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A Small Cohort Omega-3 PUFA Supplement Study: Implications of
Stratifying According to Lipid Membrane Incorporation in Cardiac
Surgical Patients

Abstract

Background: Epidemiological studies and randomised clinical trials (RCTs) report disparate findings in
relation to omega-3 polyunsaturated fatty acids (n-3 PUFA) benefit for cardiac patients. With RCTs
interpretation is potentially confounded by background n-3 PUFA intake. The goal of this pilot, small cohort,
pre-surgical supplementation study was to evaluate post-operative atrial fibrillation (AF) and cardiac
molecular expression profiles employing two data analysis approaches - by treatment randomisation and by
stratification using measured n-3 PUFA. Methods: Patients (n=20) received 3g/day of fish or placebo oil (FO
vs PO) in a double blind randomised protocol prior to elective coronary artery graft and valve surgery. Groups
were matched for age, gender, and mean treatment duration (~20 days). Resected atrial myocardium was
sampled for assay of viability metabolic markers, and blood obtained for erythrocyte membrane lipid
measurement. Results: There was substantial overlap of cell membrane n-3 PUFA content across PO and FO
groups, and no group treatment effects on AF incidence or myocardial molecular marker levels were detected.
In contrast, data stratification using membrane n-3 PUFA content (at 8% total membrane lipid) achieved
significant separation of patients (by n-6:n-3 PUFA ratio), a significant differential cardiac expression of the
marker peroxisomal proliferator-activated receptor, but no difference in AF incidence. Conclusions: This small
n-3 PUFA case study demonstrates that the same cohort may yield differing findings when evaluated using
randomisation or stratification approaches based on direct molecular measures in cell membranes.

Keywords

pufa, omega-3, cohort, small, cardiac, incorporation, membrane, lipid, according, stratifying, implications,
patients, study:, surgical, supplement

Disciplines

Medicine and Health Sciences | Social and Behavioral Sciences

Publication Details

Ip, W. T. K., Chandramouli, C., Smith, J. A., McLennan, P. L., Pepe, S. & Delbridge, L. M. D. (2017). A Small
Cohort Omega-3 PUFA Supplement Study: Implications of Stratifying According to Lipid Membrane
Incorporation in Cardiac Surgical Patients. Heart Lung and Circulation, 26 846-855.

Authors

Wendy T. K Ip, Chanchal Chandramouli, Julian A. Smith, Peter L. McLennan, Salvatore Pepe, and Lea M. D
Delbridge

This journal article is available at Research Online: http://ro.uow.edu.au/smhpapers/4810

http://ro.uow.edu.au/smhpapers/4810


1 

 

HLC-D-15-00581-R1 

A Small Cohort Omega-3 PUFA Supplement Study: 

Implications of Stratifying According to Lipid Membrane 

Incorporation in Cardiac Surgical Patients 

 

Wendy T.K. Ip, BBMedSc
a
, Chanchal Chandramouli, BMBSc

a
, Julian A. Smith, FRACS

b 
,  

Peter L. McLennan, PhD
c
, Salvatore Pepe, FCSANZ

d*
 and Lea M. D. Delbridge, FCSANZ

a
 

 

a 
Cardiac Phenomics Laboratory, Department of Physiology, University of Melbourne, Parkville, 

Australia 
b 

Department of Cardiothoracic Surgery, Monash Health, and Department of Surgery, School of 

Clinical Sciences at Monash Health, Monash University, Melbourne, Australia 
c 

Graduate School of Medicine, Centre for Human Applied Physiology, University of Wollongong, 

Wollongong, Australia  
d 

Murdoch Children’s Research Institute, Department of Paediatrics, University of Melbourne, Royal 

Children’s Hospital, Melbourne, Australia 

 

Running Head:  

Omega-3 PUFA & Cardioprotection  

 

*Corresponding author  

  Assoc.Prof. Salvatore Pepe 

  Department of Cardiology 

  Royal Children’s Hospital 

  50 Flemington Road, 

  Parkville, VIC 3052, Australia.  

  TEL +61-3- 9345 4114 

  salvatore.pepe@mcri.edu.au 



2 

Abstract 

 

Background Epidemiological studies and randomised clinical trials (RCTs) report disparate 

findings in relation to omega-3 polyunsaturated fatty acids (n-3 PUFA) benefit 

for cardiac patients. With RCTs interpretation is potentially confounded by 

background n-3 PUFA intake. The goal of this pilot, small cohort, pre-surgical 

supplementation study was to evaluate post-operative atrial fibrillation (AF) and 

cardiac molecular expression profiles employing two data analysis approaches – 

by treatment randomisation and by stratification using measured n-3 PUFA. 

Methods Patients (n=20) received 3g/day of fish or placebo oil (FO vs PO) in a double 

blind randomised protocol prior to elective coronary artery graft and valve 

surgery. Groups were matched for age, gender, and mean treatment duration  

(~20 days). Resected atrial myocardium was sampled for assay of viability 

metabolic markers, and blood obtained for erythrocyte membrane lipid 

measurement.  

Results There was substantial overlap of cell membrane n-3 PUFA content across PO and 

FO groups, and no group treatment effects on AF incidence or myocardial 

molecular marker levels were detected. In contrast, data stratification using 

membrane n-3 PUFA content (at 8% total membrane lipid) achieved significant 

separation of patients (by n-6:n-3 PUFA ratio), a significant differential cardiac 

expression of the marker peroxisomal proliferator-activated receptor, but no 

difference in AF incidence. 

Conclusions This small n-3 PUFA case study demonstrates that the same cohort may yield 

differing findings when evaluated using randomisation or stratification 

approaches based on direct molecular measures in cell membranes. 

Keywords omega-3 polyunsaturated fatty acids, atrial fibrillation, peroxisomal proliferator-

activated receptor, Bax, Bcl2 
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Introduction 

Evidence of the benefits of dietary intake of omega-3 long chain polyunsaturated fatty acids (n-3 

PUFA) first emerged from population studies which identified a potential link between cardiovascular 

protection and dietary intake of marine fish-derived lipids [1]. Over an extended period, subsequent 

observational studies also reported positive association between n-3 PUFA consumption and cardiac 

mortality (although recently concerns have been identified relating to the validity of conclusions 

drawn from early reports of diet and disease incidence) [2-4]. Beyond observational studies, other 

investigations have documented anti-arrhythmic effects of n-3 PUFA, delivered via dietary fish 

inclusion or by fish oil supplementation [5-8].  

However, a number of studies investigating the effects of short-term n-3 PUFA supplementation 

(implemented 1-5 days prior to CABG or valvular surgery) have failed to demonstrate a benefit in 

suppression of post-operative arrhythmias for patients not exhibiting sinus dysrhythmia before surgery 

[9,10]. Data relating to prevention of recurrent arrhythmia with longer term post-surgical 

supplementation were equivocal [11,12].  Overall, the most recent meta-analyses available of post-

operative atrial fibrillation (AF) outcomes have produced discrepant results, both reduction and lack of 

significant reduction in AF with n-3 PUFA supplementation has been reported [13,14].  

Reflecting the lack of resolution in the outcomes of these, and other supplementation trials and studies 

related to cardiovascular endpoints, over the last few years major international professional bodies 

have re-examined advice provided in relation to n-3 PUFA intake. An important recent development 

has been reconsideration of the recommendations offered by the National Heart Foundation of 

Australia (NHFA) in relation to adult consumption of n-3 PUFA. A major review of the evidence base 

available relating to n-3 PUFA involvement in the prevention and treatment of cardiovascular disease 

since the previous publication of NHFA recommendations in 2008 has been completed [15] 

concluding that, whilst dietary consumption of fish has clear benefit, the case for use of refined fish oil 

supplements in the context of coronary heart disease or atrial fibrillation is not supported [15,16]. 

The disparity in observational and randomised clinical trial-based findings in relation to n-3 PUFA 
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supplement benefit is perplexing. The key issue and challenge which has been highlighted in the post-

hoc consideration of this NHFA report on n-3 PUFA efficacy is the difficulty in defining participant 

groups in randomised trials (or in any study design type) which can be identified as dichotomous 

treatment categories [17,18]. In dealing with a ‘treatment’ agent which is present always to a variable 

extent in background diet and which is readily available in non-prescription, retail supermarket form, 

the effectiveness of randomisation may be compromised. The importance of establishing actual tissue 

lipid incorporation levels to assess real dichotomy of treatment groups and cardiac endpoints has been 

emphasized [17,18]. In determining an effect of lipid ingestion intervention on arrhythmic propensity 

or on protective myocardial signalling pathways, it would seem apparent that knowledge of lipid status 

of study participants would be essential.   Given that important earlier work has established in humans 

that erythrocyte plasma membrane lipid composition is a high fidelity surrogate measure of 

myocardial membrane lipid composition, it is surprising how few studies seek to make the link 

between actual tissue PUFA levels and cardiac outcomes within and between study subgroups [19].  

In this, small cohort, pilot study of patients undergoing elective cardiac surgery, double-blind 

randomised to receive either n-3 PUFA or placebo, we have explored the association between 

individual patient tissue lipid status, post-surgical arrhythmia occurrence and levels of selected 

myocardial molecular measures. Atrial expression of several markers known to be responsive to 

ischemic stresses, both chronic (characteristic of perfusion insufficiency), and acute (as induced in a 

surgical setting), were examined. The overall goal was to evaluate the effectiveness of randomization 

in producing valid, well-contrasted n-3 treatment groups for which treatment effect could be tested by 

post-hoc measurement of a reliable marker of participant lipid ingestion (erythrocyte membrane lipid 

composition).  The hypothesis was that postoperative arrhythmia suppression and enhanced signalling 

through pro-survival molecular pathways (ie Bcl, PPAR�) would be observed in association with n-3 

supplement treatment.
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Materials and Methods 

Patient Recruitment 

Patients undergoing elective coronary artery bypass graft (CABG) surgery and/or valve 

repair/replacement surgery at Monash Medical Centre (Melbourne Australia) were recruited and 

consented for study participation. The study was approved by the Monash University Human Research 

Ethics Committee. Exclusion criteria were diabetes diagnosis and absence of stable sinus rhythm at 

pre-admission check. Patient medication history included ACE inhibition and statin therapy.  At pre-

admission clinic, patients were randomised to receive either fish oil (FO) or placebo (PO) treatment, 3 

capsules/day dispensed by the hospital pharmacy in a double-blinded manner, ongoing for the pre-

surgical period. Fish oil capsules (NUMEGA, Clover Corporation, Melbourne Australia) contained 1g 

tuna fish oil (25% docosahexaenoic acid (DHA, 22:6 n-3), 12% eicosapentaenoic acid (EPA, 20:5 n-

3). Placebo capsules were manufactured in parallel and comprised mainly monounsaturated oleic acid 

(1g Sunola oil). At surgery, right atrial appendage biopsy samples were collected and snap frozen for 

tissue molecular analysis. Venous blood was collected for analysis of erythrocyte membrane lipids. 

Evidence of post-operative AF was determined from ECG records obtained during hospitalization and 

identified as binary (yes/no) occurrence. Thus, three measures were obtained to allow examination of 

possible relationships between FO supplementation, cell membrane lipid profile and arrhythmia 

vulnerability post-surgery. 

 

Erythrocyte membrane lipid analysis  

Total non-fractionated membrane phospholipid fatty acids were extracted and quantified as previously 

described [20,21]. Briefly, membrane phospholipids were isolated by solid-phase extraction and fatty 

acids were methylated by heating with addition of methanol, toluene and acetyl chloride. Fatty acids 

methyl esters produced were analyzed using gas chromatography by flame ionization detection. Fatty 

acids were identified from fatty acid methyl ester standards and expressed as a percentage of total fatty 

acids.  
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Atrial myocardium molecular analyses 

To evaluate the proposition that n-3 PUFA supplementation confers myocardial protection in 

enhancing pro-survival signalling pathways, the levels of several key signalling intermediates known 

to be responsive to ischemic stress (as induced during surgery) were examined including  Bcl2 and 

Bax (anti- and pro-apoptotic genes), PPAR� (the peroxisomal proliferator-activated receptor, integral 

to adaptive FA metabolic signalling) and phospho-Akt (the PI3-kinase trophic signalling marker).  

 

Frozen atrial myocardium were pulverised under liquid nitrogen. Approximately 50 mg tissue was 

used for immunoblot protein expression analysis. Where tissue sample size permitted, an additional 

portion (20 – 50mg) was analysed for mRNA by real-time quantitative polymerase chain reaction 

(qRT-PCR). 

 

Protein immunoblot analyses were performed as previously described [22]. Tissues were homogenized 

(10% w/v) in 100mM Tris-HCl buffer with 5mM EGTA and 5mM EDTA (Sigma Aldrich, USA) 

containing protease and phosphatase inhibitor cocktail (complete protease inhibitor cocktail, 

Catalogue # 04693159001, Roche; PhosphoSTOP, Catalogue # 04906837001, Roche) at 4
o
C. Tissue 

homogenate was diluted in 2x sodium dodecyl sulfate (SDS) sample buffer. Protein concentration was 

measured by a modified Lowry assay to determine equal protein (�g) loading into polyacrylamide 

gels. Following electrophoresis, proteins were transferred to a polyvinylidene difluoride membrane 

using a TurboBlot system (Bio-Rad, CA, USA) followed by primary and secondary antibody 

incubation. Primary antibodies were purchased from Cell Signaling: Bax (#2772), Bcl2 (#2876), p-

Akt(Ser473) (#9271), Akt (#9272). HRP-conjugated secondary antibody and chemiluminescent 

reagent (ECL-Plus RPN2133) were purchased from Amersham GE Healthcare. Chemiluminescent 

signal was imaged and quantified using QuantityOne software (Bio-Rad, CA, USA). To verify equal 

protein loading controls, after imaging membranes were stained with Coomassie Brilliant Blue R-250 

as per manufacturer’s instructions (Bio-Rad Catalogue # 161-0436), re-imaged in white light and 

quantified using Bio-Rad QuantityOne software. For blot images, contrast/brightness optimization was 

applied uniformly to preserve relative densitometic integrity and no non-linear imaging adjustments 
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were made. 

Optimized mRNA analyses were performed as previously validated for human biopsy specimens [23]. 

A silica-membrane based mRNA extraction method using the Qiagen RNeasy Fibrous Tissue midi kit 

(Cat # 75742), including proteinase k digest and DNase treatment with on-column purification was 

implemented. cDNA was prepared (Invitrogen SuperScript
TM

 III First Strand Synthesis System, # 

1808-051) using a thermo-cycler (M. J. Research, PTC-100
TM

 programmable Thermal Controller) 

according to manufacturer’s instructions. Human Bax, Bcl2 and PPAR� (peroxisomal proliferation-

activated receptor) primers were purchased as pre-optimized PCR assay kit (Qiagen QuantiTect® 

Primer Assays, Catalogue # QT00031192, QT00025011, QT00017451) where primer sequences were 

not specified by the manufacturer. Human 18S primers were designed using Primer Express® 

software v2.0 (Applied Biosystems, USA). The primer sequences were: forward 5’-

tcgaggccctgtaattggaa-3’; reverse 5’-ccctccaatggatcctcgtt-3’. Real-time PCR gene amplification and 

data acquisition was performed using Corbett Research Rotor-Gene 3000  (software, V6). Human 

Bax, Bcl2 and PPAR were amplified according to supplier instructions.  PCR processing steps for 18S 

were: initiation at 50
O
C for 2 min and 95

 O
C for 2 min; amplification of 40 cycles at 95

 O
C for 15 sec 

and 60
 O

C for 30 sec; annealing at 60
 O

C. Melt commenced from 60-99
O
C, 60 sec first step, and 5 sec 

for following steps. All samples assayed in replicate with water blanks and no template controls. 

Threshold was set manually at the exponential phase of the amplification above the background. 

Target gene expression levels were analysed using the comparative Ct method as previously described 

[24] and were specified as relative units normalized to a reference gene (18S).  

Statistical analyses 

Data are presented as mean ± SEM unless otherwise stated. Differences between groups were assessed 

using Independent t-test (nominal data, (α) of 0.05, (β) of 0.20) and Pearson chi-square test 

(categorical data). Regression analysis was performed by linear regression test. Differences were 

considered significant when p<0.05. All statistical analyses were performed using SPSS version 22.0 

(SPSS Inc., Chicago, IL). 
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Results 

Patient PO and FO groups matched for baseline characteristics 

The baseline characteristics of the 20 patients randomised to the Fish Oil (FO) or Placebo (PO) 

treatment groups are shown in Table 1. There were no differences in average patient age or gender 

proportion between FO and PO groups. The average supplementation duration prior to surgery was not 

different between the two groups. There was also no significant difference in the proportion of patients 

exhibiting one or more episodes of atrial fibrillation (AF) in PO and FO groups.  

Expression of cardiac molecular markers not different between FO and PO treatment groups  

A role for fatty acids in transcriptional regulation has been observed in various settings. Comparing 

PO and FO treatment groups we sought evidence of n-3 PUFA-associated difference in the expression 

of key signalling intermediates known to modify myocardial viability and metabolic signalling in 

ischemic stress. Expression of the apoptosis regulating proteins Bax and Bcl2 at both mRNA and 

protein levels were similar in the PO and FO groups, evaluated separately and ratiometrically (Figure 

1A-C, 1E-G). There were also no differences between PO and FO groups in relation to expression of 

PPAR� (an energy sensor and regulator molecule) or phosphorylated Akt (a protective intermediate of 

the PI3Kinase pathway activated by ischemia) (Figure 1D and 1H).  

Further analysis was undertaken to determine if a lack of difference in gene expression markers 

between PO and FO groups could be related to confounding effects of patient age or treatment 

duration on capacity for membrane incorporation within each treatment group.  As shown in Figure 

2A, 2B, there was no correlation between treatment duration and erythrocyte membrane EPA+DHA or 

DHA content in either the PO or FO group. Treatment duration for most patients was <2 weeks. 

Within each treatment group there was no correlation between age and membrane EPA+DHA (Figure 

2C, 2E) or DHA (Figure 2D, 2F). Most notably, this analysis revealed extensive overlap of the range 

of membrane EPA and DHA values measured for the PO and FO groups.  
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Correlating expression of cardiac molecular markers with membrane n-3 PUFA content: 

combining PO and FO measurements  

The overlap of erythrocyte membrane n-3 PUFA content between PO and FO groups prompted a re-

examination of the relationships between cardiac molecular marker expression levels measured for all 

samples, combining both groups.  In addition to evaluation of EPA+DHA content, the levels of EPA 

and DHA were assessed separately (Figure 3).  The mRNA ratio of Bcl2:Bax expression and PPAR� 

mRNA expression were each negatively correlated with EPA+DHA and with DHA alone (but not 

EPA).  No significant relationships were observed between protein marker levels and any measure of 

n-3 PUFA.  

Applying an alternative data stratification approach to construct treatment groups 

Recently, a cogent case has been argued to apply a target n-3 PUFA treatment standard in evaluating 

(and constructing) participant groups to maximize the potential of achieving endpoint outcomes in 

dietary and supplementation studies. An ‘Omega-3 index’ (EPA+DHA) exceeding 8% has been 

recommended as a threshold level for identification of n-3 PUFA endpoint effect [25]. This approach 

was applied to the present data set. In Figure 4, the EPA+DHA sum is shown for the randomised PO 

and FO groups (Figure 4A), and in Figure 4B two alternative groups are constructed on the basis of 

stratification at the level of 8% EPA+DHA. Remarkably this process located 44% of FO assigned 

patients into the ‘below threshold’ group and 20% of the PO patients into the ‘above threshold’ group. 

Accordingly an analysis of the membrane n-6:n-3 PUFA ratio indicated a significant difference 

between stratified groups, but not between randomised groups (Figure 4C).  

Expression of cardiac molecular markers and AF occurrence in stratified treatment groups 

Finally, the expression levels of cardiac molecular markers and occurrence of AF was re-evaluated in 

the treatment groups re-constructed by stratification at the level of 8% total erythrocyte membrane 

EPA+DHA (Figure 5). With high n-3 PUFA levels (ie � 8%), a significant group reduction effect on 

PPAR� mRNA expression was detected, which had not been evident in the PO vs FO treatment 

contrast (Figure 5A). For the Bcl2:Bax and for the pAkt:tAkt protein ratios, stratification did not 

render any difference in outcome when compared with the PO vs FO group analysis (Figure 5B and 
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5C). In relation to AF, whilst a slightly larger incidence differential was apparent between the 

stratified groups compared with the randomised groups, this was not a significant finding.  
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Discussion 

Analysis approach matters: stratification vs randomisation  

Here we report the findings of a small case study (n=20) where cardiac surgery patients were 

randomized to receive placebo or fish oil, and patient end treatment tissue molecular measures and 

post-operative AF occurrences were evaluated. Substantial overlap in the level of membrane EPA and 

DHA in PO and FO groups was observed. Whilst significant correlations between cardiac tissue 

expression levels of molecular markers involved in myocardial viability and metabolic signalling in 

ischemia stress and n-3 PUFA content were observed in the pooled patient cohort, no PO or FO group 

treatment effects could be discerned.  Stratification of patient data on the basis of membrane 

EPA+DHA level (using a threshold value of 8% total membrane lipid) was demonstrated to produce 

an effective and significant dichotomous separation of patients (by membrane n-6:n-3 ratio). 

Stratification slightly enhanced the AF group differential compared to randomisation group values, but 

significant AF benefit of omega-3 status was not detectable in either analysis setting.  

Defining treatment groups in the context of variable omega-3 PUFA background and 

compliance challenge 

The discrepant findings reported from population/observational studies and from RCTs in relation to 

n-3 PUFA benefit, at least partially reflect the problem of variable participant n-3 PUFA status at 

study commencement and ongoing ingestion behaviour during the study [15]. In supplementation 

studies, participants will have variable endogenous background levels of key PUFAs, and the capacity 

to effect a quantitatively significant intervention by supplementation may be compromised [17]. 

Evidence suggests that even relatively low dose n-3 PUFA (ie 250mg EPA+DHA/day) can influence 

cardiovascular outcome, a dose level easily achieved with a single meal dietary adjustment [25, 26].  

An early case-control study, at a time before publicity of cardiac benefits of n-3 PUFA, established 

that erythrocyte EPA+DHA and dietary intake correlated, and both were inversely related to risk of 

primary cardiac arrest [8]. In the present-day context, study participants with concern of disadvantage 

conferred by placebo randomisation may self-treat very simply (through independent retail supplement 

access or dietary modification). Additionally the non-uniform and often short interval from treatment 
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to surgery can lead to variable and inadequate tissue incorporation required for physiological effect, as 

demonstrated in animal studies [20, 21].  For future studies it would be desirable to apply exclusion 

criteria to ensure study participant completion of a minimum period of treatment (ie 28 days as 

indicated by animal studies)  to ensure stabilization of intervention effect on membrane lipid 

composition. 

It has been proposed that an optimal RCT design to detect n-3 PUFA benefit requires selection of 

study participants with low background n-3 PUFA levels [25-27]. Whilst this approach might have 

practical/ethical challenge, at least the rigorous implementation of tissue measurement of n-3 PUFA 

levels at endpoint (and possibly at study entry) seems obligatory. Our membrane analysis data showed 

clearly that there was substantial overlap in membrane n-3 PUFA content in randomised FO and PO 

groups. Indeed when stratification was applied (at the erythrocyte 8% EPA+DHA threshold level 

proposed by von Schacky [25], there was significant group transfer of participants: 20% of the PO 

group localized into the upper strata, and 44% of the FO participants  to the lower strata. The use of 

the n-6:n-3 PUFA ratio provided particularly useful discrimination between patient groups, and this is 

consistent with previous clinical and experimental reports [10,28].  

Myocardial molecular markers, AF and erythrocyte lipids  

Although the end treatment observation of interest in relation to n-3 PUFA supplementation efficacy 

was post-operative AF, with the retrospective use of stratification it was revealed (post-hoc) that the 

study as constructed by randomization was not powered to find group differences. An important 

finding of this study is that the confounding of randomization evidenced by actual membrane lipid 

composition, limited the capacity to detect group significant difference in AF. In a larger study with 

increased allocation of participants to the � 8% stratified group, the power to evaluate group 

differences in AF occurrence may be increased.   Aside from this power limitation, a lack of 

significant difference in the incidence of AF between group contrasts may also reflect the finding that 

even the lowest n-3 EPA+DHA content level recorded was ~ 6.6%. Recent meta-analysis data indicate 

that this is not a low value [25], and suggests that all study participants were already potentially amply 

‘dosed’ with n-3 PUFA.  Our findings demonstrate that future studies (whether pilot or of more large 
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scale design) should take into account potential participant baseline fish consumption and that study 

entry erythrocyte lipid composition should be verified, in order to construct treatment groups with 

optimal contrast. 

By evaluation of pooled data from all patients, negative correlations were found between the content 

of n-3 PUFA and PPAR levels (and Bcl2:Bax), primarily driven by DHA (compared to EPA). In the 

stratified data analysis, a significantly reduced PPAR level in the upper level strata (� 8% total fatty 

acids) also persisted, whereas Bcl2:Bax findings were marginally not significant. The Bcl2:Bax ratio 

is generally understood to be an indication of propensity to limit apoptosis.  PPAR is known to be 

responsive to endogenous long chain fatty acids (including n-3 PUFA) and has a role in metabolic 

signalling through transcriptional regulation of genes [29,30]. The first conclusion is that the apoptotic 

expression responses appear to be ‘early indicators’ as the mRNA shifts were not coincident with 

protein shifts. Secondly, the finding of inverse correlation between n-3 PUFA membrane content and 

both PPAR and Bcl2:Bax mRNA ratio is suggestive of n-3 PUFA signalling feedback inhibition. 

Although not extensive, there is some experimental literature suggesting n-3 PUFA apoptosis 

suppression in oncogenic settings and neural cell types [31,32]. However as we did not directly 

investigate a panel of protein apoptotic measures (due to specimen size constraints), our findings in 

this study cannot be considered mechanistically definitive but do provide a basis for further discovery 

work in larger treatment groups in relation to n-3 transcriptional and translational regulation in the 

heart. Despite the limitations of measuring only a small number of ‘candidate’ genes and proteins, and 

the constrained group sizes which emerged after data stratification, these molecular markers provided 

utility for exploring secondary end treatment observations . 
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Conclusion 

The major finding of this small n-3 PUFA case study is the demonstration that the same cohort may 

yield differing findings when evaluated using randomisation or stratification approaches based on 

direct molecular measurements of cell membrane lipids. In this pilot study a significant finding 

through stratification in relation to differential cardiac expression of the PPAR� was determined. In an 

expanded study using stratification measures, a definitive finding in relation to n-3 supplementation 

and AF occurrence may be achievable.  
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Table 1 Patient details. AF, atrial fibrillation; M, male; F, female; Y, yes; N, no. Data are presented 

as mean ±SEM. Non-paired t-test for age and treatment period; Pearson Chi-square test (ie AF, 

gender). 

Treatment Patient Age Gender 
Treatment  

period 

Post-surgical 

AF occurrence 

Placebo M73 66 M 15 N 

Placebo M74 67 M 14 N 

Placebo M77 79 M 40 Y 

Placebo M80 65 M 5 N 

Placebo M81 73 M 44 Y 

Placebo M86 78 M 12 Y 

Placebo M89 53 M 5 N 

Placebo M90 70 M 16 Y 

Placebo M76 55 F 36 Y 

Placebo M84 65 F 7 N 

Mean 

PO 

 
 

67 ± 3 

(years) 

80% M 

(8M + 2F) 

19 ± 5 

(days) 

50% 

(5/10) 

Fish oil M71 55 M 9 N 

Fish oil M72 66 M 11 N 

Fish oil M75 69 M 12 N 

Fish oil M79 73 M 18 Y 

Fish oil M83 53 M 12 N 

Fish oil M85 44 M 4 N 

Fish oil M87 71 M 22 Y 

Fish oil M78 36 F 108 N 

Fish oil M82 73 F 6 Y 

Fish oil M88 70 F 7 N 

Mean 

FO 
 

61 ± 4 

(years) 

70% M 

(7M + 3F) 

21 ± 10  

(days) 

30% 

(3/10) 
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Figures  

Figure 1. Cardiac molecular markers in PO and FO groups. 

A-D. mRNA expression (by qRT-PCR) of apoptotic proteins Bax and Bcl2, and metabolic 

transcriptional factor PPAR. 

E-H. Protein expression (by immunoblot) of apoptotic proteins Bax and Bcl2, and phospho-activation 

of trophic mediator Akt (Ser 473) normalized to total Akt (pAkt:tAkt). 

Data presented mean ± SEM. Non-paired t-test, p = n.s. PO, Placebo Oil; FO, Fish Oil. 

 

Figure 2. Membrane n-3 content vs treatment period  and age  

A, B. Regression analysis of erythrocyte membrane EPA+DHA and DHA only (% total fatty 

acids) with patient treatment duration in PO and FO groups.  

C, D. Regression analysis of erythrocyte membrane EPA+DHA and DHA only (% total fatty 

acids) with patient age in PO and FO groups.  

Data analysed by linear regression test. PO, Placebo Oil; FO, Fish Oil. 

 

Figure 3. Membrane n-3 content vs cardiac molecular marker expression 

A. Correlation of cardiac molecular markers with erythrocyte EPA content (pooled PO & FO groups). 

B. Correlation of cardiac molecular markers with erythrocyte DHA content (pooled PO & FO groups). 

C. Correlation of cardiac molecular markers with erythrocyte total EPA+DHA (pooled PO & FO 

groups).  

Data analysed by linear regression test. n = 11–16; *p<0.05. EPA: eicosapentaenoic acid; DHA:  

docosahexaenoic acid  
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Figure 4. Membrane EPA+DHA: groups by randomisation and stratification 

A.  Erythrocyte membrane EPA+DHA as % fatty acids for PO and FO randomized groups.  

B.  Erythrocyte membrane EPA+DHA as % fatty acids for < 8% and � 8% stratified groups 

Data shown as dot plots with mean (horizontal bar), and threshold stratification level (8%) dashed 

line.  

C. Erythrocyte membrane n-6:n-3 ratio for randomized and stratified groups. 

Data presented mean ± SEM. Non-paired t-test, *p < 0.05. 

PO, Placebo Oil; FO, Fish Oil. EPA: eicosapentaenoic acid; DHA:  docosahexaenoic acid  

 

Figure 5. Cardiac molecular markers and AF in randomised and stratified groups. 

A. PPAR mRNA expression for randomised and stratified groups. 

B. Bcl2:Bax protein expression ratio for randomised and stratified groups. 

C. pAkt (ser 473):tAkt protein expression ratio for randomized and stratified groups. 

Data presented mean ± SEM. Non-paired t-test, *p< 0.05.  

D. AF occurrence for randomised and stratified groups.  

For stratified groups membrane EPA+DHA as % fatty acids  (< 8%, � 8% total fatty acids). Data 

analysed by Pearson Chi-square test p = n.s.  

PO, Placebo Oil; FO, Fish Oil.  
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