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Abstract

Energy production from renewable sources offers an efficient alternative non-polluting and sustainable solution.

Among renewable energies, solar energy represents the most important source, the most efficient and the least

expensive compared to other renewable sources. Electric power generation systems from the sun’s energy typically

characterized by their low efficiency. However, it is known that photovoltaic pumping systems are the most

economical solution especially in rural areas. This work deals with the modeling and the vector control of a solar

photovoltaic (PV) pumping system. The main objective of this study is to improve optimization techniques that

maximize the overall efficiency of the pumping system. In order to optimize their energy efficiency whatever, the

weather conditions, we inserted between the inverter and the photovoltaic generator (GPV) a maximum power

point adapter known as Maximum Power Point Tracking (MPPT). Among the various MPPT techniques presented in

the literature, we adopted the adaptive neuro-fuzzy controller (ANFIS). In addition, the performance of the sliding

vector control associated with the neural network was developed and evaluated. Finally, simulation work under

Matlab / Simulink was achieved to examine the performance of a photovoltaic conversion chain intended for

pumping and to verify the effectiveness of the speed control under various instructions applied to the system.

According to the study, we have done on the improvement of sliding mode control with neural network. Note that

the sliding-neuron control provides better results compared to other techniques in terms of improved chattering

phenomenon and less deviation from its reference.

Keywords: Maximum power point tracking (MPPT), Adaptive Neuro-fuzzy inference systems (ANFIS, Photovoltaic

(PV) systems, Fuzzy logic controller (FLC), Pump, Sliding mode controller

1 Introduction

Human beings need abundant amount of energy at an

increasing rate for their sustenance and good living.

Nowadays, this energy is mostly derived from fossil fuel

such as coal, oil, natural gas and from nuclear power.

But the above resources are not at all stable and reliable.

The non-renewable resources like fossil fuel will last

only about 50–75 years. In this era, other alternatives

like renewable resources such as solar, tidal, wind etc.

have to be considered [1].

Of these resources, solar systems are gaining an in-

creasing interest and they are becoming a very

competitive solution, because many sunny days are avail-

able throughout the year. Moreover, environmental is-

sues such as population and global warming effects are

driving incites researchers towards the development of

renewable energy sources including solar systems. The

production of electricity in solar systems is based on

solar cells where the photons are absorbed by a semi-

conductor converted directly into electrical energy. The

electrical power / voltage characteristic of a photovoltaic

generator (GPV) represents the variation of the power as

a function of the voltage across the GPV. In this feature,

the GPV contains an optimal operating point generally

referred to as the maximum power point and is in a

non-linear area. To improve the efficiency of the photo-

voltaic (PV) system, it is necessary to set up an optimal

power point follower.
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There are several methods for obtaining the maximum

power of the photovoltaic generator [2], the most com-

mon methods are: Perturbation and Observation (P&O)

[3], the incremental conductance [4], most of these algo-

rithms fail to track the maximum power point regularly.

For this reason, methods based on “artificial intelligence”

are used. Among these methods, the authors [5, 6] pro-

posed the MPPT algorithm based on artificial neural

networks. The authors in [7, 8], proposed genetic algo-

rithms and in [9, 10], they used fuzzy logic to obtain the

optimal power point. In this paper, an adaptive network

based fuzzy inference system (ANFIS) control is used.

One of the most important applications of Photovol-

taic (PV) systems is for water pumping, hence, in rural

areas that have a considerable amount of solar radiation

and have no access to national grids. An effective solu-

tion must ensure that the PV generator (GPV) runs at

the maximum power point (MPP) and that the motor

runs at a high efficiency level. In this category, several

authors are interested in improving the performance of

photovoltaic pumping systems. A number of DC motor

driven pumps are already in use in several parts of the

world [11], but they suffer from maintenance problems

due to the presence of the commutator and brushes.

Hence, a pumping system based on an Induction

Motor (IM) can be an attractive proposal where reliabil-

ity and maintenance free operations are important [12,

13]. Several techniques for controlling a photovoltaic

pumping chain have been used. They are built around

different commands most used for electrical rotating

machines. These orders are intended to analyze their

performance in a photovoltaic pumping chain.

In particular, it contains the principles and configura-

tions of direct and indirect vector control applied to the

Synchronous Motor and Induction Motor [14]. Subse-

quently, the author [15] described direct torque control

with conventional regulators such as Proportional Inte-

gral and intelligent controllers based on fuzzy logic. It

seems that the PI regulators being limited by their

dynamics and their sensitivities vis-à-vis the parametric

variations. To overcome this drawback, the sliding mode

control was considered. However, this control technique

exhibits high frequency oscillations due to discontinuous

control [16]. Therefore, in order to improve the per-

formance, a control without speed sensors, associated

with the sliding mode controller technique associated

with neural network was analyzed.

This paper is organized as follows: In Section 2, the model-

ing of PV cell, DC-DC boost converter and the motor-pump

are introduced. In Section 3, the adaptive neuro-fuzzy con-

troller (ANFIS), and the sliding vector control associated

Fig. 1 Synoptic diagram of a pumping system

Fig. 2 General PV Cell Model

Table 1 Parameter values of YHM180-36 M PV panel

Optimum operation voltage 35.20 V

Optimum operation current 05.11 A

Open-circuit voltage 43.00 V

Short-circuit current 05.5 A

Maximum power at STC 180W

Peak Efficiency 16%

Temp. Coefficient of Isc -(0.06 ± 0.01) %/k

Temp. Coefficient of Voc -(78 ± 10) mV/k

Number of Cells 72
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with the neural network was developed and evaluated. Simu-

lation tests under Matlab / Simulink was achieved to exam-

ine the performance of a photovoltaic conversion chain

intended for pumping and to verify the effectiveness of the

speed control under various instructions applied to the sys-

tem are given in Section 4. Finally, Section 5 summarizes the

conclusions of the paper.

2 System descriptions

The proposed diagram of the photovoltaic pumping is shown

in Fig. 1. The schematic consists of a PV array, a boost con-

verter working as a maximum power point tracker (MPPT),

an inverter and a motor driving a pump controlled by the

neural networks with sliding mode controller.

2.1 Photovoltaic Array

A PV cell can be modeled from the equation defining

the static behavior of the PN junction of a conventional

diode. Thus, Fig. 2 illustrates the equivalent electrical

diagram of a real PV cell.

In Fig. 2, we consider the short-circuit current and

two resistors (series and shunt) modeling the losses due

to the connections. In static, the behavior of a PV cell

made up of a silicon-based PN junction can be described

by the following equation:

Fig. 3 Variations of MPP with changing: (a) Irradiation (b) Temperature

Fig. 4 PV model considering Rp resistance
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IPV ¼ Iph−Id−IRp
ð1Þ

The value of Iph is heavily dependent on the irradi-

ance G and solar cell temperature Tc. The equation of

Iph can be expressed as follows:

Iph ¼
G

Gref
I sc;ref þ μsc:ΔT
� �

ð2Þ

While the current flowing through the diode Id is

given by eq. (3):

Fig. 5 Bloc scheme of PV model

Fig. 6 Boost converter
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Id ¼ I0 exp
V PV þ IPV :Rs

A:VT

� �

−1

� �

ð3Þ

Where VT ¼ k:T
q
.

Saturation current I0 of solar cells can be

expressed in a mathematical equation that has a re-

lationship with the temperature of the solar cell as

follows [8]:

I0 ¼ a0:b
3
0: exp q:Eg

1

T c;ref
−

1

T c

� �

: A:kð Þ−1
� �

ð4Þ

Where a0 ¼ Isc;ref

expð
Voc;ref

a Þ−1
and b0 ¼ T c

T c;ref
.

The thermal voltage a is presented by the following

equation:

a ¼ N s:A:k:T c

q
ð5Þ

The current IRp
in a closed loop can be determined by

using Kirchhoff’s voltage law analysis, which is expressed

by eq. (6):

IRp
¼ V PV þ RsIPV

Rp
ð6Þ

Therefore, the output current IPV was previously

expressed by eq. (1), can be rewritten as follows:

IPV ¼ Iph−I0 exp
V PV þ IPV :Rs

A:V T

� �

−1

� �

−

V PV þ Rs:IPV

Rp

ð7Þ

A PV array is a group of several PV modules which

are electrically connected in series (Ns) and parallel (Np)

for generating more power. The equivalent circuit of a

PV array is expressed as follows:

IPV ¼ Np: Iph−I0 exp

V PV

N s
þ IPV :Rs

Np

A:V T

0
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B
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−

V PV :N s

Np
þ Rs:IPV

Rp

ð8Þ

where:

IPV: Output current of solar cells (Ampere);

Iph: Photocurrent (Ampere);

VPV: Output voltage of solar cells (Volt);

μsc: Temperature coefficient of the short circuit

current provided by the manufacturer;

Eg: Silicon bandgap energy (Eg = 1.12 eV);

Tc: Temperature of the solar cell (Kelvin);

Tc, ref: Reference temperature of Solar Cells (Kelvin);

G, Gref: Irradiance and reference irradiance;

k: Boltzmann’s constant (1.381 × 10−23J/K );

q: Electron charge (1.60222 × 10−19C );

A: Ideality factor of PV technology (1 ≤ A ≤ 2);

Isc, Voc, Vmpp, Impp: Short circuit current, open circuit

voltage, maximum power point current and voltage

which are shown in Table 1.

The typical current-voltage (I-V) curve characteristics

of the PV module are shown in Fig. 3.

The photovoltaic system model developed under

MATLAB / Simulink is given by Figs. 4 and 5:

2.2 DC-DC boost converter

The power supplied by the photovoltaic generator is fed

to a boost converter, which is controlled using the

MPPT controller based on adaptive network based fuzzy

inference system (ANFIS). The boost converter is used

to boost the DC voltage of the panel. Duty cycle for

switching is determined by the MPPT controller, which

determines the present climatic condition and produces

an optimum value of duty cycle, as shown in Fig. 6.

Table 2 Variation of Ksp according to Nsq

Nsq 60 100 150

Ksp 0.00017 0.00030 0.00075

Fig. 7 Model of the centrifugal pump
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In steady state, the output voltage of the boost con-

verter can be calculated as [17]:

V 0 ¼ UR ¼ 1

1−D
V in ð9Þ

where D is the duty cycle of converter.

2.3 Pumping subsystem Modelling

A motor-pump consists of a centrifugal pump coupled

with a three-phase induction machine. Several types of

DC and AC motors are available for PV pumping sys-

tems. The choice of the motor is dependent on numer-

ous factors including size requirement, efficiency, price,

reliability and availability. Generally, the PV water

pumping system needs a water tank for storing water. If

there is no water tank or the system is used as potable

equipment, the battery set will be necessary.

2.3.1 Dynamic model of induction motor

The electrical model of the induction machine in the d-

q referential axis linked to rotating field is given by the

following equation [18, 19]:

V sd ¼ Rs þ
RrL

2
m

L2r

� �

isd þ Lsσ
disd

dt
−ωsLsσisq−

RrLm

L2r
φrd

V sq ¼ Rs þ
RrL

2
m

L2r

� �

isq þ Lsσ
disq

dt
−ωsLsσisd−

pΩLm

L2r
φrd

8

>

>

<

>

>

:

ð10Þ
The mechanical modeling part of the system is given

by:

J
dΩ

dt
¼ Ce−Cr−fΩ ð11Þ

where, the electromagnetic torque is expressed by:

Ce ¼ p
3Lm

2Lr
φrdisq−φrqisd

� 	

ð12Þ

with:

Rs, Rr: Stator and rotor resistances respectively;

Fig. 8 Typical five-layer ANFIS system

Fig. 9 Training error
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Ls, Lr: Stator and rotor inductances respectively;

Lm, ωs: Mutual inductance and Stator angular

frequency;

Ω, σ: Rotor speed and total leakage coefficient;

J, f: Total inertia and friction coefficient;

Cr, p: Load torque and number of pole pairs.

2.3.2 Pump model

Many varieties of pumps are used with a PV pumping

system. In our case, a centrifugal pump is considered.

This type of pump is simple and requires a minimum of

maintenance. In our case, we directly use the model ex-

pressing the output of the water flow (Qn) as a function

of the speed of the rotor shaft in revolutions per minute

at the engine pump, for different total loads.

A broad classification of pumps, directly related to the

general shape of the rotor, is introduced from the defin-

ition of the specific diameter (eq. (13)) and the specific

angular velocity (eq. (14)), two dimensionless numbers

derived from the similarity of the turbomachines [20]:

Ds ¼
D gHnð Þ14

ffiffiffiffiffiffi

Qn

p ð13Þ

N s ¼
ω

ffiffiffiffiffiffi

Qn

p

gHnð Þ34
ð14Þ

In general, pump manufacturers do not give the

physical parameters of the pump. Only the perform-

ance characteristic H = f(Q) is given by the manufac-

turer. Thus, knowing the values of speed, load height

and reference flow, it is possible to determine those

of the system using the following empirical formulas

[21]:

Fig. 10 ANFIS system

Fig. 11 Membership functions: (a) solar irradiance (b) PV cell temperature
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N sq ¼
100

N

60

� �

ffiffiffiffiffiffi

Qn

p

gH
N ep

� 	3
4

ð15Þ

Qn ¼ K sp:N : D f

� �3 ð16Þ

Cr ¼ 0:3þ 3:9� 10−4ω1:8 ð17Þ

where Qn is the flow rate in m3/h, N is the speed of the

rotor (rpm), Ksp is a constant that depends on the spe-

cific speed of the pump, Df is the diameter of the bore-

hole, Cr is the load torque, Nsq: specific rotor speed, g:

Acceleration of gravity, Nep: pump number of stages and

ω is the rotor speed in rad/s.

The variations of the specific speed pump according the

specific rotor speed are given in Table 2:

The model of the proposed centrifugal pump is shown

in Fig. 7:

2.4 MPPT control for sunshine photovoltaic pumping

systems

2.4.1 MPPT adaptive network based fuzzy inference system

(ANFIS)

The neuro-fuzzy inference is a combination of Artificial

Neural Network (ANN) and Fuzzy Logic controller

(FLC). The ANN identifies the patterns and conforms to

them to deal with altering environments. On the order

hand, the fuzzy inference systems (FIS) combine the hu-

man knowledge and carry out the inference and process

Fig. 12 Inputs and Outputs of ANFIS after Training

Fig. 13 Sliding-neural network modelling architecture
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of decision making [22]. Two common fuzzy models, the

Mamdani and Takagi-Sugeno-Kang (TSK), are defined

for FIS.

The ANFIS is only able to use the TSK fuzzy model

due to its high calculative efficiency, adaptive techniques

and built in optimum. The controller provides smooth

less in convergence because of the fuzzy TSK inference

and adaptability as a result of ANN back-propagation

algorithms [23]. The structure of a typical five-layer

ANFIS system is illustrated in Fig. 8.

In the first layer, MFs will be defined for each of in-

puts. In the second layer, each node via multiplication

calculates the firing strength of a rule. The firing

strength is normalized in layer 3. Two common rules in

TSK fuzzy model are defined as:

Rule 1: if x is A1 and y is B1, then f1 = a1x + b1y + c1;

Rule 2: if x is A2 and y is B2, then f2 = a2x + b2y + c2.

Where ai, bi and ci are the design parameters defined

in the training plant. Also, Ai and Bi are the fuzzy sets

input [24].

In MATLAB, a structure of the model is determined

by using the inputs, output, MFs, and the relationship

among them. After that, the inputs and output training

data set should be collected to train the ANFIS. In fact,

the ANFIS can estimate the MF’s parameters by either

back propagation algorithms alone or the so-called hy-

brid mode which is a combination of least squares esti-

mation (LSE) and back propagation.

MATLAB/Simulink model of PV module is used to

generate the training data set for ANFIS by varying the

operating temperature in steps of 5 °C from 15 °C to

65 °C and the solar irradiance level in a step of 50W/m2

from 100W/m2 to 1000W/m2.

Fig. 14 MATLAB/Simulink model of the pumping system

Table 3 Motor pump set parameters

Parameter Value Unit

Induction motor Parameters

Rated voltage (RMS) 400 V

Frequency 50 Hz

Rated speed 1430 rpm

Stator winding resistance, Rs 6.3 Ω

Rotor winding resistance, Rr 6.3 Ω

Leakage reactance, xls = xlr 0.1568 Ω

Magnetizing reactance, xm 0.15 Ω

Poles, p 4

Centrifugal pump Parameters

Q 18 m3/h

H 10 m
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Fig. 15 Solar irradiance waveform

Fig. 16 Temperature waveform

Fig. 17 Waveform of induction motor mechanical speed
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The Neural Network Controller (NNC) is used to

estimate the PV array operating voltage (Vref), which

corresponds to Pmax at any given solar radiation and

cell temperature. Therefore, the inputs to the control-

ler are the solar radiation and the cell temperature.

The output of the controller is the optimum operat-

ing voltage.

The network is trained for 20,000 epochs and the target

error is set to 2.34%. The training error waveform is depicted

in Fig. 9, and the structure of ANFIS for this controller is

shown in Fig. 10. The advantages of the method are its rapid

tracking speed and high tracking accuracy.

Fig. 11 represents membership functions for the two

inputs, namely, solar irradiance and PV cell temperature.

Figure. 12 shows a fuzzy rule for the ANFIS inputs and

output are applied after training.

2.4.2 Sliding mode control design

The basic principle of sliding mode control consists in

moving the state trajectory of the system toward a prede-

termined surface called sliding or switching surface, and

in maintaining it around this latter with an appropriate

switching logic [25]. This is similar to a feed-forward con-

troller that provides the control that should be applied to

Fig. 18 Response of the system to the variation of G and T
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track a desired trajectory, which is in this case, the user-

defined sliding surface itself. Therefore, the design of a

sliding mode controller has two steps, namely, the defin-

ition of the adequate switching surface S (.) and the devel-

opment of the control law or the switching logic u.

The main disadvantage of Sliding Mode Control

(SMC) is the high switching frequency [26, 27]. To rem-

edy this phenomenon, the control must adapt to changes

in parameters or external disturbances. Therefore, a

Sliding-Neural Network is proposed to overcome the

chattering phenomenon.

2.4.2.1 Sliding mode surface

Consider a nonlinear system, which can be represented by

the following state space model in a canonical form [16]:

x � ¼ f x; tð Þ þ g x; tð Þuþ d tð Þy tð Þ ¼ x tð Þf ð18Þ

where, x ∈ℜn is the state vector, u ∈ℜn is the control vector,

y ∈ℜn is the output vector, f(x, t) and g(x, t) are two nonlin-

ear continuous uncertain functions supposed bounded.

The objective of control law u(t) to force the system

output y(t) in above equation and reference signal. We

take the general eq. (19) to determine the sliding surface

that given by:

S xð Þ ¼ d

dt
þ λ

� �n−1

e xð Þ ð19Þ

where e(x) is the difference between the controlled vari-

able and its reference eðxÞ ¼ x �−x.
With: x ¼ ½x; x �; :::; xn−1�T ;
λ: Positive constant;

n: The number of times to derive the surface to obtain

the control;

x: The controlled variable.

2.4.2.2 Application of neural networks in sliding

mode control

The integration of Neural Networks (NN) in a sliding con-

troller whose architecture proposed by [28], is given in

Fig. 13 where two neural networks are used in parallel to

achieve the equivalent command. The input of the first

network consists of the desired state and the current state

while the input of the second network is the surface S.

2.4.2.3 Sliding mode control of induction motor

The two switching functions defining the sliding surfaces

are given by:

S Ωð Þ ¼ Ωref −Ω ð20Þ
then:

S � Ωð Þ ¼ Ω �ref −Ω � ð21Þ

By replacing in eq. (21), the expression of Ω � taken

from eq. (11), and introducing the equivalent command

(isq = isq, eq + isq, n) we will have:

S � Ωð Þ ¼ Ω �ref −
3pLm

2 J
φrd;ref isq;eq þ isq;n

� �

−
p

J
Cr−

f

J
Ω

� �

ð22Þ

During the sliding phase and at steady state S(Ω), so S

�ðΩÞ ¼ 0 and isq, n = 0 from which we derive the expres-

sion of isq, eq:

isq;eq ¼
2 J

3pLmφrd;ref

Ω �ref þ
p

J
Cr þ

f

J
Ω

� �

ð23Þ

The action of the discontinuous command isq, n must

satisfy the condition S S � < 0. By restoring eq. (22) in eq.

(23), it will result:

Fig. 19 Load torque profile
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S � Ωð Þ ¼ −
3pLm

2 J
φrd;ref isq;n ð24Þ

3 Simulation results

In order to demonstrate the effectiveness of the proposed

control technique applied to the photovoltaic water-pumping

system, some simulations have been carried out. The pro-

posed design scheme which is described by Fig. 14 was imple-

mented in MATLAB/Simulink software using parameters

given in Table 3.

3.1 Effects of the variation of the value of the solar irradiation

G and the temperature T on the storage of the water

In a first step, we choose to vary the solar irradiance

value and the temperature T as it is shown in Figs. 15

and 16, and to see its impact on the performances of the

photovoltaic water pumping.

Figure. 17 illustrates the waveform of the mechanical

speed of the induction motor which is closed to its opti-

mal value.

The same remark is given to the electromagnetic

torque shown in Fig. 18a and the flow shown in Fig.

18b. It is clearly shown that the induction motor is

Fig. 20 Speed response under load torque variation
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operating at its optimal conditions. Figure. 18c, repre-

sents the waveform of the centrifugal pump flow

which is closed to its optimal value for each value of

G and T.

3.2 Robustness study

3.2.1 Variation in the load torque

In a second step, we choose to vary load torque (resist-

ance torque) Cr to 30% of its initial value as shown in

Fig. 21 Robustness test for a variation in the rotor and stator resistances

Hamdi et al. Protection and Control of Modern Power Systems             (2020) 5:1 Page 14 of 17



Fig. 19, in order to prove the robustness of the system

against external disturbances.

Figure 20a and b, shows respectively the waveform

of the motor speed and the pump flow. The rotor

speed is lightly affected by the variation of the load

torque at a short transient, and then return to the

optimal value. The same remark is given to the cen-

trifugal pump flow which proves that the water

pumping system operating at its optimal conditions.

Then, the robustness of the controlled system is

achieved by the neural network-sliding mode

controller.

Fig. 22 Robustness test for a variation in the rotor and stator inductances
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3.2.2 Variation in the parametric of induction motor

The performance of the proposed control scheme which is

based on NN-Sliding Mode Control are assessed again with

other four tests which are performed to study the influence of

the parametric variations for the stator and rotor resistances,

and stator and rotor inductances of the induction motor.

3.2.2.1 Variation in the stator and rotor inductances

The simulation results of robustness tests illustrated by

Figs. 21 and 22 for NN-Sliding Mode Control, show clearly

that the parameter variations of the induction motor have

practically no effect on the dynamics of speed response, ie

on the flow of water (or the need for water) even in the

presence of parametric variations. A variation in the resist-

ance or inductance of its nominal value does not affect the

response, but the rise varies by a few milliseconds.

4 Discussion and conclusion

The photovoltaic conversion systems are characterized

by the variation of their electrical power according to

the weather conditions because the power transferred to

the load rarely corresponds to the maximum power that

can provide the Photovoltaic generator (GPV). There-

fore, a command requiring the GPV to produce the

maximum available power at its terminals is essential to

improve the efficiency of the conversion system. For this,

we have proved that the use of the developed ANFIS-

MPPT algorithm can solve the degradation problem of

the GPV performance, following the power variation, ac-

cording to climatic factors which have enabled a good

tracking of the Maximum power point.

Thus, to improve the performance of a photovoltaic

pumping system, an evaluation of the control without

speed sensor based on sliding mode of the neural net-

work with the fuzzy logic has managed to regulate the

speed of the engine, then to optimize system perform-

ance. In addition, the strength quality of the proposed

controller appears clearly in the tests results under load

torque variation. Finally, this installation helps to

minimize the total cost since we choose to store the

water and not the energy that requires the use of electric

batteries.
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