled by a PID
controller in the power control mode during load changes.

The values of R1 and R2 are 39 and 6.3 Ω, respectively.

To initialize the experiments from open circuit for the PID

controller, when S1 and S2 are open and power is 0 W, the PID

controller first works in the voltage control mode to regulate the

output voltage of the buck converter at 15 V. When the output

current of the converter becomes larger than a margin of 2 mA

(assume open circuit when the output current is smaller than

this margin), the PID controller can be switched to the power

control mode. The reference voltage for the SMDC in (19) is

always 15 V.

Fig. 13 shows the output voltage responses of the buck

converter with the PID controller operated in the voltage control

mode. In the no-load condition, the output voltage of the con-

verter is maintained at 15 V with the ripple less than 2%. When

S1 is closed, a 4-W constant power load is added to the circuit.

A 2-V output voltage dip is observed when the load has the step

change. The controller regulates the output voltage back to 15 V.

However, an oscillation with the peak–peak amplitude of 0.8 V

around the operating point is observed in the output voltage

waveform. When S2 turns on, the output voltage has a larger

oscillation, and the magnitude of oscillation quickly diverges;

the system loses stability under this large step load change.

Fig. 14 shows the output voltage responses of the buck

converter with the PID controller operated in the power control

mode. At the no-load condition (i.e., P = 0), the PID controller

Fig. 15. Output voltage response of the buck converter controlled by the
proposed SMDC during load changes.

Fig. 16. Output voltage profile of the buck converter controlled by the
proposed SMDC when the input voltage changes.

works well to maintain the output voltage of the buck converter

at 15 V. When S1 is closed, the buck converter supplies a con-

stant power value of 4 W to load R1; however, the output volt-

age of the converter drops to 13.25 V and cannot be maintained

at 15 V by the PID controller. The system works at a wrong

operating point, although no instability is observed. In this

condition, the theoretical output voltage of the buck converter is
√

(45 Ω)(4 W) = 13.42 V, which is close to the experimental

result. Moreover, when S2 is closed, the buck converter supplies

a constant power value of 27 W to loads R1 and R2. However,

the output voltage of the converter drops to 4.5 V and cannot

be regulated back to 15 V by the PID controller. During the

experiment, the output current of the buck converter is limited

to 6 A to protect the circuit from overcurrent. Without setting

this current limit, the output voltage of the converter will drop to

zero with a large current, which will burn the circuit. This result

indicates that the PID controller cannot stabilize the voltage of

the buck converter under a large load change.

Fig. 15 shows the output voltage responses of the buck con-

verter with the SMDC for the same load change tests. When the

load power is step changed from 0 to 4 W and from 4 to 27 W,

the SMDC controls the output voltage of the buck converter

correctly at 15 V; no voltage transient is observed in the voltage
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Fig. 17. Typical shipboard MVDC system with dc-ZED modules behaving as constant power loads.

Fig. 18. One-generator MVDC system having a constant power load.

waveform during the step changes in the load. This result agrees

with the simulation results in the previous section and shows

that the proposed SMDC is robust to load variations, which

however cannot be achieved by traditional linear controllers.

In another experiment, the effect of input voltage variations

on the performance of the SMDC is evaluated. During the

experiment, the source voltage is changed continuously around

20 V, as shown in Fig. 16, where S1 is closed and S2 is open.

The output voltage of the buck converter is shown in Fig. 16 as

well, which is maintained at 10 V by the SMDC, and the voltage

ripple is smaller than 1%. This result verifies that the proposed

SMDC is robust to input voltage variations when supplying a

constant power load.

VII. MVDC SHIPBOARD POWER SYSTEM WITH

CONSTANT POWER LOADS

Fig. 17 shows a typical MVDC shipboard power system

based on the national MVDC architecture in [1] and [2]. Two

main power generation modules (M-PGMs) of 36 MW each

are mainly used to supply power to the two propulsion motor

drives. The two auxiliary power generation modules (A-PGM)

are used to satisfy other electrical demand of the system. The

four generators are connected to the main dc bus through volt-

age source converters (VSCs), which are operated coordinately

to maintain the voltage of the main dc bus and share the

load demand among the four generators. The operation of this

MVDC system is similar to that of the multiterminal HVDC

systems described in [15].

The power distribution grid of the system adopts the ZED

topology. These dc zones are connected to the main dc bus

through power conversion modules (PCMs) and power distri-

bution modules (PDMs). The dc voltage quality and stability

are critical to the sensitive loads in the shipboard power system,

especially when load shedding happens. The PCMs convert the

main dc bus voltage to appropriate dc or ac voltages required

by the loads in each zone. These dc and ac zones can be

viewed as constant power loads from the input terminals of the

corresponding PCMs and PDMs. The proposed SMDC is used

to control the dc/dc converters of these PCMs.
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Fig. 19. Voltage profile at the main dc bus.

Fig. 20. Load voltage response.

A. Testing System Description

Fig. 18 illustrates a one-generator MVDC system having a

dc zone behaving as a constant power load, which is a part of

the system in Fig. 17. The dc zone is modeled by two buck

converters connected in series with a constant power load, as

shown in Fig. 1. The source-side buck converter is connected

directly to the 500-V main dc bus (i.e., the dc terminal of the

VSC), working as a VR to maintain the input voltage of the

load-side buck converter at the desired level. The load-side

buck converter is controlled by the proposed SMDC to supply

constant power to the load. The generator is fed to the main dc

bus through a three-level ac/dc PWM IGBT converter, which

has the power rating of 500 kW. The ac/dc PWM converter is

controlled by PI regulators to maintain a constant voltage for

the main dc bus and a unity power factor for the generator.

B. Simulation Results

Simulations are carried out in MATLAB/Simulink to vali-

date the proposed SMDC for controlling the load-side buck

converter with the constant power load. In the simulation, the

main dc bus voltage drops from 500 to 320 V at 0.5 s, as

shown in Fig. 19. Fig. 20 shows that the load voltage only

slightly changes from 102.6 to 102.3 V. Fig. 21 shows the power

consumed by the load, which is a constant of 208 kW. The main

dc bus voltage drop has almost no impact on the output power

of the load-side buck converter. These results clearly show that

Fig. 21. Load power response.

Fig. 22. Step changes in the load power while the main dc bus voltage drops
at 0.5 s.

Fig. 23. Load voltage response during step changes in the load power.

the proposed SMDC successfully control the load-side buck

converter to adapt to the large disturbance in the main dc bus.

In the second test, the load power is step changed from

approximately 210 to 420 kW at 0.25 s and from 420–840 kW at

0.75 s, as shown in Fig. 22. In addition, the main dc bus voltage

drops from 500 to 320 V at 0.5 s, which causes the load power to

drop slightly from 422 to 420 kW. Fig. 23 shows that load power

variations have little impact on the output voltage. The steady-

state load voltage variation is less than 0.3 V. These results

clearly show that the proposed SMDC successfully control the

load-side buck converter to adapt to the large disturbance in the

load power.

VIII. CONCLUSION

This paper has analyzed a negative incremental impedance-

induced instability of a dc/dc buck converter with constant

power loads. Such power electronic systems cannot be stabi-

lized by using conventional linear controllers. To solve this

problem, this paper has proposed an SMDC to stabilize dc/dc

buck converters with constant power loads. Simulation studies
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have been carried out in MATLAB/Simulink to validate the

SMDC for stabilizing a dc/dc buck converter, as well as an

MVDC shipboard power system with constant power loads.

Experimental results on a practical buck converter with constant

power loads have been provided to further validate the proposed

SMDC. Results have shown that the SMDC is capable of sta-

bilizing the dc power systems under significant load power and

supply voltage variations. However, this performance cannot be

achieved by using traditional PI or PID controllers.

REFERENCES

[1] N. Doerry, “Next generation integrated power system technology devel-
opment roadmap,” Naval Sea System Command, Nov. 2007.

[2] N. H. Doerry, “Next generation integrated power systems for the
future fleet,” in Proc. IEEE Elect. Ship Technol. Symp., Apr. 20–22, 2009,
pp. 1–27.

[3] N. H. Doerry and J. Amy, “Functional decomposition of a medium voltage
DC integrated power system,” in Proc. ASNE Symp. Shipbuilding Support

Global War Terrorism, Apr. 14–17, 2008, pp. 1–21.
[4] A. Emadi, B. Fahimi, and M. Ehsani, “On the concept of negative

impedance instability in the more electric aircraft power systems with
constant power loads,” presented at the 34th Intersoc. Energy Convers.
Eng. Conf., Vancouver, BC, Canada, Aug. 2, 1999, 1999-01-2545.

[5] A. Emadi and M. Ehsani, “Negative impedance stabilizing controls for
PWM DC-DC converters using feedback linearization techniques,” in
Proc. 35th Intersoc. Energy Convers. Eng. Conf. Exhib., Jul. 24–28, 2000,
pp. 613–620.

[6] V. Grigore, J. Hatonen, J. Kyyra, and T. Suntio, “Dynamics of a buck
converter with a constant power load,” in Proc. 29th Annu. IEEE Power

Electron. Spec. Conf., May 17–22, 1998, pp. 72–78.
[7] A. Griffo, J. Wang, and D. Howe, “Large signal stability analysis of DC

power systems with constant power loads,” in Proc. IEEE Veh. Power

Propulsion Conf., Sep. 3–5, 2008, pp. 1–6.
[8] A. Emadi, A. Khaligh, C. H. Rivetta, and G. A. Williamson, “Constant

power loads and negative impedance instability in automotive systems:
Definition, modeling, stability, and control of power electronic converters
and motor drives,” IEEE Trans. Veh. Technol., vol. 55, no. 4, pp. 1112–
1125, Jul. 2006.

[9] S. C. Tan, Y. M. Lai, and C. K. Tse, “A unified approach to the design of
PWM-based sliding-mode voltage controllers for basic DC–DC convert-
ers in continuous conduction mode,” IEEE Trans. Circuits Syst. I, Reg.

Papers, vol. 53, no. 8, pp. 1816–1827, Aug. 2006.
[10] S. C. Tan, Y. M. Lai, and C. K. Tse, “An evaluation of the practical-

ity of sliding mode controllers in DC-DC converters and their general
design issues,” in Proc. 37th Annu. IEEE Power Electron. Spec. Conf.,
Jun. 18–22, 2006, pp. 1–7.

[11] Y. He and F. L. Luo, “Design and analysis of adaptive sliding-mode-like
controller for DC-DC converters,” Proc. Inst. Elect. Eng.––Elect. Power

Appl., vol. 153, no. 3, pp. 401–410, May 2006.
[12] R. D. Middlebrook and S. Cuk, “A general unified approach to modeling

switching converter power stages,” in Proc. IEEE Power Electron. Spec.

Conf., Jun. 8–10, 1976, pp. 18–34.
[13] P. T. Krein, J. Bentsman, R. M. Bass, and B. C. Lesieutre, “On the use

of averaging for the analysis of power electronic systems,” in Proc. 20th

Annu. IEEE Power Electron. Spec. Conf., Jun. 26–29, 1989, pp. 463–467.
[14] J. Slotine and W. Li, Applied Nonlinear Control. Englewood Cliffs, NJ,

USA: Prentice-Hall, 1991, pp. 276–307.
[15] W. Lu and B. T. Ooi, “DC voltage limit compliance in voltage-source

converter based multi-terminal HVDC,” in Proc. IEEE PES Gen. Meet.,
Jun. 12–16, 2005, pp. 1322–1327.

[16] V. Utkin, J. Guldner, and J. Shi, Sliding Mode Control in Electromechan-

ical Systems, 1st ed. New York, NY, USA: Taylor & Francis, 1999.
[17] H. Sira-Ramirez, “A geometric approach to pulsewidth modulated control

in nonlinear dynamical systems,” IEEE Trans. Autom. Control, vol. 34,
no. 2, pp. 184–187, Feb. 1989.

[18] P. Magne, D. Marx, B. Nahid-Mobarakeh, and S. Pierfederici, “Large-
signal stabilization of a DC-Link supplying a constant power load using
a virtual capacitor: Impact on the domain of attraction,” IEEE Trans. Ind.

Appl., vol. 48, no. 3, pp. 878–887, May/Jun. 2012.
[19] S. R. Huddy and J. D. Skufca, “Amplitude death solutions for stabilization

of DC microgrids with instantaneous constant-power loads,” IEEE Trans.

Power Electron., vol. 28, no. 1, pp. 247–253, Jan. 2013.

[20] F. Blaabjerg, M. Liserre, and K. Ma, “Power electronics converters for
wind turbine systems,” IEEE Trans. Ind. Appl., vol. 48, no. 2, pp. 708–
719, Mar./Apr. 2012.

[21] M. Algreer, M. Armstrong, and D. Giaouris, “Adaptive PD+I control of
a switch-mode DC–DC power converter using a recursive FIR predictor,”
IEEE Trans. Ind. Appl., vol. 47, no. 5, pp. 2135–2144, Sep./Oct. 2011.

[22] S. Yang, A. Bryant, P. Mawby, D. Xiang, L. Ran, and P. Tavner, “An
industry-based survey of reliability in power electronic converters,” IEEE

Trans. Ind. Appl., vol. 47, no. 3, pp. 1441–1451, May/Jun. 2011.

Yue Zhao (S’10) received the B.S. degree in elec-
trical engineering from Beijing University of Aero-
nautics and Astronautics, Beijing, China, in 2010.
He is currently working toward the Ph.D. de-
gree in electrical engineering at the University of
Nebraska–Lincoln, Lincoln, NE, USA.

He was a Graduate Student Researcher in 2011
and 2012 and a summer Engineering Intern in 2013
with John Deere Electronic Solutions. His research
interests include electric machines and drives, power
electronics, and control.

Mr. Zhao is a member of Eta Kappa Nu. He was the recipient of the Best
Paper Prize at the 2012 IEEE Transportation Electrification Conference and
Expo.

Wei Qiao (S’05–M’08–SM’12) received the B.Eng.
and M.Eng. degrees in electrical engineering from
Zhejiang University, Hangzhou, China, in 1997
and 2002, respectively, the M.S. degree in high-
performance computation for engineered systems
from the Singapore–Massachusetts Institute of Tech-
nology Alliance (SMA), Singapore, in 2003, and the
Ph.D. degree in electrical engineering from Georgia
Institute of Technology, Atlanta, GA, USA, in 2008.

Since August 2008, he has been with the Uni-
versity of Nebraska–Lincoln (UNL), Lincoln, NE,

USA, where he is currently an Associate Professor in the Department of
Electrical Engineering. He is the author or coauthor of three book chapters
and more than 120 papers in refereed journals and international conference
proceedings. His research interests include renewable energy systems, smart
grids, microgrids, condition monitoring and fault diagnosis, energy storage
systems, power electronics, electric machines and drives, and computational
intelligence for electric power and energy systems.

Dr. Qiao is an Associate Editor of the IEEE TRANSACTIONS ON INDUSTRY

APPLICATIONS and the IEEE JOURNAL OF EMERGING AND SELECTED

TOPICS IN POWER ELECTRONICS, the Chair of the Sustainable Energy
Sources Technical Thrust of the IEEE Power Electronics Society, and was the
Chair of the Task Force on Intelligent Control for Wind Plants of the IEEE
Power and Energy Society. He was the recipient of a 2010 National Science
Foundation CAREER Award, the 2010 IEEE Industry Applications Society
Andrew W. Smith Outstanding Young Member Award, the 2012 UNL College
of Engineering Faculty Research and Creative Activity Award, the 2011 UNL
Harold and Esther Edgerton Junior Faculty Award, and the 2011 UNL College
of Engineering Edgerton Innovation Award. He has received four best paper
awards from the IEEE Industry Applications Society, IEEE Power Electronics
Society, and IEEE Power and Energy Society.

Daihyun Ha (S’12) received the B.S. degree in elec-
tronic engineering from Changwon National Uni-
versity, Changwon, Korea, in 2010 and the B.S.
degree in electrical engineering from the University
of Nebraska–Lincoln, Lincoln, NE, USA, in 2011.

He is currently with the Department of Electri-
cal Engineering, University of Nebraska–Lincoln.
His research interests include renewable energy and
power electronics.


	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	2014

	A Sliding-Mode Duty-Ratio Controller for DC/DC Buck Converters With Constant Power Loads
	Yue Zhao
	Wei Qiao
	Daihyun Ha

	untitled

