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0. Introduction

Let A and B be two finite sets of integers. We let

A + B = {a + b : a ∈ A, b ∈ B}

and
AB = {ab : a ∈ A, b ∈ B}.

There have been many studies of the size of the sum and product sets for the case
A = B, since Erdös and Szemerèdi made their well-known conjecture that

max(|A + A|, |AA|) ≥ Cε|A|2−ε∀ε > 0.

The conjecture is still open, and the best result to date is due to Solymosi [S], who
showed that

max(|A + A|, |AA|) ≥ Cε|A| 1411−ε.

In the finite field setting this situation is much more complicated because the main
tool, the Szemerèdi-Trotter incidence theorem, does not hold in the same generality.
It is known, via the work in [BKT], that if A is a subset of Fp, the field of p elements
with p prime, and if pδ < |A| < p1−δ, where δ > 0, then one has the sum product
estimate

max(|A + A|, |AA|) ≥ |A|1+ε

for some ε > 0. This result has found many applications in combinatorial problems
and exponential sum estimates (see e.g. [BKT], [BGK], [G2]). Recently, Garaev
[G1] showed that when |A| < p

1
2 , one has the estimate

max(|A + A|, |AA|) � |A| 1514 .

By using Plünnecke’s inequality in a slightly more sophisticated way, we improve
this exponent to 14

13 . We believe that further improvements might be possible
through aggressive use of the Ruzsa covering.
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1. Preliminaries

Throughout this paper A will denote a fixed set in the field Fp of p elements
with p prime. For B, any set, we will denote its cardinality by |B|.

Whenever X and Y are quantities we will use

X � Y

to mean
X ≤ CY,

where the constant C is universal (i.e. independent of p and A). The constant C
may vary from line to line. We will use

X � Y

to mean
X ≤ C(log |A|)αY,

and X ≈ Y to mean X � Y and Y � X, where C and α may vary from line to line
but are universal.

We state some preliminary lemmas, mostly those stated by Garaev, but occa-
sionally with different emphasis.

The first lemma is a consequence of the work of Glibichuk and Konyagin [GK].

Lemma 1.1. Let A1 ⊂ Fp with 1 < |A1| < p
1
2 . Then for any elements a1, a2, b1, b2

so that
b1 − b2

a1 − a2
+ 1 /∈ A1 − A1

A1 − A1
,

we have that for any A′ ⊂ A1 with |A′| � |A1|

|(a1 − a2)A′ + (a1 − a2)A′ + (b1 − b2)A′| � |A1|2.

In particular such a1, a2, b1, b2 exist unless A1−A1
A1−A1

= Fp. In the case A1−A1
A1−A1

= Fp,
we may find a1, a2, b1, b2 ∈ A1 so that

|(a1 − a2)A1 + (b1 − b2)A1| � |A1|2.

Sketch of the proof. If A1−A1
A1−A1

�= Fp, it is immediate that there exist a1, a2, b1, b2 ∈
A1 with 1 + b1−b2

a1−a2
/∈ A1−A1

A1−A1
. This automatically implies

|(a1 − a2)A′ + (a1 − a2)A′ + (b1 − b2)A′| � |A1|2.

(See [GK]. If x /∈ A1−A1
A1−A1

, then each element of A1 +xA1 has but one representative
a + xa′.) On the other hand, if

A1 − A1

A1 − A1
= Fp,

then one can find a1, a2, b1, b2 ∈ A1 so that a1−a2
b1−b2

has at most |A1|2 representatives
as a3−a4

b3−b4
with a3, a4, b3, b4 ∈ A1, which implies that |A1 + a1−a2

b1−b2
A1| is large. Again,

for more details see [GK]. �

The following two lemmas, quoted by Garaev, are due to Ruzsa and may be
found in [TV]. The first is usually referred to as Rusza’s triangle inequality. The
second is a form of Plünnecke’s inequality.
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Lemma 1.2. For any subsets X, Y, Z of Fp where X is nonempty, we have

|Y − Z| ≤ |Y − X||X − Z|
|X| .

Lemma 1.3. Let X, B1, . . . , Bk be any subsets of Fp with

|X + Bi| ≤ αi|X|,

for i ranging from 1 to k. Then there exists X1 ⊂ X with

(1.1) |X1 + B1 + · · · + Bk| ≤ α1 . . . αk|X1|.

We record a number of corollaries. The first two can be found in [TV]. We first
became aware of the last one in the paper of Garaev [G1].

Corollary 1.4. Let X, B1, . . . , Bk be any subsets of Fp. Then

|B1 + · · · + Bk| ≤
|X + B1| . . . |X + Bk|

|X|k−1
.

Proof. Simply bound |B1 + · · ·+ Bk| by |X1 + B1 + · · ·+ Bk| and |X1| by |X|. �

Corollary 1.4 is somewhat wasteful in that X1 is unlikely to be both a single-
ton element and a set with the same cardinality as X. By applying Lemma 1.3
iteratively, we obtain the following corollary.

Corollary 1.5. Let X, B1, . . . , Bk be any subsets of Fp. Then there is X ′ ⊂ X
with |X ′| > 1

2 |X| so that

|X ′ + B1 + · · · + Bk| � |X + B1| . . . |X + Bk|
|X|k−1

.

Proof. Observe that for any Y ⊂ X with |Y | ≥ |X|
2 , we have that

|Y + Bi|
|Y | � |X + Bi|

|X| .

Now recursively apply Lemma 1.3. That is, first apply it to X, B1, . . . , Bk ob-
taining a set X1 satisfying

|X1 + B1 + · · · + Bk| � |X + B1| . . . |X + Bk|
|X|k |X1|.

If |X1| > 1
2 |X|, then stop and let X ′ = X1. Otherwise apply Lemma 1.3 to

X\X1, B1, . . . , Bk. Proceeding recursively if |X1 ∪ · · · ∪ Xj−1| > 1
2 |X|, set

X ′ = X1 ∪ · · · ∪ Xj−1;

otherwise obtain the inequality

|Xj + B1 + · · · + Bk| � |X + B1| . . . |X + Bk|
|X|k |Xj |.

Summing all the inequalities we obtained before stopping gives us the desired result.
�
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Corollary 1.6. Let A ⊂ Fp and let a, b ∈ A. Then we have the inequalities

|aA + bA| ≤ |A + A|2
|aA ∩ bA|

and

|aA − bA| ≤ |A + A|2
|aA ∩ bA| .

Proof. To get the first inequality, apply Corollary 1.4 with k = 2, B1 = aA, B2 =
bA, and X = aA ∩ bA.

To get the second inequality, apply Lemma 1.2 with Y = aA, Z = −bA and
X = −(aA ∩ bA). �

2. Modified Garaev’s inequality

In this section, we slightly modify Garaev’s argument to obtain

Theorem 2.1. Let A ⊂ Fp with |A| < p
1
2 ; then

max(|AA|, |A + A|) � |A| 1413 .

Proof. Following Garaev, we observe that
∑

a∈A

∑

b∈A

|aA ∩ bA| ≥ |A|4
|AA| .

Therefore, we can find an element b0 ∈ A, a subset A1 ⊂ A and a number N
satisfying

|b0A ∩ aA| ≈ N,

for every a ∈ A1. Further

(2.1) N � |A|2
|AA|

and

(2.2) |A1|N � |A|3
|AA| .

Now there are two cases. In the first case, we have
A1 − A1

A1 − A1
= Fp.

If so, applying Lemma 1.1, we can find a1, a2, b1, b2 ∈ A1 so that

|A1|2 � |(a1 − a2)A1 + (b1 − b2)A1| ≤ |a1A − a2A + b1A − b2A|.
Apply Corollary 1.4 with k = 4, and with B1 = a1A, B2 = −a2A, B3 = b1A,

B4 = −b2A, and X = b0A. Then we apply Corollary 1.6 to bound above |X + Bj |.
This yields

|A1|2 � |A + A|8
N4|A|3

or
|A1|2N4|A|3 � |A + A|8.

Applying (2.2), we get

(2.3) N2|A|9 � |A + A|8|AA|2,
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and applying (2.1), we get

(2.4) |A|13 � |A + A|8|AA|4.

The estimate (2.4) implies that

max(|A + A|, |AA|) � |A| 1312 � |A| 1413 ,

so that we have more than we need in this case.
Thus we are left with the case that

A1 − A1

A1 − A1
�= Fp.

Thus we can find a1, a2, b1, b2 so that for any refinement A′ ⊂ A1 with |A′| � |A1|,
we have

|A1|2 � |(a1 − a2)A′ + (a1 − a2)A′ + (b1 − b2)A′|.
Now we apply Corollary 1.5, choosing A′ so that

|(a1 − a2)A′ + (a1 − a2)A1 + (b1 − b2)A1| � |A + A||(a1 − a2)A1 + (b1 − b2)A1|
|A1|

.

This is where we have improved on Garaev’s original argument.
Then, as in the first case, estimating

|(a1 − a2)A1 + (b1 − b2)A1| ≤ |a1A − a2A + b1A − b2A|

and applying Corollary 1.4 with X = b0A and Corollary 1.6, we obtain

|A1|3N4|A|3 � |A + A|9.

Applying (2.2), we get

(2.5) N |A|12 � |A + A|9|AA|3.

Now applying (2.1), we get

(2.6) |A|14 � |A + A|9|AA|4.

Inequality (2.6) proves the theorem. �
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