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Monte Carlo experiments establish that the usual \t-statistic" used for testing for

�rst-order serial correlation with arti�cial regressions is far from being distributed as

a Student's t in small samples. Rather, it is badly biased in both mean and variance

and results in grossly misleading tests of hypotheses when treated as a Student's t.
Simply computed corrections for the mean and variance are derived, however, which

are shown to lead to a transformed statistic producing acceptable tests. The test

procedure is detailed and exemplar code provided.

1. Introduction

Arti�cial regression has been proposed [Durbin (1970), Breusch (1978), Godfrey (1978a and b), MacKinnon

(1992), Davidson and MacKinnon (1993)] as a simple means for testing for the presence of serial correlation

in the error structure of the standard regression model y = X�+". To test, for example, for simple gth-order

serial correlation, one merely regresses y on X, lags the residuals e from this regression g times to get e�g,

and then regresses y on X and e�g. The t statistic tc of the estimated coe�cient c of e�g provides the

desired test.

While tc is known asymptotically to be distributed as N (0, 1) under the null of no serial correlation

[Durbin (1970)], its small-sample distribution is little known. General practice, however, clearly presumes

it to be distributed as a Student's t with appropriate degrees of freedom. In this paper, we �rst use Monte

Carlo experiments to demonstrate this presumption to be false. Relative to a Student's t distribution, tc

tends to be biased downwards, have lower-than-expected variance, be skewed, and have varying degrees of

kurtosis. All of this results in actual test sizes, based on the assumed relevance of the standard t-test, that

are asymmetric and badly misleading. For example, relative to the 5% expected in each tail when using

the 10% two-tailed critical values for a Student's t, a typical outcome when testing for �rst-order serial

correlation might show actual test sizes of 3.5% in the lower tail and 0.3% in the upper.

There are three ways to proceed in such a situation. One could try to derive the actual small-sample

distribution of tc, one could use Monte Carlo techniques to establish appropriate critical values, or one could

attempt to transform tc to behave more nearly like a Student's t. The �rst option is available less often



than we would like, but the second and third are always possibilities. The second is adopted, for example,

by Dickey and Fuller (1981) in their test for random walks, but, to be useful, this option requires either

stability across cases or many runs (summarized in many tables) under di�ering situations. Here we adopt

the third option, for we are able to �nd simply computed estimates of the small-sample biases both for the

mean and variance. Once corrected for these, tc becomes a quite well-behaved statistic, still showing some

asymmetry, but having acceptable sizes in both tails. The use of a 10% two-tailed critical value in testing

for �rst-order serial correlation now results in actual sizes, say in a typical example, of 5.5% in the lower tail

and 4.5% in the upper. Furthermore, this correction, with simple modi�cations for extreme cases, appears

remarkably e�ective for all of the widely di�erent test models, orders of serial correlation, and degrees of

freedom (with some minor quali�cations). Monte Carlo experiments are used to show both the e�ectiveness

of the small-sample corrections and the suitability of the corrected tc for small-sample tests.

The next section derives the arti�cial-regression test procedure for simple gth order serial correlation.

Section 3 presents Monte Carlo results showing the inappropriateness of small-sample tests based on the

assumption that tc is distributed as a Student's t. Section 4 introduces a simply e�ected correction for tc that

alleviates this problem and presents Monte Carlo results demonstrating its value. Section 5 provides simple

modi�cations for certain extreme cases. Section 6 brie
y examines an alternative, asymptotically equivalent

test. Section 7 presents step-by-step instructions for carrying out the procedure. Appendices contain formal

derivations of the relevant statistics and correction factors, discuss computational considerations, and provide

appropriate Mathematica code.

2. The Test Procedure

Assume a standard linear model y = X� + " with a disturbance term " that has simple gth-order serial

correlation, i.e.,

yn = xTn� + "n; n = 1; : : : ; N; (2:1)

"n = �"n�g + un; (2:2)

where the yn are the N elements of y, the xTn are the rows of the N � K data matrix X, un is an iid

disturbance term with mean zero and variance �2u, and j�j < 1. Substituting (2.2) into (2.1) and using (2.1)

lagged g times gives

yn = xTn� + �(yn�g � xTn�g�) + un; (2:3)

an equation with a well-behaved disturbance term, but nonlinear in the parameters � and �. A �rst-order

expansion of (2.3) about arbitrary (�0; �0) gives the Gauss-Newton Regression (GNR)

yn � xTn�0��0(yn�g � xTn�g�0)
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= (xTn � �0x
T
n�g)(� � �0) + (yn�g � xTn�g�0)(� � �0) + vn; (2:4)

where vn includes the higher-order expansion terms along with un.

Under the null hypothesis H0: � = 0; � is consistently and e�ciently estimated with the ordinary least-

squares estimator bOLS = (XTX)�1XTy from (2.1) alone. Evaluating (2.4) at (�0; �0) = (bOLS ; 0) gives

the arti�cial regression

en = xTn� + 
en�g + vn; n = g + 1; : : : ; N; (2:5)

where � � ��bOLS ; 
 � �; and the en � yn�xTnbOLS are simply the OLS residuals from the y's regressed

on the x's. It is proposed [MacKinnon 1992 ] that we test H0: � = 0 through a standard test of the hypothesis

that 
 = 0; that is, we simply (a) regress the y's on the x's, (b) take the residuals en from this regression

and regress them in turn on the same set of x's along with their own lagged values en�g, and then (c) test

whether the OLS estimate c of the coe�cient 
 of the lagged residuals in this regression is signi�cantly

di�erent from zero. Asymptotically, a t-test based on a Student's t distribution with appropriate degrees of

freedom is relevant for this purpose, but, of course, interest centers here on whether this remains so for truly

small samples.

As a practical matter, it makes no di�erence whether en or yn appears on the left-hand side of this

arti�cial regression. Since en � yn � xTnbOLS , substituting yn for en would result in di�erent estimates for

�, but would have no e�ect on c or its variance, and hence on the value of tc, the standard t-statistic for c.

This latter statistic is derived formally in Appendix C, but in essence it is determined as follows: Let X[g] be

the (N �g)�K matrix that results from deleting the �rst g rows fromX, and let e�g be the (N �g)-vector

obtained by lagging the residual vector e � y � XbOLS g times (i.e., removing its last g elements). De�ne

the (N �g)� (K +1) matrix Z � [X[g] e�g], and let s
2

c denote the (K+1)st diagonal element of s2(ZTZ)�1,

where s2 � v̂T v̂=(N �K � g � 1), v̂ being the residuals from the arti�cial regression of y[g] (y with its �rst

g rows deleted) on Z, i.e., y[g] � X[g]d+ ce�g + v̂. Then

tc =
c

sc
: (2:6)

3. The non-Studentness of tc in small samples

Monte Carlo experiments are used to demonstrate the divergence of the small-sample distribution of tc from

a Student's t. A Student's t with r degrees of freedom, we recall, is a symmetric distribution with mean

zero and variance r=(r � 2). Relative to this, we �nd for small samples that tc is biased (often severely),

has depressed variance, and is asymmetric. Monte Carlo experiments for this use are quite straightforward.

Twenty-two models, di�ering in the structure of the data comprising X, are examined for N = 20, a very
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small sample (leading to even smaller degrees of freedom), and N = 60, a moderately small sample. 10,000

replications are used with the smaller sample size and 5,000 with the larger. For each replication one must

essentially

(a) generate the N elements of " as iid normals with mean zero and variance �2,

(b) derive y = X� + ",

(c) determine e � y �XbOLS =My �
�
I�X(XTX)

�1

XT
�
y,

(d) calculate tc as explained at the end of the previous section.

The value of tc is readily shown to be invariant to the choice of � or �2, so the experiments need not

explore these dimensions. The results, however, could depend upon the order g of serial correlation being

tested for and upon the character and numbers of the X data. Experiments are conducted for �ve values of

g: 1, 2, 4, 8, and 12, and, for each of these, twenty-two models are examined containing from 1 to 6 variates,

built up from 8 di�erent data types:

1. Constant (C)|a vector of 1's.

2. Random (U and N)|U is U (0, 1) and N is N (0, 16).

3. Trend (T)|values 1; : : : ; N .

4. Sinusoidal (S)|20 values of Sin(i) for i = :15 to � in steps of .15, repeated three times for N = 60.

5. Oscillating (O)|alternating 1 and �1.

6. Basic economic data (X)|20 annual consumption �gures, repeated three times for N = 60.

7. First di�erences (D)|�rst di�erences of previous series, repeated three times for N = 60.

8. Second di�erences (D*)|�rst di�erences of D, repeated three times for N = 60.

The models are named according to the variates included. Thus, CUX contains an intercept C, the

uniform random variate U, and the basic economic data series X. Models with names not including C have

no intercept. All the arti�cial test regressions, of course, also include the appropriately lagged residual term.

Table 1 lists the models examined.

TABLE 1 HERE

The random disturbances " in step (a) are generated as iid Normals using the random number generator

resident in Mathematica. This software environment has been used for all the calculations in this study,

variously on a Macintosh IIfx and a PowerMac 8100/110. Mathematica's random number generator has

excellent properties detailed in Belsley (1995). For N = 20, then, a run for a particular g consists of a given

model being replicated 10,000 times, resulting in that many values for tc. From these it is straightforward

4



to calculate the sample mean, variance, skewness, and kurtosis of tc, as well as the actual proportion of tc's

falling in each tail region as determined by a given two-tailed critical value for a Student's t with appropriate

degrees of freedom,

r � (N � g) � (K + 1) = (N �K � g � 1): (3:1)

Here K is the number of variates included in the basic model|K = 3, for example, for the model CTD. In

addition to the usual N � K degrees of freedom, the above �gure re
ects the loss of g degrees of freedom

to lagging and one to the additional lagged-residual regressor present in the arti�cial regression. The actual

proportions are calculated for two di�erent test regions: the �rst determined by the critical values for the

10% two-tailed region for a Student's t|so that the actual proportions should be roughly 5% in each tail if

tc followed a Student's t|and the second determined by the critical values for the 5% two-tailed region|so

that roughly 2.5% should fall in each tail. For N = 60, similar results are obtained, but using only 5,000

replications.

The basic, pre-correction results for N = 20 and g = 1, 2, 4, 8, and 12 are summarized in Tables 2a{e,

respectively, and those for N = 60, g = 1, 2, 4, 8, and 12 in Tables 3a-e.

TABLES 2a-e AND 3a-e HERE

We �rst examine in some detail the results for testing for �rst-order serial correlation (g = 1) and

N = 20 given in Table 2a, since this is arguably the most frequently encountered case in practice. We can

then treat the remaining cases more brie
y. The departure of the small-sample distribution of tc from a

Student's t is immediately evident here. Almost all the models show biased means, mostly downward. Only

the oscillating model without intercept (O) has positive bias. There is also a de�nite tendency for models

involving trended or highly autocorrelated variates|T, S, and X|to have larger biases, and, indeed, only

the completely nontrended model, CO, shows an absence of bias. The variances too are biased downwards

from a Student's t, whose variance for r degrees of freedom is r=(r� 2) > 1. This bias tends to be larger for

those models having more variates.

The small-sample distribution of tc also appears to be negatively skewed, a phenomenon that tends

to be stronger for models with autocorrelated variates. The oscillating model O again shows a contrary

pattern, as does the model CO, which appears not only to have small bias but also little skewness. Finally,

no patterns or tendencies appear relative to kurtosis. A Student's t with 20 degrees of freedom has a kurtosis

of roughly 3.5, relative to which we see both lepto- and platykurtic behavior. In any event, it appears that
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the variety of models chosen for these experiments provides a wide spectrum of possible distributions for tc,

none of which is a Student's t.

The net e�ect of the above distortions from a Student's t is seen in the actual percentages of tc appearing

in the tail regions relevant to a Student's t. For the 10% two-tailed test, we would expect the actual

percentages to be evenly distributed between the upper and lower tails with roughly 5% in each if tc were

distributed as a Student's t. Instead we see gross asymmetry, often with totals not even near 10%. The

lower tail typically contains a much higher proportion than the upper, particularly with models containing

the trended or autocorrelated variates T, S, and X, clearly the result of the negative mean bias. Model O,

with its positive mean bias, shows contrary asymmetry, but asymmetry nevertheless. The model CO shows

the best overall behavior, but its proportions, while more nearly symmetric, fall quite short of the requisite

5% in each tail.

Similar patterns occur with the 5% two-tailed tests, which should produce actual percentages near 2.5%

in each tail. But even further evidence of distortion is seen here since, in many cases, these proportions are

far from being one-half the corresponding value of the 10% two-tailed test, as would be expected if tc were

distributed as a Student's t.

Table 3a shows the sample statistics for tc when testing for �rst-order serial correlation with sample

size N = 60, and we see a notable improvement: biases have been reduced by roughly one-half; variances,

while still low, are closer to the 1.03 �gure expected of an appropriate Student's t; skewness is now typically

positive but smaller in absolute value; and the kurtosis �gures bracket the value of approximately 3.1 relevant

to a Student's t with 60 degrees of freedom. The totals in the tails are now somewhat closer to nominal, but

there remains substantial asymmetry in the actual proportions falling into the tail regions that would be

relevant to a Student's t. Thus, standard tests that assume tc to follow a Student's t distribution are quite

misleading.

Substantial distortions continue to appear for tc when testing for higher orders of serial correlation|but

are slightly di�erent in character. For 2nd- and 4th-order serial correlation with N = 20, we see from Tables

2b and 2c that biases continue to be downward, both for mean and variance, but there are more cases of

positive skewness. The asymmetry of the actual proportions in the tails continues very strongly, particularly

for those models containing more variates and having the lowest degrees of freedom. The results in Tables

2d and 2e for 8th- and 12th-order serial correlation, respectively, are notably di�erent. The mean bias tends

to be less and the actual test sizes tend to be closer to expectation, giving the rather interesting hint that

the uncorrected testing procedure may give more reasonable results when testing for high orders of serial

correlation with low degrees of freedom. However, in those 8th-order cases having the highest mean biases,
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such as models CN, CO, or CDO in Table 2d, there is still substantial asymmetry in the actual proportions

in each tail. The 12th-order results for the last three models in Table 2e deserve mention: these models

have only one or two degrees of freedom, resulting, as is to be expected, in volatile summary statistics. The

test sizes, however, are excellent. Tables 3b-e show that results for the N = 60 cases for all orders of serial

correlation beyond the �rst, including 8 and 12, are much the same as those for described above for the 2nd

and 4th orders for N = 20, except that the distortions tend to be tempered somewhat and the skewnesses

are now virtually all positive.

In general, then, we can conclude that tc cannot be assumed distributed as a Student's t, and tests

based on that assumption are highly misleading.

4. Transforming tc to be more nearly a Student's t.

Computational solutions for making tc a useful test statistic could take several directions. One could, for

example, use Monte Carlo experiments to determine small-sample critical values for tc. The previous analysis,

however, shows that such experiments must needs be extensive; separate positive and negative critical values

would be required for many di�erent degrees of freedom, orders of serial correlation, and model types|and

even then the ultimate usefulness of the results would be problematic. Further, manymore replications would

be required of each experiment to obtain the desired degree of re�nement. It would clearly be simpler, if

possible, to transform tc into a more nearly Student-like statistic. This is the approach adopted here, where,

for any given model (i.e., any given T �K data matrix X) and any order of serial correlation g desired to

be tested for, we determine a computationally simple but e�ective means for approximating the population

mean �tc and variance �2tc of tc. Using these values, along with the degrees of freedom r as de�ned in (3.1),

tc can be transformed into

t�c �
r

r

r � 2

tc � �tc
�tc

: (4:1)

While not perfectly distributed as a Student's t with r degrees of freedom, t�c is approximately correct

through the �rst two moments and, as a practical matter, is seen through Monte Carlo experiments to be

close enough to a Student's t to produce acceptable test results for all models, orders of serial correlation,

and degrees of freedom (with some quali�cations) when treated as if it were.

For a given model y = X�+" and order of serial correlation g, the test statistic tc is derived in Appendix

A, and the small-sample approximations to its mean �tc and variance �2tc are derived in Appendix B. While

these small-sample approximations are based on asymptotic considerations, we shall see momentarily that

they are quite e�ective. Appendix C provides computationally e�cient means for carrying out the needed

calculations along with exemplar Mathematica code.
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TABLES 4a{e AND 5a{e HERE

We �rst examine the corrected results for testing for �rst-order serial correlation with N = 20 given in

Table 4a. The e�cacy of the asymptotic approximations to the means �tc and variances �
2

tc
of the tc is readily

apparent. These values, as calculated from (B.2) and (B.11), are given in columns (4) and (5), respectively.

For comparison, the Monte Carlo sample estimates for these means and variances are given in columns (2)

and (3), repeated here from Table 2a for convenience. It is clear that both of these approximations are very

good indeed, doing a remarkable job for each of the very di�erent model conditions. Turning now to the

empirical test sizes, we see there has been a signi�cant improvement. The \10%" tests|columns (7) and

(8)|now show actual percentages quite closely in line with what one would expect from a Student's t: the

total in both tails is roughly 10%, distributed approximately equally. Some asymmetry clearly remains, but

it is greatly reduced. The greatest distortions continue to be associated with models containing the trended

and highly autocorrelated variates T, X, and S|but even here the improvement is striking and satisfying.

Similar conclusions apply to the \5%" tests, which now also demonstrate proportions much closer to one-half

those of the corresponding 10% test.

Table 5a shows the results of the correction when testing for �rst-order serial correlation when N = 60.

Again, the asymptotic approximations to the mean and variance are very good (although we would expect

this for higher degrees of freedom), and similar conclusions can be drawn for the improvement in the size

tests. All in all, the transformed statistic t�c appears to provide quite acceptable small-sample tests for

�rst-order serial correlation over the full range of models and degrees of freedom.

The corrected results for higher orders of serial correlation (2, 4, 8, and 12) are shown in Tables 4b{e and

5b{e for N = 20 and 60, respectively. Let us begin with the results in Table 4b for the test for second-order

serial correlation with N = 20. Comparing columns (4) and (5) with (2) and (3), we again see that the

asymptotic approximations to the mean and variance are quite good, although this is less so for the last

three cases where the degrees of freedom get as low as 12. And, except for these cases, the corrections

result in tail percentages that are much improved over those in Table 2b, again having approximately correct

totals (tending to be somewhat smaller than 10%) and distributions. It is clear that the inaccuracy of

the asymptotic approximations for very low degrees of freedom (� 12) has not allowed fully appropriate

corrections to be made here, but otherwise the correction is working well. Similar results are seen from

Table 4c for the corrections for the test for 4th-order serial correlation. Again, for degrees of freedom above

12, the asymptotic approximations are working very well and the test sizes are quite acceptable. For degrees

of freedom twelve and below, there is a tendency for the mean estimate to be somewhat less reliable and for
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the variance estimate to be understated. Even here, however, it is clear that the correction for mean has

substantially improved the distribution of the outcomes between the tails.

Much of the preceding description remains true for the corrected tests for 8th- and 12th-order serial

correlation shown in Tables 4d and 4e|where all of the cases involve degrees of freedom below 12|, but a

notable di�erence arises. In these cases, g is either large relative to N=2 or exceeds this value, causing the

various truncations involved in producing the matrices in (B.2) and (B.11) that determine the asymptotic

mean and variance to produce values near (as is the case for the 8th-order tests) or at (as is the case for the

12th-order tests) their asymptotic values of 0 and 1, respectively. For the most part, the asymptotic mean

remains a good approximation to the sample mean, but the asymptotic variance substantially underestimates

the sample variance. This results in proportions for the corrected test statistic that are distributed well

between the tails but are too large overall, now in the range of 12% for the 8th-order cases, and 18% for the

12th-order cases. We discuss a simple modi�cation for cases like this in the next section.

For N = 60|and the higher degrees of freedom thereby implied|, we see from Tables 5b{e, that the

corrected test statistic is doing a very reasonable job for all orders of serial correlation. Some instances are

better or worse than others, but overall the resulting test sizes appear quite acceptable.

5. Modi�cations for higher and lower degrees of freedom

We have seen from above that the test statistic t�c behaves quite well under the test conditions when the

degrees of freedom are in excess of 12 and g is not too large relative to N=2. Under these circumstances

t�c provides a useful small-sample correction for testing for gth-order serial correlation. Here we extend the

analysis to help answer several ancillary questions: are there any modi�cations that help make the test more

suitable for degrees of freedom below 12? or when g is large relative to N=2? and how large must a sample

be before it is no longer \small", i.e., before correction is no longer needed? To help answer the �rst and

last of these questions, additional Monte Carlo experiments of 5000 replications are conducted with two

models, CT and CD, exploring very low and much higher degrees of freedom when testing for �rst-order

serial correlation. The results of these runs are given in Tables 6a and b.

TABLES 6a and 6b HERE

The �rst few rows of Table 6a show the results for model CT with very small degrees of freedom: 7-16

(i.e., N 's of 11-20). We see a tendency for the asymptotic mean in column (4) increasingly to overestimate

the sample mean in column (2) and for the asymptotic variance in column (5) increasingly to underestimate

the sample variance in column (3) as the degrees of freedom get smaller, particularly for twelve and below.
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Thus, while the corrected 10% test sizes shown in columns (8) and (9) are far better than the uncorrected

sizes given in columns (6) and (7), the net e�ect of the above tendencies is to result in corrected test sizes

that become more asymmetric and overly large with decreasing degrees of freedom. Similar results obtain

in Table 6b for model CT.

The tendencies for the asymptotic approximations to become worse with lower degrees of freedom is due

to the absence of higher order corrective terms in the asymptotic approximations, terms that become more

relevant for these conditions. Short of including these higher-order corrections|clearly fodder for future

research|, there seems little one can do to alleviate this problem for t�c . We do see in the next section,

however, that an asymptotically equivalent alternative to t�c can o�er some relief here, but only for the case

of �rst-order serial correlation. For the moment, we simply note that, even with the problems that occur

when the degrees of freedom are twelve and below, the corrected test t�c is not unreasonable and is certainly

a vast improvement over no correction at all.

The last few lines of Tables 6a and 6b show the results for higher degrees of freedom, coming from

sample sizes of 120 and 240. Even at these larger sample sizes, there is clearly substantial downward bias

in the actual mean of the standard t-statistic as seen from column (2), resulting in very asymmetric size

distributions in the uncorrected tails, as seen from columns (6) and (7). The corrections, however, are doing

an excellent job: both asymptotic mean and variance, shown in columns (4) and (5), provide good estimates

of the sample means and variances, and the corrected test sizes, given in columns (8) and (9), are quite good.

Thus, even for these larger sample sizes, it is clear we are not warranted in assuming tc to be distributed as

a Student's t; some correction continues to be needed.

But, up to what sample size? Fortunately this potentially thorny question need not be answered exactly,

because a simple testing strategy is apparent from Tables 6. Note in both Table 6a and 6b that, as the degrees

of freedom increase, the sample mean tends downward, ultimately to its asymptotic value of zero, and the

sample variance, with some 
uctuation, tends towards its asymptotic limit of unity. As is to be expected,

these tendencies are even more apparent for the asymptotic approximations. Since both the asymptotic

approximation to the variance �2tc and the ratio r=(r� 2) go to unity with increasing r, the scale correction

in (4.1)|multiplying by
p
r=(r � 2) and dividing by �tc|becomes less and less important for higher degrees

of freedom. The mean correction, however, can remain important|as is seen in Table 6. The asymmetry

in the uncorrected test sizes is clearly due almost entirely to this mean bias. To see this, I have included in

columns (10) and (11)|for these higher degrees of freedom only|the empirical test sizes that result from

mean correction only, ignoring any scale correction in (4.1), and it is clear that there is very little di�erence

between these sizes and the fully corrected sizes in columns (8) and (9). Thus, for high degrees of freedom,
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one need only check the asymptotic approximation to the mean. And if it is not inconsequential|say,

greater than .03 or .04 in absolute value|, then simply correct tc for the mean, and use the result as the

test statistic. Further correction for scale is unnecessary.

We can now examine the remaining ancillary question dealing with modi�cations when g becomes large

relative to N=2. Recall from section 3 that this situation arises for the tests for 8th- and 12th-order serial

correlation with N = 20. We note from Tables 2d and 2e that the uncorrected tc for these cases appears

not badly behaved, often having low mean bias, fairly good overall size, and decent distribution between the

tails. In those cases, however, where the mean bias is still high, such as models T, O, CN, CO, and CDO

in Table 2d, the distribution between the tails is poor. The standard correction, on the other hand, leads

to mixed results, as we see from Tables 4d and 4e. The mean correction shapes up the distribution between

the tails for all cases, but the scale correction leads to overall sizes that are too large, the more so as the

degrees of freedom get lower.

TABLES 7a and 7b HERE

All this suggests correcting these cases of high-order serial correlation and low degrees of freedom for

mean only, ignoring scaling. Tables 7a and 7b|which are otherwise just like Tables 4d and 4e|show the

sizes for the test for 8th- and 12th-order serial correlation, respectively, with mean correction only. It is

clear that this simple expedient produces very reasonable tests, having overall sizes that are only somewhat

understated (ranging around 9-9.5%) and displaying excellent tail symmetry. The strategy for these high-

order, low-degree-of-freedom cases, then, is similar to that given above: use tc corrected by the asymptotic

mean, but ignore any further scale correction. The correction for mean is particularly important if the

asymptotic mean exceeds .04 in absolute value, but it clearly cannot hurt to make this correction quite

generally. Scale correction leads only to mild size in
ation in the case of the tests for 8th-order serial

correlation, but the size in
ation is substantial for the 12th-order tests.

6. An Alternative Test Statistic

An asymptotically equivalent alternative to the transformation (4.1) would be

~t�c �
r

r

r � 2

1

�tc

c� �c

sc
=

r
r

r � 2

�c

�tc
; (6:1)

where c is the least-squares estimate of the lagged residual term in the arti�cial regression and sc is its

estimated standard error, both as de�ned in (2.6), �c is an asymptotic approximation to the mean of c, and

�c � s�1

c (c � �c). Here, rather than removing the mean bias �tc from tc and scaling, as in (4.1), we �rst
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remove the coe�cient mean bias �c from c, then form the corresponding asymptotically unbiased t statistic

�c, and scale as before. While (6.1) is clearly asymptotically equivalent to (4.1), it could well have di�erent

small-sample properties and so warrants examination.

We see from Appendix B that the elements needed to produce (6.1) are minor variants of those needed

for (4.1). However, (6.1) is somewhat more awkward to use in practice. The transformation (4.1) acts

directly on the standard t-statistic routinely reported in a regression package. The transformation (6.1),

however, requires that a new, corrected t-statistic be computed after the estimate c is adjusted by �c. Then

the same scaling is applied.

TABLES 8a{d HERE

Tables 8a{d show the results for ~t�c when N = 20 and g = 1, 2, 4, and 8, respectively. No results are

given for g = 12, for when g > N=2, �c = �tc � 0 and �tc � 1, and hence (6.1) and (4.1) are identical.

For these experiments, 10,000 replications are done for each model, resulting in that many values for �c to

be corrected as in (6.1). The same seeds for the random number generator are used for these experiments

as were used in their t�c counterparts given in Tables 4a{e. This allows direct comparison of the relative

behavior of the two statistics when confronting identical underlying situations.

Let us �rst examine the results for the tests for �rst-order serial correlation given in Table 8a. Column

(2) shows the sample mean of �c, which is only slightly warped downwards from its ideal value of 0. Columns

(5) and (3) show the closeness of the sample variance of �c to its asymptotic approximation|which approx-

imation, it is to be noted, is the same as that of tc. Now, comparing the test sizes for ~t�c given in columns

(7)-(10) of Table 8a with their t�c counterparts of Table 4a, we see a notable improvement. The overall test

sizes are more in line with their nominal values of 10% and 5%, and the distribution between the tails is

more even. Furthermore, if we look at Tables 10a and b, which correspond to Tables 6a and b, we see there

is less size in
ation and better tail symmetry even for very low degrees of freedom.

TABLES 10a and 10b HERE

Unfortunately, the virtues of (6.1) over (4.1) seem to end here. Examining the results for the tests for

higher orders of serial correlation in Tables 8b{d, and comparing them with their t�c counterparts in Tables

4b{d, we see that ~t�c is rarely better than t�c and, indeed, tends to exacerbate any problems in overall size and

tail symmetry that t�c may have. No results are given for ~t�c for N = 60 or higher because, at these degrees

12



of freedom, the test sizes for this statistic are virtually identical to those for t�c , often being exactly the same

and rarely deviating in value by more than �0.002.

The statistic ~t�c , then, seems to be preferable to t�c only for testing for �rst-order serial correlation when

there are few degrees of freedom. This, of course, is an important case, and therefore the transformation

(6.1) is not to be ignored. However, t�c is not bad in dealing with this situation, and, as an overall test

statistic, appears more generally applicable.

7. Practical Considerations

The test procedure described above is extremely simple to employ. We assume an N -vector of observations

on the dependent variate y and on each of K independent variates, collected together in the N �K matrix

X, which includes a constant column of ones if an intercept term is included in the model. We begin the

test for gth-order serial correlation exactly as stipulated in, say, MacKinnon (1992), namely,

(a) regress y on X, keeping the regression residuals e � y �XbOLS ;

(b) regress y[g] on Z � [X[g] e�g], where y[g] is the (N �g)-vector formed by deleting the �rst g elements of

y, X[g] is the (N �g)�K matrix formed by deleting the �rst g rows of X, and e�g is the (N �g)-vector

of residuals e lagged g times. tc is the standard \t" statistic for the coe�cient c of e�g in this arti�cial

regression.

Then

(c) calculate the asymptotic approximations to the mean �tc from (B.2) and variance �2tc from (B.11) and

determine t�c as in (4.1), where r = N �K � g � 1 (see comment (1) below), and

(d) conduct a test with t�c just as you would any Student's t with r degrees of freedom. Thus, if r = 27,

and you wish to do a 5% two-tailed test, compare t�c to the values �t27(:025), the .025 critical value for

a Student's t with 27 degrees of freedom gotten from your favorite Student's t tables. If you wish to do,

say, a 1% one-tailed test on the down side, use �t27(:01), etc. (See comment (2) below.)

Caveats

(e) this test appears less reliable when r � 12. The test sizes are somewhat larger than the theoretical

sizes and the distribution between tails can be poor. Even here, however, the corrected test statistic is

superior to no correction at all, but caution is warranted. (See comment (4) below.)

(f) for high degrees of freedom, say r > 250, scale correction in (4.1) is no longer necessary, but mean

correction is still required if the asymptotic approximation to �tc is greater than .04 in absolute value.

(See comment (3) below.)
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(g) for high orders of serial correlation and low degrees of freedom (when g is large relative to N=2 and

particularly when g > N=2), correct for the mean, but consider no scale corrections unless it is desirable

to have oversized tests. (See comment (4) below.)

Comments:

(1) The considerations given in Appendix C can be used to make the calculations in step (c) as e�cient as

possible.

(2) In some instances it may be preferable in step (d) to transform the critical values rather than tc. Let

tr(�) be the �-critical value for a Student's t with r degrees of freedom. Then it is quite the same to

compare tc (untransformed) to tr(�) transformed according to

r
r � 2

r
�tctr(�) + �tc (7:1)

as to compare t�c to tr(�).

(3) For those who insist on making scale corrections for high degrees of freedom, the following consideration

can signi�cantly reduce computational cost, for it is unnecessary to calculate the asymptotic approx-

imation to the variance, which is quite expensive with large r. Speci�cally, both (r=(r � 2))1=2 and

��1

tc
tend toward their limit of unity at roughly equal rates and hence scaling by r=(r � 2) is a good

alternative. For r > 250, however, the practical size di�erences that result from this scaling, full scaling,

and no scaling are very small.

(4) In the situations of (e) and (g), somewhat better results can be obtained when testing for �rst-order

serial correlation (but this case only) by using the alternative test statistic ~t�c de�ned in (6.1).

8. Appendices

Appendix A: Some notation and the OLS estimates of c and tc

Begin with the basic model

y = X� + "; (A:1)

where y is an N -vector, X is an N �K data matrix, and " � N (0; �2I). Estimation of (A.1) with ordinary

least squares results in the OLS residuals

e =MXy =MX"; (A:2)

where, for the m � n matrix Z, the notation MZ will be used throughout to mean the m � m projection

matrix

MZ � I� Z(ZTZ)
�1

ZT : (A:3)
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Now de�ne the (N � g)� N \drop matrix"

Dg � [0 IN�g ] (A:4)

and the (N � g) �N \lag matrix"

Lg � [IN�g 0]; (A:5)

where IN�g is the (N � g) identity matrix.

In this notation, the arti�cial regression (2.5) becomes

Dge = DgX� + 
Lge+ v

= [DgX Lge]

�
�




�
+ v: (A:6)

The OLS estimates

�
d

c

�
of

�
�




�
are

�
d

c

�
=
�
[DgX Lge]

T [DgX Lge]
	�1

[DgX Lge]
TDge: (A:7)

Solving for c gives

c = (eTLT
gMDgXLge)

�1(eTLT
gMDgXDge)

= ("TMXL
T
gMDgXLgMX")

�1("TMXL
T
gMDgXDgMX")

� "TAg"

"TBg"
; (A:8)

where

Ag �MXL
T
gMDgXDgMX and

Bg �MXL
T
gMDgXLgMX: (A:9)

The estimated variance of c is

var(c) = s2v("
TBg")

�1

; (A:10)

where s2v � v̂T v̂=(N � K � g � 1), v̂ being the OLS residuals from the arti�cial regression. Letting ~Xg �

[DgX Lge] be the (N � g) � (K + 1) data matrix for the arti�cial regression (A.6), we have

v̂
T
v̂ = eTDT

gM~Xg
Dge

= "TMXD
T
gM~Xg

DgMX"

= "TDT
gM~Xg

Dg"; (A:11)
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this last equality holding since DgX is in the column space of ~Xg, soM~Xg
DgX = 0, and hence, M~Xg

DgMX

=M~Xg
Dg. Thus,

s2v =
"TDT

gM~Xg
Dg"

N �K � g � 1
: (A:12)

Because M~Xg
is idempotent with rank N �K � g � 1 and DgD

T
g = IN�g, Es

2

v = �2.

Now, putting (A.12) into (A.10), we have

var(c) =
1

N �K � g � 1

"TDT
gM~Xg

Dg"

"TBg"
; (A:13)

and hence

tc �
cp
var(c)

=

p
N �K � g � 1q
"TDT

gM~Xg
Dg"

"TAg"p
"TBg"

: (A:14)

Appendix B: Asymptotic approximations to the mean and variance of tc

We note the following probability limits and asymptotic approximations to the various components of tc in

(A.14):

plim
1

N
"TAg" = lim

1

N
E"TAg" = �2

1

N
tr(Ag) (B:1a)

plim
1

N
"TBg" = lim

1

N
E"TBg" = �2

1

N
tr(Bg) (B:1b)

plim
1

N
"TDT

gM~Xg
Dg" = lim

1

N
E"TDT

gM~Xg
Dg"

= �2 lim
1

N
tr(M~Xg

DgD
T
g ) = �2 lim

1

N
tr(M~Xg

)

= �2 lim
1

N
(N �K � g � 1) = �2: (B:1c)

Thus,

plim
tcp
N

=
plim 1

N
"TAg"q

plim 1

N
"TDT

gM~Xg
Dg"

q
plim 1

N
"TBg"

A� �2 1

N
tr(Ag)

p
�2
q
�2 1

N
tr(Bg)

=
1p
N

tr(Ag)p
tr(Bg)

and hence,

Etc
A� tr(Ag)p

tr(Bg)
; (B:2)

which is the value used to approximate �tc in (4.1). And using (B.1a) and (B.1b) with (A.8), we see

Ec
A� tr(Ag)

tr(Bg)
; (B:3)
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which is the value used to approximate �c in (6.1).

We can derive an asymptotic approximation for �2tc , the variance of tc, as follows: From above, we know

asymptotically that "TDT
gM~Xg

Dg"=(N �K � g � 1)! �2 and "TBg"! �2 tr(Bg). Hence, from (A.14),

var(tc)
A� var("TAg")

�2 � �2 tr(Bg)
=

var("TAg")

�4 tr(Bg)
: (B:4)

To derive var("TAg"), we �rst note that

var("TAg") = E("TAg")
2 � (E"TAg")

2; (B:5)

the �rst term of which is

E("TAg")
2 = E("TAg")("

TAg")

= E
X
i

X
j

X
k

X
l

aijakl�i�j�k�l

= �4(3
X
i

a2ii +
X
i6=j

aiiajj +
X
i6=j

aijaji +
X
i6=j

a2ij)

� �4(3�+ � + 
 + �); (B:6)

where �; �; 
; and � are de�ned by context, and in the �rst term of the third equality we have used the

fact that the fourth moment �4 = 3�4 for the Normal distribution. The second term of (B.5) is

(E"TAg")
2 = (�2 tr(Ag))

2 = �4(
X
i

aii)
2 = �4

X
i; j

aiiajj

= �4(
X
i

a2ii +
X
i6=j

aiiajj)

= �4(�+ �): (B:7)

Thus, putting (B.7) and (B.6) into (B.5)

var("TAg") = �4(3�+ � + 
 + �) � �4(�+ �)

= �4(2�+ 
 + �): (B:8)

Now we note that

�T (Ag �Ag)� =
X
i; j

a2ij =
X
i

a2ii +
X
i6=j

a2ij = �+ �; and (B:9a)

�T (Ag �AT
g )� =

X
i6=j

aijaji =
X
i

a2ii +
X
i6=j

aijaji = �+ 
; (B:9b)

where � is a vector of ones and � denotes parallel matrix multiplication, i.e., if S = (sij) and R = (rij) are

two n �m matrices, S �R = (sijrij). Using (B.9a and b) in (B.8) gives

var("TAg") = �4
�
�T (Ag �Ag)�+ �T (Ag �AT

g )�
�
= �4�T

�
Ag � (Ag +AT

g )
�
�: (B:10)
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From (B.4) we get

var(tc)
A�

�T
�
Ag � (Ag +AT

g )
�
�

tr(Bg)
; (B:11)

which is the value used to approximate �2tc in (4.1) and (6.1).

Appendix C: Computational formulae and code

Here we consider shortcuts for computing tr(Ag), tr(Bg), and the matrixAg, which are used in approximat-

ing �tc , �c, and �2tc . We also provide Mathematica code to accomplish these tasks. Beginning from (A.9),

we have

tr(Ag) = tr(MXL
T
gMDgX

DgMX)

= tr(LT
gMDgXDgMX)

= tr(LT
gMDgXDg)

= tr(LT
g [0 MDgX])

= tr

�
0 MDgX

0 0T

�

= subTrg(MDgX): (C:1)

The second equality holds because of the idempotency of MX, the third because DgX is in the null space

of MDgX so that MDgXDgX = 0, and the fourth and �fth simply by the de�nitions (A.3) and (A.4) of Dg

and Lg, respectively. SubTrg is the operator that sums the elements of a square matrix along its gth sub

diagonal.

Let X[g] and Xfgg denote the (N � g)�K matrices formed by deleting the �rst g and last g rows of X,

respectively. Then DgX = X[g] and LgX = Xfgg. First note that

MDgX = I �X[g](X
T
[g]X[g])

�1XT
[g]: (C:2)

Now beginning again from (A.9), we have

tr(Bg) = tr(MXL
T
gMDgXLgMX)

= tr(MDgXLgMXL
T
g )

= tr(MDgXLgL
T
g +MDgXLgX(XTX)

�1

XTLT
g )

= tr(MDgX) + tr(MDgXXfgg(X
TX)

�1

XT
fgg)

= (N �K � g) + tr((XTX)
�1

XT
fggMDgXXfgg): (C:3)
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The second equality holds because of the idempotency of MX and the well-known properties of trace,

the third by the de�nition of MX = IN �X(XTX)
�1

XT , the fourth by the de�nition of Lg, which implies

LgL
T
g = IN�g and LgX = Xfgg, and the last by the fact thatMDgX

is idempotent with rank N�K�g. The

commutation in the last term of the last line allows working withK�K matrices rather than (N�g)�(N�g)

matrices.

We also need an e�cient way to calculate the matrix A for use in the numerator of (B.11). Thus, from

(A.9)

A =MXL
T
gMDgX

DgMX

=MXL
T
gMDgX

Dg

=MXL
T
g [0 MDgX]

=MX

�
0 MDgX

0 0T

�
: (C:4)

The reasons for these steps can be found above following (C.1).

Everything is now in place to compute the t�c test described in Section 4 and the ~t�c test described in

Section 6. Here is a series ofMathematica functions that culminates in routines for calculating the asymptotic

approximations to the mean �tc and variance �2tc of tc in (B.2) and (B.11), respectively, and to the mean

�c of c in (B.3), and for computing t�c from tc and ~t�c from c and sc using the preceding computational

simpli�cations.

Preliminary utility routines

To produce a vector of n ones:

iota[n ] := Table[1., {n}]

Test to return TRUE if mat is a square matrix, FALSE otherwise:

SquareQ[mat ] := TrueQ[MatrixQ[mat] &&
Apply[Equal,Dimensions[mat]]]

To orient data matrix correctly for following routines. Input can be either N � K or K � N : Output is

N �K:

alignDataMatrix[X ] :=
Block[{T,K},

{T,K} = Dimensions[X];
If[T<K,

{K,T,Transpose[X//N]},
{T,K,X//N}

]
]
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To produce the matrixMDgX
:

Note: X should include a vector of ones if there is an intercept term in the basic model (A.1).

Omitting the second parameter results in a default of g = 0, which is the basic projection ma-

trix MX = I �X(XTX)
�1

XT . This routine uses the QR decomposition to produce the matrix

X[g](X
T
[g])X[g])

�1XT
[g].

Mx[X , g :0] :=
Block[{q,T,K,i},

{T,K,q} = alignDataMatrix[X];
q = Drop[q,g];
q = QRDecomposition[q][[1]];
q = -Transpose[q].q;
Do[q[[i,i]] = 1.+ q[[i,i]],{i,T-g}];
q

]

To calculate the gth subtrace of a matrix, as needed in (C.1):

Note: omitting the second argument results in the default g = 0, which is the trace of the matrix.

tr[mat ?SquareQ, g :0] :=
Apply[Plus,Table[mat[[i+g,i]],{i,Dimensions[mat][[1]]-g}]]

To preborder a matrix Z with g leading columns and g bottom rows of zeroes, as needed, for example, in

(C.1) or (C.4):

Note: omitting the second argument results in the default g = 1, which is relevant to �rst-order serial

correlation.

zeroBorder[Z , g :1] :=
Transpose[Join[Table[0.,{g},{Dimensions[Z][[1]]+g}],

Transpose[Join[Z,Table[0.,{g},{Dimensions[Z][[2]]}]]]]]

To calculate the numerator of the asymptotic variance (B.11).

varQuadraticForm[A ?SquareQ] :=
iota[Dimensions[A][[2]]].(A*(A+Transpose[A])).
iota[Dimensions[A][[2]]]

Asymptotic mean and variance routines

Note: in the following routines, X should include a vector of ones if there is an intercept term in the

basic model (A.1).

To calculate the asymptotic approximation to the mean �tc (B.2) for gth-order serial correlation:

Note: omitting second argument results in default of g = 1, which is relevant to �rst-order serial

correlation.

tcAsymptoticMean[X ,g :1] :=
Block[{T,K,x,Mdx},

{T,K,x} = alignDataMatrix[X];
Mdx = Mx[x,g];
tr[Mdx,g]/Sqrt[(T-K-g)-tr[Inverse[Transpose[x].x].

Transpose[Drop[x,-g]].Mdx.Drop[x,-g]]]
]
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To calculate the asymptotic approximation to the variance �2tc (B.11) for gth-order serial correlation:

Note: omitting second argument results in default of g = 1, which is relevant to �rst-order serial

correlation.

asymptoticVariance[X , g :1] :=
Block[{T,K,x,Mdx},

{T,K,x} = alignDataMatrix[X];
Mdx = Mx[x,g];
varQuadraticForm[Mx[x].zeroBorder[Mdx,g]]/((T-K-g)

- tr[Inverse[Transpose[x].x].Transpose[Drop[x,-g]].
Mdx.Drop[x,-g]])

]

Corrected t routine

Use this routine to calculate t�c as in (4.1) from tc gotten from an arti�cial regression like (A.6) using basic

data matrix X. This integrates previous routines.

Note: in the following routine, X should include a vector of ones if there is an intercept term in the basic

model (A.1). Omitting the last argument results in the default g = 1, which is relevant to �rst-order

serial correlation.

tcCorrected[X ,tc ,g :1]:=
Block[{T,K,r,x,Mdx,trB,asyMean,asyVar},

{T,K,x} = alignDataMatrix[X];
r = T-K-g-1;
Mdx = Mx[x,g];
trB = (T-K-g) - tr[Inverse[Transpose[x].x].

Transpose[Drop[x,-g]].Mdx.Drop[x,-g]];
asyMean = tr[Mdx,g]/Sqrt[trB];
asyVar=varQuadraticForm[Mx[x].zeroBorder[Mdx,g]]/trB;
Sqrt[r/(r-2.)](tc-asyMean)/Sqrt[asyVar]

]

Use this routine to calculate ~t�c as in (6.1) from c and sc gotten from an arti�cial regression like (A.6) using

basic data matrix X. This integrates previous routines.

Note: in the following routine, X should include a vector of ones if there is an intercept term in the basic

model (A.1). Omitting the last argument results in the default g = 1, which is relevant to �rst-order

serial correlation.

ccCorrected[X ,c ,sc ,g :1]:=
Block[{T,K,r,x,Mdx,trB,asyMeanC,asyVar},

{T,K,x} = alignDataMatrix[X];
r = T-K-g-1;
Mdx = Mx[x,g];
trB = (T-K-g) - tr[Inverse[Transpose[x].x].

Transpose[Drop[x,-g]].Mdx.Drop[x,-g]];
asyMeanC = tr[Mdx,g]/trB;
asyVar=varQuadraticForm[Mx[x].zeroBorder[Mdx,g]]/trB;
Sqrt[r/(r-2.)](c-asyMeanC)/(sc*Sqrt[asyVar])

]
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Table 1

Variates included in each model

Model C U N T X D S O D*

C x

CU x x

CN x x

CT x x

CX x x

CD x x

CS x x

CO x x

T x

X x

D x

S x

O x

CUX x x x

CTX x x x

CTD x x x

CTS x x x

CDS x x x

CDO x x x

CUTXDO x x x x x x

UTXDO x x x x x

CUNDD*O x x x x x x



Table 2a

Monte Carlo Summary Statistics for tc
Tests for 1st Order Serial Correlation

Sample size = 20; Replications = 10,000

10% two-tailed test 5% two-tailed test

actual percentage in actual percentage in

model mean variance skewness kurtosis lower tail upper tail lower tail upper tail

C �0.2325 0.9642 �0.0197 3.4397 5.84 2.29 2.69 1.02

T �0.2282 0.9603 �0.0188 3.2903 5.77 2.19 2.76 1.02

X �0.2299 0.9832 0.0362 3.3898 6.19 2.58 2.94 1.12

D �0.2110 0.9495 �0.0258 3.3440 5.80 2.38 2.58 1.05

S �0.2482 0.9815 0.0555 3.5450 6.14 2.52 2.90 1.14

O 0.2510 0.9591 0.2258 3.5518 1.74 6.47 0.67 3.39

CU �0.2617 1.0139 �0.0100 3.5007 6.68 2.36 3.16 1.08

CN �0.2517 0.9916 0.0151 3.3721 6.31 2.23 2.97 1.10

CT �0.4595 0.9461 �0.1344 3.4855 9.07 1.18 4.13 0.37

CX �0.4592 0.9468 �0.0866 3.4162 8.85 1.24 4.50 0.45

CD �0.3124 0.9119 �0.0523 3.4527 6.66 1.54 3.06 0.69

CS �0.4503 0.9422 �0.0591 3.4812 8.79 1.18 4.40 0.49

CO �0.0001 0.8804 0.0552 3.3430 2.91 3.29 1.35 1.51

CUX �0.4399 0.9061 �0.1752 3.4969 8.31 1.04 4.00 0.37

CTX �0.6370 0.8949 �0.1121 3.4283 11.39 0.54 5.59 0.17

CTD �0.4747 0.8741 �0.2190 3.4926 8.38 0.74 4.27 0.24

CTS �0.6579 0.8974 �0.2008 3.6215 11.80 0.53 5.99 0.17

CDS �0.4823 0.9175 �0.1362 3.4674 8.76 0.81 4.56 0.40

CDO �0.0902 0.8157 0.0175 3.3907 3.19 2.26 1.44 0.90

UTXDO �0.1953 0.7299 �0.0912 3.4742 3.31 1.01 1.43 0.42

CUTXDO �0.2823 0.7402 �0.1411 3.3997 4.31 0.74 1.70 0.25

CUNDD*O �0.0101 0.8142 �0.0622 3.6011 2.73 2.45 0.95 0.84



Table 2b

Monte Carlo Summary Statistics for tc
Tests for 2nd Order Serial Correlation

Sample size = 20; Replications = 10,000

10% two-tailed test 5% two-tailed test

actual percentage in actual percentage in

model mean variance skewness kurtosis lower tail upper tail lower tail upper tail

C �0.2177 0.9690 0.1184 3.4372 5.52 2.68 2.55 1.25

T �0.2054 0.9305 0.1792 3.5527 4.87 2.77 2.13 1.33

X �0.2154 0.9304 0.1486 3.5763 4.93 2.58 2.35 1.22

D �0.1625 0.9487 0.1717 3.4888 4.80 3.09 2.12 1.37

S �0.2407 0.9547 0.1622 3.4610 5.58 2.56 2.31 1.23

O �0.2022 0.9391 0.1096 3.3187 5.09 2.72 2.24 1.16

CU �0.2097 0.9534 0.1164 3.5644 4.98 2.56 2.27 1.26

CN �0.1454 0.9576 0.1028 3.5833 4.54 3.06 2.13 1.43

CT �0.4065 0.9350 �0.0629 3.4666 7.87 1.34 3.90 0.59

CX �0.4114 0.8969 �0.0731 3.4291 7.38 1.13 3.59 0.48

CD �0.3220 0.9612 0.0609 3.4921 6.56 2.03 3.17 0.96

CS �0.3665 0.9515 0.1139 3.7138 7.11 1.98 3.40 0.93

CO �0.4691 0.8826 0.1114 3.6040 7.81 1.37 3.24 0.63

CUX �0.4438 0.9162 0.0527 3.5840 7.81 1.60 3.57 0.72

CTX �0.5220 0.9577 �0.0686 3.4771 9.77 1.06 4.80 0.39

CTD �0.4619 0.9437 �0.0799 3.4429 9.02 1.19 4.31 0.40

CTS �0.5376 0.9346 �0.0195 3.6381 9.59 1.07 4.75 0.48

CDS �0.4174 0.9591 0.0639 3.4840 7.76 1.63 3.70 0.76

CDO �0.5822 0.9106 �0.0394 3.6312 9.78 0.98 4.87 0.43

UTXDO �0.8383 0.8802 �0.2192 3.8285 14.69 0.36 7.63 0.13

CUTXDO �0.8955 0.8896 �0.1925 3.9324 15.47 0.29 8.21 0.11

CUNDD*O �0.7277 0.9273 �0.1217 3.8535 12.38 0.58 6.08 0.28



Table 2c

Monte Carlo Summary Statistics for tc
Tests for 4th Order Serial Correlation

Sample size = 20; Replications = 10,000

10% two-tailed test 5% two-tailed test

actual percentage in actual percentage in

model mean variance skewness kurtosis lower tail upper tail lower tail upper tail

C �0.2022 0.9991 0.0020 3.5616 5.30 2.68 2.50 1.24

T �0.1802 1.0048 0.0268 3.5200 5.34 2.75 2.65 1.26

X �0.1852 1.0130 0.0736 3.4430 5.52 2.88 2.51 1.33

D �0.1631 1.0100 0.0255 3.6781 5.35 2.68 2.63 1.20

S �0.2049 1.0143 0.0458 3.5688 5.51 2.87 2.59 1.37

O �0.1981 1.0065 0.0362 3.5739 5.77 2.95 2.77 1.15

CU �0.2160 1.0561 0.1018 3.7249 5.99 2.98 2.86 1.47

CN �0.2639 0.9846 �0.0062 3.6277 6.30 2.13 2.92 1.01

CT �0.2758 1.0246 0.0608 3.5403 6.45 2.48 3.24 1.10

CX �0.2630 1.0051 0.0183 3.5292 6.48 2.14 2.77 0.97

CD �0.2052 1.0226 �0.0061 3.6168 5.98 2.58 2.90 1.19

CS �0.2317 1.0838 0.0356 3.7305 6.29 3.00 3.08 1.43

CO �0.4140 0.9932 �0.1366 3.6585 7.78 1.36 3.84 0.57

CUX �0.3254 1.0369 �0.0343 3.6640 7.03 2.11 3.62 1.08

CTX �0.2380 1.0704 0.0184 3.8686 6.04 2.82 2.85 1.32

CTD �0.2753 1.0926 �0.0541 3.7545 6.79 2.50 3.44 1.19

CTS �0.2678 1.0553 �0.0809 3.7025 6.62 2.35 3.45 1.12

CDS �0.1703 1.0911 0.0096 3.7715 5.78 3.12 2.78 1.39

CDO �0.4372 0.9861 �0.0781 3.9460 8.09 1.45 3.95 0.68

UTXDO �0.5873 1.1247 �0.2898 4.1027 11.27 1.14 6.04 0.45

CUTXDO �0.5183 1.1364 �0.2766 4.1897 10.13 1.25 5.28 0.54

CUNDD*O �0.4339 1.1970 �0.0973 3.8459 9.25 1.93 4.94 0.79



Table 2d

Monte Carlo Summary Statistics for tc
Tests for 8th Order Serial Correlation

Sample size = 20; Replications = 10,000

10% two-tailed test 5% two-tailed test

actual percentage in actual percentage in

model mean variance skewness kurtosis lower tail upper tail lower tail upper tail

C �0.0939 1.1216 �0.0550 3.8514 5.25 3.56 2.55 1.65

T �0.1135 1.1503 �0.0458 3.6702 5.55 3.78 2.71 1.62

X �0.1055 1.1824 �0.0173 3.8432 5.70 3.92 2.93 1.85

D �0.0833 1.1460 �0.0730 3.8931 5.25 3.77 2.51 1.68

S �0.0780 1.1336 �0.0449 4.0783 4.87 3.76 2.41 1.69

O �0.1066 1.1570 �0.0362 4.0066 5.43 3.69 2.60 1.92

CU �0.0547 1.2231 0.0311 4.7718 5.11 4.40 2.40 2.13

CN �0.1477 1.1926 �0.1135 4.2448 5.79 3.38 3.10 1.58

CT 0.0144 1.1807 �0.0616 4.2447 4.17 4.66 2.20 2.31

CX 0.0146 1.2248 �0.0323 4.3764 4.65 4.60 2.20 2.21

CD 0.0048 1.2196 �0.0889 4.5408 4.65 4.51 2.28 2.18

CS 0.0150 1.2376 0.0126 4.1773 4.67 4.78 2.25 2.32

CO �0.2202 1.1753 �0.1158 3.7910 7.06 2.72 3.41 1.32

CUX 0.0855 1.2342 �0.0219 4.4024 4.02 5.09 2.01 2.54

CTX 0.0781 1.2657 0.0605 4.6655 3.77 5.15 1.81 2.50

CTD 0.0625 1.2545 �0.0543 4.1847 4.24 5.05 2.11 2.32

CTS 0.0743 1.2850 0.0190 4.5629 4.14 5.49 2.11 2.68

CDS 0.0087 1.2484 �0.0195 4.3878 4.36 4.54 2.09 2.16

CDO �0.1270 1.2604 �0.1695 4.4129 5.88 3.70 2.85 1.69

UTXDO 0.0607 1.4572 �0.0958 4.6598 4.86 5.27 2.66 2.43

CUTXDO 0.0204 1.6465 0.0481 6.6785 4.96 4.76 2.26 2.46

CUNDD*O 0.0361 1.5355 �0.2261 7.5214 4.69 4.69 2.34 2.21



Table 2e

Monte Carlo Summary Statistics for tc
Tests for 12th Order Serial Correlation

Sample size = 20; Replications = 10,000

10% two-tailed test 5% two-tailed test

actual percentage in actual percentage in

model mean variance skewness kurtosis lower tail upper tail lower tail upper tail

C 0.0169 1.4524 0.0412 5.3031 4.59 4.87 2.11 2.35

T 0.0109 1.3904 0.0795 5.6845 4.45 4.85 2.07 2.30

X 0.0022 1.4620 0.1292 5.9951 4.78 4.85 2.22 2.49

D �0.0105 1.3923 �0.0980 4.9190 4.77 4.63 2.28 2.14

S �0.0300 1.3938 0.0002 5.2748 4.84 4.41 2.32 2.10

O 0.0033 1.3944 0.0080 5.2658 4.40 4.62 2.31 2.30

CU 0.0074 1.5982 0.0338 5.7932 4.75 4.94 2.48 2.41

CN �0.0074 1.6794 �0.0109 6.9916 5.25 4.87 2.63 2.43

CT 0.0152 1.5204 0.0164 5.7445 4.41 4.83 2.12 2.27

CX �0.0093 1.6346 0.2741 10.1174 4.62 4.52 2.23 2.30

CD 0.0161 1.4774 0.0278 6.0681 4.51 4.46 2.16 2.15

CS �0.0101 1.6573 �0.1157 6.6673 5.20 4.74 2.62 2.37

CO 0.0056 1.4309 0.0444 6.1776 3.90 4.19 1.85 1.99

CUX 0.0173 1.8059 0.2507 9.4117 4.45 4.79 2.03 2.30

CTX �0.0010 1.7781 0.1146 8.5693 4.42 4.26 2.24 2.07

CTD �0.0188 1.9061 0.4211 13.9171 4.83 4.42 2.59 2.10

CTS 0.0006 1.8016 �0.0625 8.2479 4.87 4.50 2.32 2.20

CDS �0.0037 1.8322 0.0763 8.8564 4.56 4.53 2.20 2.17

CDO 0.0215 1.8124 0.4981 13.7751 4.38 4.49 2.08 2.12

UTXDO 0.0182 7.3619 �7.8383 3.4E2 4.33 4.95 1.99 2.28

CUTXDO 1.6809 1.6E4 8.6E1 8.1E3 4.95 4.86 2.54 2.44

CUNDD*O �0.0345 1.3E3 �1.7E1 1.4E3 5.08 5.08 2.57 2.60



Table 3a

Monte Carlo Summary Statistics for tc
Tests for 1st Order Serial Correlation

Sample size = 60; Replications = 5,000

10% two-tailed test 5% two-tailed test

actual percentage in actual percentage in

model mean variance skewness kurtosis lower tail upper tail lower tail upper tail

C �0.1438 1.0027 0.0683 3.0965 5.78 3.64 2.74 1.76

T �0.1355 0.9631 0.1607 3.2732 5.50 3.78 2.62 2.06

X �0.1230 0.9862 0.0239 3.1344 5.94 3.56 3.12 1.68

D �0.1180 0.9771 0.1066 3.0159 5.32 3.66 2.40 1.92

S �0.1398 0.9838 0.1094 3.1972 5.88 3.70 2.60 1.90

O 0.1020 0.9993 0.2160 3.3439 3.64 5.82 1.28 3.16

CU �0.1463 1.0006 0.1124 3.3081 6.06 3.94 3.04 1.82

CN �0.1326 0.9977 0.1461 3.2626 5.70 3.82 2.86 1.76

CT �0.2444 0.9858 0.0325 3.2637 7.28 2.54 3.62 1.42

CX �0.2176 0.9766 0.0910 3.1728 6.52 2.90 3.18 1.48

CD �0.1869 0.9956 0.0892 3.1861 6.42 3.46 3.00 1.86

CS �0.2761 0.9924 0.1721 3.1946 7.94 3.00 3.96 1.40

CO 0.0033 0.9960 0.1551 3.1871 3.98 4.82 1.82 2.62

CUX �0.2610 0.9685 0.0740 3.2458 7.42 2.48 3.62 1.30

CTX �0.3634 0.9913 0.0568 3.1242 9.36 2.24 4.94 1.22

CTD �0.2974 0.9974 0.0467 3.2659 7.96 2.70 4.32 1.12

CTS �0.4014 0.9609 0.0897 3.1566 9.22 1.98 4.72 0.88

CDS �0.2776 0.9302 0.0428 3.0229 7.28 2.28 3.62 0.96

CDO �0.0295 0.9736 0.1157 3.1049 4.36 4.58 1.94 2.36

UTXDO �0.1756 0.9377 0.0775 3.2190 5.50 3.02 2.56 1.58

CUTXDO �0.2030 0.9548 0.0797 3.0266 6.06 2.88 2.86 1.46

CUNDD*O �0.0190 0.9570 0.0738 3.0525 4.54 4.20 1.96 2.16



Table 3b

Monte Carlo Summary Statistics for tc
Tests for 2nd Order Serial Correlation

Sample size = 60; Replications = 5,000

10% two-tailed test 5% two-tailed test

actual percentage in actual percentage in

model mean variance skewness kurtosis lower tail upper tail lower tail upper tail

C �0.1238 0.9490 0.1210 3.1370 4.98 3.54 2.48 1.80

T �0.1197 0.9492 0.2654 3.0396 4.46 3.84 1.88 2.04

X �0.1246 0.9537 0.2239 3.1765 4.94 3.98 2.18 2.22

D �0.1122 0.9673 0.1942 3.2645 4.96 3.98 2.42 1.98

S �0.1335 0.9887 0.2075 3.1891 5.28 4.02 2.18 2.08

O �0.1187 0.9486 0.2214 3.1114 4.84 3.96 2.08 2.10

CU �0.1225 0.9497 0.1230 3.1300 5.48 3.66 2.48 1.74

CN �0.1102 0.9630 0.2364 3.2645 4.88 4.08 2.20 1.90

CT �0.2429 0.9253 0.2060 3.4508 6.26 2.86 2.88 1.40

CX �0.1854 0.9925 0.1517 3.0735 6.20 3.74 2.98 1.68

CD �0.1593 0.9915 0.2385 3.2305 5.76 3.86 2.58 2.06

CS �0.2366 0.9368 0.1821 3.1476 6.36 3.18 2.90 1.60

CO �0.2647 0.9055 0.1535 3.0768 6.46 2.58 2.74 1.34

CUX �0.1991 0.9151 0.1613 3.1041 5.46 3.34 2.54 1.52

CTX �0.3211 0.8940 0.1662 3.1472 7.28 2.12 3.56 0.98

CTD �0.3248 0.9436 0.1541 3.2759 7.60 2.60 3.76 1.26

CTS �0.3724 0.9428 0.1456 3.1613 8.68 2.32 3.80 1.00

CDS �0.2494 0.9630 0.2035 3.3778 6.36 2.98 2.98 1.64

CDO �0.3058 0.8926 0.1704 3.1642 7.20 2.00 3.32 0.98

UTXDO �0.4163 0.8515 0.0965 2.9588 8.42 1.26 4.06 0.40

CUTXDO �0.4697 0.9176 0.1901 3.3298 9.76 1.86 5.04 0.92

CUNDD*O �0.3376 0.8934 0.0696 3.1831 7.38 1.80 3.52 0.90



Table 3c

Monte Carlo Summary Statistics for tc
Tests for 4th Order Serial Correlation

Sample size = 60; Replications = 5,000

10% two-tailed test 5% two-tailed test

actual percentage in actual percentage in

model mean variance skewness kurtosis lower tail upper tail lower tail upper tail

C �0.0974 0.9768 0.0864 3.1097 5.40 3.90 2.46 1.92

T �0.1352 1.0112 0.1061 3.2257 5.74 3.76 2.96 1.98

X �0.1256 1.0067 0.1196 3.0688 5.66 3.94 2.74 1.92

D �0.0689 0.9577 0.0633 3.1549 4.90 3.96 2.30 1.84

S �0.0885 0.9530 0.1077 3.0549 5.20 3.86 2.14 1.78

O �0.1160 0.9531 0.0598 2.9694 5.38 3.60 2.52 1.40

CU �0.1026 0.9877 0.0727 3.0337 5.60 3.88 2.78 1.94

CN �0.1366 1.0134 0.1257 3.1129 5.76 3.98 2.66 2.06

CT �0.2456 0.9742 0.0474 2.9324 7.24 2.92 3.52 1.20

CX �0.1478 1.0131 0.1611 3.2316 5.88 3.78 2.72 2.00

CD �0.0965 0.9694 0.1472 3.2158 5.34 3.82 2.36 1.92

CS �0.1792 0.9943 0.1359 3.1517 6.52 3.46 3.06 1.76

CO �0.2689 0.9607 0.0663 3.0545 7.20 2.58 3.66 1.02

CUX �0.1684 0.9940 0.1825 3.1084 6.04 3.58 2.82 1.80

CTX �0.2564 0.9714 0.1153 3.1494 7.18 2.54 3.68 1.36

CTD �0.2229 0.9566 0.0478 3.1639 6.22 2.76 3.38 1.24

CTS �0.2778 0.9910 0.0923 3.0409 7.88 2.92 3.98 1.24

CDS �0.1420 0.9786 0.1896 3.3834 5.68 3.74 2.38 2.02

CDO �0.2665 0.9918 0.1536 3.2102 7.22 2.94 3.58 1.60

UTXDO �0.3823 0.9285 0.0131 2.9548 8.92 1.06 4.48 0.62

CUTXDO �0.3788 0.9464 0.1007 3.0605 8.48 2.18 4.18 0.82

CUNDD*O �0.2033 0.9988 0.0722 3.1253 6.16 3.14 3.16 1.60



Table 3d

Monte Carlo Summary Statistics for tc
Tests for 8th Order Serial Correlation

Sample size = 60; Replications = 5,000

10% two-tailed test 5% two-tailed test

actual percentage in actual percentage in

model mean variance skewness kurtosis lower tail upper tail lower tail upper tail

C �0.1290 0.9310 0.0941 3.3280 4.98 3.18 2.46 1.38

T �0.0965 0.9677 0.1497 3.1905 4.80 4.08 2.18 2.38

X �0.1205 0.9877 0.1521 3.1377 5.10 4.16 2.48 2.12

D �0.0732 0.9839 0.1016 3.3306 4.62 4.34 2.32 2.14

S �0.0689 0.9563 0.1951 3.2260 4.46 4.16 2.02 2.06

O �0.1280 0.9606 0.1576 3.3509 5.26 3.64 2.50 1.98

CU �0.1288 0.9292 0.1499 3.3656 4.88 3.36 2.16 1.72

CN �0.0835 0.9754 0.1413 3.2018 4.76 3.98 1.96 2.26

CT �0.1895 0.9372 0.1384 3.2914 5.70 3.14 2.60 1.50

CX �0.0733 0.9449 0.0900 3.1133 4.56 3.74 2.08 1.70

CD �0.0579 0.9908 0.1225 3.0914 4.54 4.14 2.20 2.28

CS �0.0254 0.9763 0.0938 3.2117 4.12 4.74 2.06 2.40

CO �0.2635 0.9866 0.0324 3.1906 7.60 2.90 3.78 1.40

CUX �0.1029 0.9638 0.0837 3.3972 5.02 3.92 2.30 1.96

CTX �0.1558 0.9591 0.0855 3.1883 6.16 3.26 2.70 1.52

CTD �0.1453 0.9791 0.1478 3.2778 5.74 3.66 2.66 1.76

CTS �0.1117 0.9951 0.0526 3.2136 5.32 3.90 2.74 1.92

CDS 0.0177 0.9976 0.1116 3.2462 3.94 4.98 1.90 2.84

CDO �0.2060 0.9319 0.0962 3.3350 5.78 3.08 2.82 1.56

UTXDO �0.2523 0.9393 0.0887 3.4039 6.54 2.36 3.28 1.18

CUTXDO �0.2528 0.9338 �0.0386 3.1494 7.08 2.14 3.52 0.94

CUNDD*O �0.1433 0.9669 0.0460 3.1474 5.56 3.22 2.80 1.72



Table 3e

Monte Carlo Summary Statistics for tc
Tests for 12th Order Serial Correlation

Sample size = 60; Replications = 5,000

10% two-tailed test 5% two-tailed test

actual percentage in actual percentage in

model mean variance skewness kurtosis lower tail upper tail lower tail upper tail

C �0.1069 0.9413 0.1748 3.1689 4.56 3.66 1.96 1.84

T �0.0759 0.9507 0.2514 3.2718 4.38 4.16 1.74 2.10

X �0.1029 0.9453 0.1933 3.2161 4.82 3.68 1.90 2.12

D �0.0545 0.9681 0.2956 3.2617 3.82 4.94 1.54 2.72

S �0.0850 0.9424 0.1541 3.1897 4.36 3.68 1.96 2.10

O �0.1036 0.9766 0.4508 4.1558 4.32 4.10 1.60 2.48

CU �0.0756 0.9383 0.2088 3.1684 4.50 3.96 1.82 2.02

CN �0.1348 0.9578 0.1569 3.1858 5.36 3.64 2.48 1.90

CT �0.1474 0.9734 0.2744 3.4570 5.22 3.82 2.50 2.28

CX �0.0662 0.9944 0.1492 3.1521 4.92 4.70 2.18 2.30

CD �0.0583 1.0116 0.2404 3.2942 4.92 4.46 1.98 2.50

CS �0.0409 0.9894 0.2121 3.2652 4.24 4.62 1.86 2.52

CO �0.2210 0.9124 0.1599 3.3040 6.10 2.54 2.98 1.44

CUX �0.0733 0.9667 0.2828 3.1643 4.18 4.36 1.66 2.14

CTX �0.1292 0.9754 0.1784 3.1566 5.04 3.60 2.26 1.62

CTD �0.1071 0.9904 0.2216 3.2730 5.06 4.00 2.20 2.30

CTS �0.0783 0.9996 0.1952 3.1925 4.68 4.42 1.88 2.44

CDS 0.0102 0.9850 0.2296 3.3606 3.80 5.28 1.72 2.66

CDO �0.1847 0.9361 0.2623 3.2883 5.30 3.38 2.44 1.90

UTXDO �0.2010 0.9475 0.1618 3.2628 5.72 2.86 2.62 1.54

CUTXDO �0.1700 0.9359 0.1571 3.2626 5.00 2.98 2.48 1.50

CUNDD*O �0.1463 0.9600 0.0964 3.2770 5.66 3.40 2.80 1.66



Table 4a

Monte Carlo Summary Statistics for t�c (corrected tc)

Tests for 1st Order Serial Correlation

Sample size = 20; Replications = 10,000

asymptotic degrees 10% two-tailed test 5% two-tailed test

sample approximation to of actual percentage in actual percentage in

model mean variance mean variance freedom lower tail upper tail lower tail upper tail

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

C �0.2325 0.9642 �0.2233 0.9504 17 5.08 4.89 2.45 2.46

T �0.2282 0.9603 �0.2184 0.9529 17 5.04 4.97 2.51 2.33

X �0.2299 0.9832 �0.2202 0.9516 17 5.49 5.23 2.71 2.67

D �0.2110 0.9495 �0.1764 0.9526 17 5.46 4.39 2.57 2.33

S �0.2482 0.9815 �0.2327 0.9481 17 5.13 5.20 2.60 2.75

O 0.2510 0.9591 0.2233 0.9504 17 4.37 5.70 1.88 3.15

CU �0.2617 1.0139 �0.2291 0.9647 16 5.81 4.99 2.84 2.49

CN �0.2517 0.9916 �0.2527 0.9693 16 4.96 5.01 2.43 2.39

CT �0.4595 0.9461 �0.4340 0.9077 16 5.64 4.78 2.89 2.21

CX �0.4592 0.9468 �0.4252 0.9123 16 5.83 4.84 3.05 2.43

CD �0.3124 0.9119 �0.3064 0.9149 16 5.08 4.69 2.64 2.19

CS �0.4503 0.9422 �0.4161 0.9215 16 5.76 4.63 2.89 2.15

CO �0.0001 0.8804 0.0000 0.8954 16 4.68 5.00 2.22 2.43

CUX �0.4399 0.9061 �0.4094 0.8873 15 5.79 4.50 2.98 2.00

CTX �0.6370 0.8949 �0.6019 0.8851 15 5.48 4.49 2.96 2.09

CTD �0.4747 0.8741 �0.4586 0.8682 15 5.69 4.28 3.13 1.87

CTS �0.6579 0.8974 �0.6368 0.8717 15 5.70 4.67 3.06 2.24

CDS �0.4823 0.9175 �0.4602 0.8969 15 5.62 4.86 3.04 2.13

CDO �0.0902 0.8157 �0.0736 0.8509 15 4.77 4.63 2.28 2.26

UTXDO �0.1953 0.7299 �0.1877 0.7491 13 4.88 4.52 2.46 2.01

CUTXDO �0.2823 0.7402 �0.2798 0.7571 12 5.16 4.29 2.52 1.85

CUNDD*O �0.0101 0.8142 �0.0047 0.8329 12 5.14 4.76 2.49 2.30



Table 4b

Monte Carlo Summary Statistics for t�c (corrected tc)

Tests for 2nd Order Serial Correlation

Sample size = 20; Replications = 10,000

asymptotic degrees 10% two-tailed test 5% two-tailed test

sample approximation to of actual percentage in actual percentage in

model mean variance mean variance freedom lower tail upper tail lower tail upper tail

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

C �0.2177 0.9690 �0.2156 0.9550 16 4.98 5.34 2.39 2.84

T �0.2054 0.9305 �0.2066 0.9596 16 4.16 5.08 1.99 2.77

X �0.2154 0.9304 �0.2103 0.9562 16 4.41 5.10 2.22 2.66

D �0.1625 0.9487 �0.1620 0.9697 16 4.54 5.35 2.13 2.76

S �0.2407 0.9547 �0.2297 0.9556 16 4.70 5.26 2.03 2.77

O �0.2022 0.9391 �0.2156 0.9550 16 4.48 5.46 1.95 2.85

CU �0.2097 0.9534 �0.1871 0.9657 15 4.57 4.75 2.20 2.50

CN �0.1454 0.9576 �0.1321 0.9379 15 4.90 5.53 2.55 2.84

CT �0.4065 0.9350 �0.3894 0.9322 15 5.28 4.82 2.75 2.18

CX �0.4114 0.8969 �0.3721 0.9337 15 5.16 4.21 2.71 1.93

CD �0.3220 0.9612 �0.3000 0.9635 15 4.91 5.14 2.41 2.58

CS �0.3665 0.9515 �0.3543 0.9640 15 4.90 4.98 2.40 2.66

CO �0.4691 0.8826 �0.4444 0.9043 15 4.58 4.99 2.14 2.55

CUX �0.4438 0.9162 �0.4207 0.9311 14 4.79 4.80 2.40 2.36

CTX �0.5220 0.9577 �0.4732 0.9470 14 5.63 4.67 2.77 2.29

CTD �0.4619 0.9437 �0.4384 0.9502 14 5.40 4.60 2.82 2.21

CTS �0.5376 0.9346 �0.5252 0.9333 14 5.24 5.06 2.75 2.61

CDS �0.4174 0.9591 �0.4091 0.9852 14 4.62 4.95 2.36 2.60

CDO �0.5822 0.9106 �0.5447 0.9067 14 5.22 4.53 2.74 2.22

UTXDO �0.8383 0.8802 �0.7781 0.8784 12 6.00 3.95 3.23 1.75

CUTXDO �0.8955 0.8896 �0.8279 0.9020 11 5.89 3.69 3.17 1.82

CUNDD*O �0.7277 0.9273 �0.6680 0.9084 11 5.88 4.40 3.26 2.15



Table 4c

Monte Carlo Summary Statistics for t�c (corrected tc)

Tests for 4th Order Serial Correlation

Sample size = 20; Replications = 10,000

asymptotic degrees 10% two-tailed test 5% two-tailed test

sample approximation to of actual percentage in actual percentage in

model mean variance mean variance freedom lower tail upper tail lower tail upper tail

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

C �0.2022 0.9991 �0.1936 0.9708 14 4.89 5.37 2.46 2.67

T �0.1802 1.0048 �0.1792 0.9774 14 5.08 5.37 2.65 2.58

X �0.1852 1.0130 �0.1867 0.9709 14 5.19 5.61 2.51 2.83

D �0.1631 1.0100 �0.1305 0.9742 14 5.64 4.93 2.87 2.36

S �0.2049 1.0143 �0.2010 0.9855 14 4.91 5.36 2.43 2.83

O �0.1981 1.0065 �0.1936 0.9708 14 5.38 5.42 2.75 2.95

CU �0.2160 1.0561 �0.1915 0.9815 13 5.60 5.75 2.86 2.97

CN �0.2639 0.9846 �0.2480 0.9486 13 5.54 5.14 2.79 2.64

CT �0.2758 1.0246 �0.2751 0.9953 13 5.16 5.52 2.69 2.72

CX �0.2630 1.0051 �0.2587 0.9845 13 5.16 5.46 2.35 2.43

CD �0.2052 1.0226 �0.1994 0.9926 13 5.48 5.11 2.75 2.51

CS �0.2317 1.0838 �0.2292 1.0196 13 5.06 5.48 2.74 2.97

CO �0.4140 0.9932 �0.4009 0.9375 13 5.46 5.19 2.89 2.33

CUX �0.3254 1.0369 �0.3085 0.9996 12 5.41 5.05 2.98 2.57

CTX �0.2380 1.0704 �0.2385 1.0242 12 4.96 5.49 2.48 2.85

CTD �0.2753 1.0926 �0.2699 1.0295 12 5.29 5.45 2.95 2.58

CTS �0.2678 1.0553 �0.2544 1.0333 12 5.33 4.88 2.85 2.39

CDS �0.1703 1.0911 �0.1714 1.0394 12 5.37 5.38 2.68 2.76

CDO �0.4372 0.9861 �0.4169 0.9569 12 5.46 4.77 2.69 2.34

UTXDO �0.5873 1.1247 �0.5512 1.0251 10 6.41 4.76 3.59 2.22

CUTXDO �0.5183 1.1364 �0.4851 1.0127 9 6.78 5.12 3.63 2.42

CUNDD*O �0.4339 1.1970 �0.3896 1.0729 9 6.77 5.43 3.62 2.68



Table 4d

Monte Carlo Summary Statistics for t�c (corrected tc)

Tests for 8th Order Serial Correlation

Sample size = 20; Replications = 10,000

asymptotic degrees 10% two-tailed test 5% two-tailed test

sample approximation to of actual percentage in actual percentage in

model mean variance mean variance freedom lower tail upper tail lower tail upper tail

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

C �0.0939 1.1216 �0.1005 1.0101 10 6.04 5.87 3.06 3.10

T �0.1135 1.1503 �0.0885 1.0078 10 6.49 5.97 3.46 3.20

X �0.1055 1.1824 �0.0997 1.0100 10 6.33 6.38 3.56 3.19

D �0.0833 1.1460 �0.0753 1.0057 10 6.26 5.83 3.42 3.14

S �0.0780 1.1336 �0.0596 1.0036 10 6.12 5.63 3.18 2.94

O �0.1066 1.1570 �0.1005 1.0101 10 6.11 5.73 3.10 3.18

CU �0.0547 1.2231 �0.0723 1.0141 9 6.14 6.52 3.29 3.78

CN �0.1477 1.1926 �0.1265 1.0123 9 6.53 6.10 3.79 3.19

CT 0.0144 1.1807 0.0251 0.9983 9 6.36 6.23 3.43 3.39

CX 0.0146 1.2248 0.0134 0.9980 9 6.64 6.50 3.66 3.44

CD 0.0048 1.2196 0.0053 1.0084 9 6.54 6.61 3.49 3.53

CS 0.0150 1.2376 0.0200 1.0004 9 6.88 6.66 3.71 3.59

CO �0.2202 1.1753 �0.2108 1.0222 9 6.93 5.45 3.57 2.89

CUX 0.0855 1.2342 0.0791 1.0012 8 6.73 6.67 3.73 3.65

CTX 0.0781 1.2657 0.0716 1.0041 8 6.56 6.91 3.38 3.71

CTD 0.0625 1.2545 0.0713 1.0038 8 6.85 6.65 3.77 3.36

CTS 0.0743 1.2850 0.0730 1.0042 8 7.09 6.85 3.79 3.82

CDS 0.0087 1.2484 0.0261 1.0021 8 6.96 6.49 3.55 3.52

CDO �0.1270 1.2604 �0.1075 1.0195 8 7.18 6.18 3.86 3.36

UTXDO 0.0607 1.4572 0.0567 1.0078 6 7.92 8.14 4.83 4.44

CUTXDO 0.0204 1.6465 0.0269 1.0057 5 9.11 8.15 5.22 4.71

CUNDD*O 0.0361 1.5355 0.0467 1.0116 5 8.27 7.66 5.01 4.44



Table 4e

Monte Carlo Summary Statistics for t�c (corrected tc)

Tests for 12th Order Serial Correlation

Sample size = 20; Replications = 10,000

asymptotic degrees 10% two-tailed test 5% two-tailed test

sample approximation to of actual percentage in actual percentage in

model mean variance mean variance freedom lower tail upper tail lower tail upper tail

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

C 0.0169 1.4524 0.0 1.0 6 7.56 8.24 4.26 4.42

T 0.0109 1.3904 0.0 1.0 6 7.79 7.94 4.11 4.59

X 0.0022 1.4620 0.0 1.0 6 7.65 8.00 4.34 4.52

D �0.0105 1.3923 0.0 1.0 6 7.56 7.68 4.40 4.33

S �0.0300 1.3938 0.0 1.0 6 7.99 7.47 4.56 4.08

O 0.0033 1.3944 0.0 1.0 6 7.54 7.69 4.18 4.25

CU 0.0074 1.5982 0.0 1.0 5 8.67 8.99 4.91 5.05

CN �0.0074 1.6794 0.0 1.0 5 9.34 8.77 5.39 5.00

CT 0.0152 1.5204 0.0 1.0 5 8.10 8.67 4.60 4.96

CX �0.0093 1.6346 0.0 1.0 5 8.62 8.31 4.79 4.69

CD 0.0161 1.4774 0.0 1.0 5 7.99 8.23 4.64 4.61

CS �0.0101 1.6573 0.0 1.0 5 9.15 8.88 5.38 4.86

CO 0.0056 1.4309 0.0 1.0 5 7.79 7.91 4.01 4.29

CUX 0.0173 1.8059 0.0 1.0 4 9.87 10.23 5.43 6.03

CTX �0.0010 1.7781 0.0 1.0 4 9.74 9.57 5.49 5.23

CTD �0.0188 1.9061 0.0 1.0 4 10.02 9.28 6.00 5.30

CTS 0.0006 1.8016 0.0 1.0 4 9.96 9.84 5.84 5.63

CDS �0.0037 1.8322 0.0 1.0 4 10.12 9.73 5.70 5.52

CDO 0.0215 1.8124 0.0 1.0 4 9.32 9.38 5.32 5.46

UTXDO 0.0182 7.3619 0.0 1.0 2 idof idof idof idof

CUTXDO 1.6809 1.6E4 0.0 1.0 1 idof idof idof idof

CUNDD*O �0.0345 1.3E3 0.0 1.0 1 idof idof idof idof

idof = inadequate degrees of freedom to make calculation.



Table 5a

Monte Carlo Summary Statistics for t�c (corrected tc)

Tests for 1st Order Serial Correlation

Sample size = 60; Replications = 5,000

asymptotic degrees 10% two-tailed test 5% two-tailed test

sample approximation to of actual percentage in actual percentage in

model mean variance mean variance freedom lower tail upper tail lower tail upper tail

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

C �0.1438 1.0027 �0.1291 0.9833 57 4.86 5.32 2.30 2.72

T �0.1355 0.9631 �0.1280 0.9836 57 4.78 5.06 2.08 2.88

X �0.1230 0.9862 �0.1272 0.9838 57 5.22 5.16 2.46 2.62

D �0.1180 0.9771 �0.1002 0.9839 57 4.62 4.88 2.14 2.58

S �0.1398 0.9838 �0.1299 0.9837 57 4.78 4.90 2.20 2.74

O 0.1020 0.9993 0.1291 0.9833 57 5.06 4.96 2.46 2.88

CU �0.1463 1.0006 �0.1453 0.9871 56 4.86 5.44 2.48 2.88

CN �0.1326 0.9977 �0.1330 0.9846 56 4.72 5.42 2.32 2.74

CT �0.2444 0.9858 �0.2559 0.9673 56 5.04 5.14 2.52 2.50

CX �0.2176 0.9766 �0.2240 0.9758 56 4.54 4.98 2.22 2.68

CD �0.1869 0.9956 �0.1598 0.9748 56 4.94 5.38 2.42 2.78

CS �0.2761 0.9924 �0.2487 0.9722 56 5.36 5.28 2.34 2.92

CO 0.0033 0.9960 0.0000 0.9661 56 4.60 5.42 2.18 3.02

CUX �0.2610 0.9685 �0.2284 0.9699 55 5.36 4.78 2.56 2.38

CTX �0.3634 0.9913 �0.3534 0.9592 55 5.28 5.30 2.48 2.84

CTD �0.2974 0.9974 �0.2867 0.9579 55 5.16 5.60 2.76 2.84

CTS �0.4014 0.9609 �0.3779 0.9555 55 4.88 4.96 2.30 2.64

CDS �0.2776 0.9302 �0.2637 0.9652 55 4.60 4.46 2.22 2.34

CDO �0.0295 0.9736 �0.0302 0.9572 55 4.80 5.48 2.28 3.02

UTXDO �0.1756 0.9377 �0.1491 0.9356 53 4.74 4.92 2.34 2.54

CUTXDO �0.2030 0.9548 �0.2185 0.9286 52 4.58 5.48 2.40 2.88

CUNDD*O �0.0190 0.9570 �0.0249 0.9573 52 4.98 5.30 2.38 2.58



Table 5b

Monte Carlo Summary Statistics for t�c (corrected tc)

Tests for 2nd Order Serial Correlation

Sample size = 60; Replications = 5,000

asymptotic degrees 10% two-tailed test 5% two-tailed test

sample approximation to of actual percentage in actual percentage in

model mean variance mean variance freedom lower tail upper tail lower tail upper tail

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

C �0.1238 0.9490 �0.1279 0.9837 56 4.32 5.24 2.00 2.76

T �0.1197 0.9492 �0.1259 0.9842 56 3.76 5.52 1.42 2.92

X �0.1246 0.9537 �0.1244 0.9843 56 4.12 5.24 1.78 2.96

D �0.1122 0.9673 �0.0989 0.9880 56 4.46 5.00 1.98 2.84

S �0.1335 0.9887 �0.1271 0.9858 56 4.34 5.38 1.84 3.12

O �0.1187 0.9486 �0.1279 0.9837 56 3.94 5.52 1.70 3.08

CU �0.1225 0.9497 �0.1146 0.9876 55 4.58 5.02 2.08 2.42

CN �0.1102 0.9630 �0.1166 0.9828 55 4.34 5.64 1.90 2.90

CT �0.2429 0.9253 �0.2488 0.9693 55 4.22 4.74 1.84 2.80

CX �0.1854 0.9925 �0.1888 0.9840 55 4.74 5.82 2.10 3.12

CD �0.1593 0.9915 �0.1633 0.9878 55 4.26 5.72 1.98 3.22

CS �0.2366 0.9368 �0.2259 0.9847 55 3.96 4.72 1.92 2.92

CO �0.2647 0.9055 �0.2580 0.9668 55 4.10 5.12 1.56 2.56

CUX �0.1991 0.9151 �0.2106 0.9796 54 3.76 5.14 1.76 2.86

CTX �0.3211 0.8930 �0.3128 0.9691 54 4.08 4.70 1.36 2.38

CTD �0.3248 0.9436 �0.2860 0.9729 54 4.68 4.74 2.08 2.70

CTS �0.3724 0.9428 �0.3495 0.9697 54 4.36 4.82 1.78 2.54

CDS �0.2494 0.9630 �0.2500 0.9880 54 3.90 5.16 1.92 2.86

CDO �0.3058 0.8926 �0.2953 0.9705 54 4.12 4.30 1.68 2.20

UTXDO �0.4163 0.8515 �0.4303 0.9534 52 3.70 5.04 1.46 2.12

CUTXDO �0.4697 0.9176 �0.4895 0.9528 51 3.96 5.22 1.62 2.94

CUNDD*O �0.3376 0.8934 �0.3294 0.9808 51 4.08 4.38 1.94 1.96



Table 5c

Monte Carlo Summary Statistics for t�c (corrected tc)

Tests for 4th Order Serial Correlation

Sample size = 60; Replications = 5,000

asymptotic degrees 10% two-tailed test 5% two-tailed test

sample approximation to of actual percentage in actual percentage in

model mean variance mean variance freedom lower tail upper tail lower tail upper tail

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

C �0.0974 0.9768 �0.1252 0.9845 54 4.48 5.52 2.00 2.98

T �0.1352 1.0112 �0.1214 0.9856 54 5.08 5.24 2.64 2.90

X �0.1256 1.0067 �0.1192 0.9852 54 4.86 5.48 2.40 2.84

D �0.0689 0.9577 �0.0854 0.9880 54 4.36 4.98 2.12 2.52

S �0.0885 0.9530 �0.1148 0.9903 54 4.22 5.14 1.68 2.68

O �0.1160 0.9531 �0.1252 0.9845 54 4.42 5.10 2.16 2.36

CU �0.1026 0.9877 �0.1124 0.9798 53 5.02 5.28 2.44 2.86

CN �0.1366 1.0134 �0.1275 0.9903 53 4.70 5.50 2.26 2.78

CT �0.2456 0.9742 �0.2334 0.9738 53 4.96 5.50 2.52 2.74

CX �0.1478 1.0131 �0.1340 0.9955 53 4.70 5.44 2.16 2.72

CD �0.0965 0.9694 �0.1158 0.9958 53 4.38 5.08 1.88 2.70

CS �0.1792 0.9943 �0.1605 1.0091 53 4.76 4.82 2.36 2.68

CO �0.2689 0.9607 �0.2527 0.9684 53 5.02 5.26 2.48 2.56

CUX �0.1684 0.9940 �0.1553 0.9960 52 4.46 5.36 2.12 2.66

CTX �0.2564 0.9714 �0.2462 0.9847 52 5.00 4.94 1.96 2.40

CTD �0.2229 0.9566 �0.2271 0.9851 52 4.44 5.02 2.38 2.42

CTS �0.2778 0.9910 �0.2724 0.9987 52 4.78 5.12 2.06 2.72

CDS �0.1420 0.9786 �0.1425 1.0164 52 4.38 5.10 1.78 2.64

CDO �0.2665 0.9918 �0.2448 0.9797 52 4.80 5.48 2.20 2.76

UTXDO �0.3823 0.9285 �0.3637 0.9707 50 4.78 4.62 1.84 2.08

CUTXDO �0.3788 0.9464 �0.3781 0.9777 49 4.26 4.94 2.04 2.66

CUNDD*O �0.2033 0.9988 �0.2068 0.9993 49 4.48 5.38 2.14 2.62



Table 5d

Monte Carlo Summary Statistics for t�c (corrected tc)

Tests for 8th Order Serial Correlation

Sample size = 60; Replications = 5,000

asymptotic degrees 10% two-tailed test 5% two-tailed test

sample approximation to of actual percentage in actual percentage in

model mean variance mean variance freedom lower tail upper tail lower tail upper tail

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

C �0.1290 0.9310 �0.1185 0.9869 40 4.26 4.44 2.16 2.24

T �0.0965 0.9677 �0.1118 0.9888 40 4.10 5.12 1.86 3.04

X �0.1205 0.9877 �0.1083 0.9862 40 4.56 5.58 2.12 2.86

D �0.0732 0.9839 �0.0702 0.9865 40 4.38 5.08 2.24 2.80

S �0.0689 0.9563 �0.0834 0.9826 40 4.22 5.24 1.84 3.04

O �0.1280 0.9606 �0.1185 0.9869 40 4.44 4.84 2.14 2.74

CU �0.1288 0.9292 �0.1382 0.9784 39 3.84 4.80 1.76 2.50

CN �0.0835 0.9754 �0.0924 0.9842 39 4.40 5.00 1.72 2.82

CT �0.1895 0.9372 �0.1968 0.9851 39 4.26 4.74 1.96 2.68

CX �0.0733 0.9449 �0.0777 0.9921 39 4.08 5.00 1.98 2.34

CD �0.0579 0.9908 �0.0743 0.9919 39 4.30 5.22 2.10 3.00

CS �0.0254 0.9763 �0.0252 0.9862 39 4.28 5.46 2.32 2.70

CO �0.2635 0.9866 �0.2393 0.9733 39 5.18 4.98 2.48 2.80

CUX �0.1029 0.9638 �0.0790 0.9850 38 4.74 5.00 2.26 2.40

CTX �0.1558 0.9591 �0.1581 0.9903 38 4.64 5.06 2.14 2.54

CTD �0.1453 0.9791 �0.1550 0.9909 38 4.72 5.20 2.04 2.80

CTS �0.1117 0.9951 �0.1059 0.9861 38 4.94 5.18 2.36 2.80

CDS 0.0177 0.9976 0.0085 0.9930 38 4.44 5.22 2.08 2.98

CDO �0.2060 0.9319 �0.1950 0.9783 38 4.34 5.02 2.02 2.82

UTXDO �0.2523 0.9393 �0.2504 0.9688 36 4.64 4.44 2.32 2.34

CUTXDO �0.2528 0.9338 �0.2320 0.9721 35 5.32 4.30 2.44 1.96

CUNDD*O �0.1433 0.9669 �0.1447 0.9791 35 4.68 5.04 2.38 2.52



Table 5e

Monte Carlo Summary Statistics for t�c (corrected tc)

Tests for 12th Order Serial Correlation

Sample size = 60; Replications = 5,000

asymptotic degrees 10% two-tailed test 5% two-tailed test

sample approximation to of actual percentage in actual percentage in

model mean variance mean variance freedom lower tail upper tail lower tail upper tail

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

C �0.1069 0.9413 �0.1094 0.9907 46 4.10 4.82 1.76 2.60

T �0.0759 0.9507 �0.1008 0.9929 46 3.82 5.42 1.54 2.98

X �0.1029 0.9453 �0.0988 0.9893 46 4.18 4.94 1.70 2.70

D �0.0545 0.9681 �0.0640 0.9890 46 3.72 5.94 1.48 3.42

S �0.0850 0.9424 �0.0838 0.9885 46 4.00 4.88 1.84 2.78

O �0.1036 0.9766 �0.1094 0.9907 46 3.68 5.40 1.44 3.34

CU �0.0756 0.9383 �0.0602 0.9918 45 4.28 5.04 1.78 2.58

CN �0.1348 0.9578 �0.1230 0.9897 45 4.62 5.04 2.00 2.84

CT �0.1474 0.9734 �0.1520 0.9985 45 4.20 5.20 1.98 3.08

CX �0.0662 0.9944 �0.0660 0.9906 45 4.68 5.60 2.12 2.98

CD �0.0583 1.0116 �0.0727 0.9949 45 4.68 5.70 1.92 3.12

CS �0.0409 0.9894 �0.0320 0.9930 45 4.24 5.58 1.92 2.94

CO �0.2210 0.9124 �0.2212 0.9810 45 4.06 4.60 1.94 2.24

CUX �0.0733 0.9667 �0.0680 0.9866 44 4.04 5.60 1.66 2.78

CTX �0.1292 0.9754 �0.1088 0.9970 44 4.34 5.16 2.00 2.48

CTD �0.1071 0.9904 �0.1151 1.0019 44 4.28 5.28 1.78 3.04

CTS �0.0783 0.9996 �0.0756 1.0019 44 4.34 5.48 1.68 3.04

CDS 0.0102 0.9850 �0.0057 0.9970 44 4.12 5.76 1.88 3.08

CDO �0.1847 0.9361 �0.1844 0.9854 44 3.92 5.22 1.62 2.94

UTXDO �0.2010 0.9475 �0.1998 0.9921 42 4.14 4.66 1.86 2.48

CUTXDO �0.1700 0.9359 �0.1850 0.9922 41 3.70 5.06 1.80 2.30

CUNDD*O �0.1463 0.9600 �0.1452 0.9988 41 4.52 4.86 2.32 2.46



Table 6a

Monte Carlo Summary Statistics for tc and t�c
Tests for 1st Order Serial Correlation

Various smaller and larger degrees of freedom; Replications = 5,000

Model CT

degrees asymptotic 10% two-tailed test: actual percentage

of sample approximation to uncorrected corrected mean-corrected

freedom mean variance mean variance lower upper lower upper lower upper

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

7 �0.6356 0.9001 �0.5657 0.8533 8.60 0.50 6.50 3.42

9 �0.5776 0.9134 �0.5270 0.8687 8.92 0.60 6.22 4.34

10 �0.5493 0.9034 �0.5103 0.8757 8.84 0.52 6.24 4.06

11 �0.5422 0.9254 �0.4949 0.8823 9.02 0.70 6.26 4.60

12 �0.4850 0.8886 �0.4807 0.8883 8.06 0.60 5.60 4.16

13 �0.5096 0.8920 �0.4677 0.8938 8.80 0.82 5.66 4.56

14 �0.4808 0.9197 �0.4556 0.8988 8.66 0.94 5.34 4.30

15 �0.4633 0.8894 �0.4444 0.9034 8.04 1.06 5.04 4.82

16 �0.4780 0.9283 �0.4340 0.9077 9.33 0.92 5.99 4.40

56 �0.2444 0.9858 �0.2559 0.9673 7.28 2.54 5.04 5.14 4.34 4.50

116 �0.2047 1.0126 �0.1818 0.9835 7.20 3.34 5.20 4.98 4.88 4.84

236 �0.1233 0.9727 �0.1288 0.9917 6.10 3.58 4.66 5.04 4.52 4.96

Table 6b

Monte Carlo Summary Statistics for tc and t�c
Tests for 1st Order Serial Correlation

Various smaller and larger degrees of freedom; Replications = 5,000

Model CD

degrees asymptotic 10% two-tailed test: actual percentage

of sample approximation to uncorrected corrected mean-corrected

freedom mean variance mean variance lower upper lower upper lower upper

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

7 �0.1440 1.0175 �0.1210 0.9286 4.36 1.98 6.18 4.72

9 �0.1451 0.9926 �0.1365 0.9517 5.14 2.24 6.32 4.88

10 �0.1453 0.9708 �0.1250 0.9484 4.40 2.40 5.40 5.24

11 �0.1514 0.9878 �0.1201 0.9510 4.86 2.44 5.86 4.52

12 �0.1633 0.9529 �0.1369 0.9555 4.66 2.16 5.30 4.46

13 �0.1754 0.9555 �0.1545 0.9524 5.10 2.56 5.38 4.96

14 �0.2220 0.9241 �0.2083 0.9248 5.30 1.68 5.16 4.52

15 �0.3118 0.8987 �0.2782 0.9254 6.42 1.40 5.16 4.34

16 �0.2994 0.9231 �0.3064 0.9149 6.24 1.71 5.00 5.01

56 �0.1869 0.9956 �0.1598 0.9748 6.42 3.46 4.94 5.38 4.24 4.80

116 �0.1226 0.9810 �0.1103 0.9878 5.62 3.58 4.60 4.76 4.38 4.56

236 �0.0951 0.9665 �0.0771 0.9940 5.72 3.92 4.68 4.76 4.58 4.70



Table 7a

Monte Carlo Summary Statistics for tc Corrected Only for Mean

Tests for 8th Order Serial Correlation

Sample size = 20; Replications = 10,000

sizes with mean-correction only

asymptotic degrees 10% two-tailed test 5% two-tailed test

sample approximation to of actual percentage in actual percentage in

model mean variance mean variance freedom lower tail upper tail lower tail upper tail

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

C �0.0939 1.1216 �0.1005 1.0101 10 4.44 4.21 2.14 1.95

T �0.1135 1.1503 �0.0885 1.0078 10 4.70 4.31 2.40 1.98

X �0.1055 1.1824 �0.0997 1.0010 10 4.90 4.57 2.45 2.19

D �0.0833 1.1460 �0.0753 1.0057 10 4.59 4.41 2.10 1.97

S �0.0780 1.1336 �0.0596 1.0036 10 4.46 4.18 2.20 1.98

O �0.1066 1.1570 �0.1005 1.0101 10 4.49 4.27 2.19 2.27

CU �0.0547 1.2231 �0.0723 1.0141 9 4.46 4.83 2.09 2.47

CN �0.1477 1.1926 �0.1265 1.0123 9 4.89 4.29 2.57 1.93

CT 0.0144 1.1807 0.0251 0.9983 9 4.39 4.38 2.27 2.19

CX 0.0146 1.2248 0.0134 0.9980 9 4.74 4.49 2.24 2.14

CD 0.0048 1.2196 0.0053 1.0084 9 4.68 4.47 2.28 2.15

CS 0.0150 1.2376 0.0200 1.0002 9 4.86 4.57 2.33 2.23

CO �0.2202 1.1753 �0.2108 1.0222 9 4.86 4.04 2.30 1.91

CUX 0.0855 1.2342 0.0791 1.0012 8 4.54 4.49 2.21 2.25

CTX 0.0781 1.2657 0.0716 1.0041 8 4.33 4.58 2.05 2.20

CTD 0.0625 1.2545 0.0713 1.0038 8 4.70 4.34 2.26 2.09

CTS 0.0743 1.2850 0.0730 1.0042 8 4.76 4.88 2.37 2.28

CDS 0.0087 1.2484 0.0261 1.0021 8 4.55 4.39 2.13 2.08

CDO �0.1270 1.2604 �0.1075 1.0195 8 4.98 4.52 2.54 2.03

UTXDO 0.0607 1.4572 0.0567 1.0078 6 5.17 4.85 2.89 2.26

CUTXDO 0.0204 1.6465 0.0269 1.0057 5 5.11 4.55 2.36 2.40

CUNDD*O 0.0361 1.5355 0.0467 1.0116 5 4.94 4.37 2.50 2.06



Table 7b

Monte Carlo Summary Statistics for tc Corrected Only for Mean

Tests for 12th Order Serial Correlation

Sample size = 20; Replications = 10,000

sizes with mean-correction only

asymptotic degrees 10% two-tailed test 5% two-tailed test

sample approximation to of actual percentage in actual percentage in

model mean variance mean variance freedom lower tail upper tail lower tail upper tail

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

C 0.0169 1.4524 0.0 1.0 6 4.59 4.87 2.11 2.35

T 0.0109 1.3904 0.0 1.0 6 4.45 4.85 2.07 2.30

X 0.0022 1.4620 0.0 1.0 6 4.78 4.85 2.22 2.49

D �0.0105 1.3923 0.0 1.0 6 4.77 4.63 2.28 2.14

S �0.0300 1.3938 0.0 1.0 6 4.84 4.41 2.32 2.10

O 0.0033 1.3944 0.0 1.0 6 4.40 4.62 2.31 2.30

CU 0.0074 1.5982 0.0 1.0 5 4.75 4.94 2.48 2.41

CN �0.0074 1.6794 0.0 1.0 5 5.25 4.87 2.63 2.43

CT 0.0152 1.5204 0.0 1.0 5 4.41 4.83 2.12 2.27

CX �0.0093 1.6346 0.0 1.0 5 4.62 4.52 2.23 2.30

CD 0.0161 1.4774 0.0 1.0 5 4.51 4.46 2.16 2.15

CS �0.0101 1.6573 0.0 1.0 5 5.20 4.74 2.62 2.37

CO 0.0056 1.4309 0.0 1.0 5 3.90 4.19 1.85 1.99

CUX 0.0173 1.8059 0.0 1.0 4 4.45 4.79 2.03 2.30

CTX �0.0010 1.7781 0.0 1.0 4 4.42 4.26 2.24 2.07

CTD �0.0188 1.9061 0.0 1.0 4 4.83 4.42 2.59 2.10

CTS 0.0006 1.8016 0.0 1.0 4 4.87 4.50 2.32 2.20

CDS �0.0037 1.8322 0.0 1.0 4 4.56 4.53 2.20 2.17

CDO 0.0215 1.8124 0.0 1.0 4 4.38 4.49 2.08 2.12

UTXDO 0.0182 7.3619 0.0 1.0 2 4.33 4.95 1.99 2.28

CUTXDO 1.6809 1.6E4 0.0 1.0 1 4.95 4.86 2.54 2.44

CUNDD*O �0.0345 1.3E3 0.0 1.0 1 5.08 5.08 2.57 2.60



Table 8a

Monte Carlo Summary Statistics for t�c (coe�cient-corrected tc)

Tests for 1st Order Serial Correlation

Sample size = 20; Replications = 10,000

sizes with mean-correction only

asymptotic degrees 10% two-tailed test 5% two-tailed test

sample approx. to of actual percentage in actual percentage in

model mean variance skewness variance freedom lower tail upper tail lower tail upper tail

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

C �0.0090 0.9591 0.0218 0.9504 17 4.98 4.94 2.37 2.52

T �0.0097 0.9559 0.0220 0.9529 17 4.95 5.04 2.47 2.46

X �0.0097 0.9790 0.0774 0.9516 17 5.38 5.30 2.53 2.76

D �0.0343 0.9464 0.0056 0.9526 17 5.32 4.46 2.50 2.34

S �0.0151 0.9768 0.1007 0.9481 17 4.96 5.29 2.48 2.77

O 0.0277 0.9513 0.1833 0.9504 17 4.36 5.51 1.92 3.01

CU �0.0321 1.0070 0.0367 0.9647 16 5.66 5.03 2.69 2.54

CN 0.0010 0.9853 0.0623 0.9693 16 4.78 5.08 2.29 2.48

CT �0.0238 0.9249 �0.0517 0.9077 16 5.11 4.80 2.58 2.34

CX �0.0319 0.9256 �0.0034 0.9123 16 5.47 4.86 2.63 2.49

CD �0.0056 0.9050 0.0104 0.9149 16 4.91 4.83 2.42 2.26

CS �0.0320 0.9207 0.0229 0.9215 16 5.32 4.64 2.43 2.25

CO �0.0001 0.8804 0.0552 0.8954 16 4.68 5.00 2.22 2.43

CUX �0.0291 0.8821 �0.0952 0.8873 15 5.42 4.51 2.67 2.12

CTX �0.0290 0.8549 0.0098 0.8851 15 4.85 4.59 2.40 2.20

CTD �0.0146 0.8492 �0.1248 0.8682 15 5.18 4.39 2.78 1.94

CTS �0.0141 0.8513 �0.0644 0.8717 15 4.96 4.62 2.30 2.36

CDS �0.0196 0.8932 �0.0413 0.8969 15 5.26 4.93 2.64 2.28

CDO �0.0170 0.8156 0.0323 0.8509 15 4.75 4.67 2.25 2.28

UTXDO �0.0091 0.7248 �0.0520 0.7491 13 4.79 4.56 2.35 2.09

CUTXDO �0.0045 0.7292 �0.0847 0.7571 12 4.88 4.27 2.29 1.89

CUNDD*O �0.0054 0.8142 �0.0610 0.8329 12 5.13 4.76 2.49 2.30



Table 8b

Monte Carlo Summary Statistics for t�c (coe�cient-corrected tc)

Tests for 2nd Order Serial Correlation

Sample size = 20; Replications = 10,000

sizes with mean-correction only

asymptotic degrees 10% two-tailed test 5% two-tailed test

sample approx. to of actual percentage in actual percentage in

model mean variance skewness variance freedom lower tail upper tail lower tail upper tail

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

C �0.0015 0.9660 0.1609 0.9550 16 4.83 5.40 2.31 2.90

T 0.0014 0.9285 0.2227 0.9596 16 4.01 5.13 1.91 2.87

X �0.0047 0.9281 0.1919 0.9562 16 4.30 5.15 2.13 2.76

D �0.0001 0.9477 0.2042 0.9697 16 4.46 5.43 2.08 2.85

S �0.0103 0.9511 0.2077 0.9556 16 4.48 5.27 1.90 2.86

O 0.0138 0.9364 0.1531 0.9550 16 4.25 5.57 1.82 2.96

CU �0.0221 0.9500 0.1566 0.9657 15 4.45 4.79 2.15 2.54

CN �0.0131 0.9556 0.1323 0.9379 15 4.85 5.55 2.46 2.86

CT �0.0148 0.9179 0.0196 0.9322 15 4.91 4.83 2.52 2.26

CX �0.0375 0.8808 �0.0001 0.9337 15 4.81 4.23 2.40 2.05

CD �0.0202 0.9531 0.1264 0.9635 15 4.67 5.27 2.11 2.65

CS �0.0102 0.9387 0.1906 0.9640 15 4.60 4.96 2.17 2.69

CO �0.0214 0.8660 0.2079 0.9043 15 4.15 5.05 1.90 2.60

CUX �0.0210 0.8966 0.1495 0.9311 14 4.40 4.85 2.14 2.47

CTX �0.0431 0.9315 0.0394 0.9470 14 5.13 4.70 2.40 2.38

CTD �0.0200 0.9196 0.0166 0.9502 14 4.88 4.60 2.44 2.31

CTS �0.0066 0.9057 0.1034 0.9333 14 4.49 5.11 2.16 2.67

CDS �0.0058 0.9396 0.1553 0.9852 14 4.23 4.95 2.05 2.74

CDO �0.0318 0.8809 0.0911 0.9067 14 4.69 4.65 2.25 2.29

UTXDO �0.0425 0.8012 �0.0084 0.8784 12 4.71 3.82 2.22 1.83

CUTXDO �0.0461 0.7917 0.0574 0.9020 11 4.37 3.62 2.06 1.81

CUNDD*O �0.0485 0.8680 0.0502 0.9084 11 4.91 4.44 2.38 2.08



Table 8c

Monte Carlo Summary Statistics for t�c (coe�cient-corrected tc)

Tests for 4th Order Serial Correlation

Sample size = 20; Replications = 10,000

sizes with mean-correction only

asymptotic degrees 10% two-tailed test 5% two-tailed test

sample approx. to of actual percentage in actual percentage in

model mean variance skewness variance freedom lower tail upper tail lower tail upper tail

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

C �0.0064 0.9958 0.0464 0.9708 14 4.81 5.43 2.34 2.74

T 0.0008 1.0014 0.0713 0.9774 14 4.99 5.52 2.49 2.70

X 0.0031 1.0096 0.1196 0.9709 14 5.00 5.77 2.42 2.90

D �0.0314 1.0074 0.0579 0.9742 14 5.49 4.93 2.77 2.38

S �0.0021 1.0099 0.0974 0.9855 14 4.77 5.52 2.24 2.86

O �0.0024 1.0029 0.0832 0.9708 14 5.22 5.51 2.64 2.97

CU �0.0217 1.0522 0.1558 0.9815 13 5.47 5.69 2.60 3.03

CN �0.0134 0.9791 0.0572 0.9486 13 5.25 5.26 2.62 2.79

CT 0.0032 1.0167 0.1271 0.9953 13 5.01 5.59 2.44 2.80

CX �0.0010 0.9965 0.0842 0.9845 13 4.88 5.49 2.16 2.55

CD �0.0034 1.0156 0.0435 0.9926 13 5.26 5.33 2.60 2.60

CS �0.0001 1.0754 0.0982 1.0196 13 4.93 5.66 2.51 3.03

CO �0.0060 0.9694 �0.0320 0.9375 13 4.91 5.36 2.44 2.61

CUX �0.0123 1.0232 0.0473 0.9996 12 5.21 5.10 2.77 2.63

CTX 0.0038 1.0628 0.0923 1.0242 12 4.76 5.61 2.24 2.91

CTD �0.0003 1.0829 0.0266 1.0295 12 5.00 5.57 2.66 2.76

CTS �0.0097 1.0421 �0.0039 1.0333 12 5.09 5.11 2.71 2.57

CDS 0.0038 1.0860 0.0637 1.0394 12 5.23 5.50 2.49 2.84

CDO �0.0128 0.9611 0.0563 0.9569 12 4.94 4.93 2.39 2.49

UTXDO �0.0200 1.0699 �0.0921 1.0251 10 5.44 4.99 2.93 2.57

CUTXDO �0.0176 1.0804 �0.0812 1.0127 9 5.75 5.13 2.93 2.70

CUNDD*O �0.0336 1.1714 0.0582 1.0729 9 6.12 5.59 2.97 2.81



Table 8d

Monte Carlo Summary Statistics for t�c (coe�cient-corrected tc)

Tests for 8th Order Serial Correlation

Sample size = 20; Replications = 10,000

sizes with mean-correction only

asymptotic degrees 10% two-tailed test 5% two-tailed test

sample approx. to of actual percentage in actual percentage in

model mean variance skewness variance freedom lower tail upper tail lower tail upper tail

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

C 0.0101 1.1209 �0.0193 1.0101 10 5.84 5.97 2.98 3.12

T �0.0213 1.1494 �0.0116 1.0078 10 6.39 6.09 3.41 3.27

X �0.0018 1.1808 0.0213 1.0100 10 6.24 6.42 3.47 3.28

D �0.0047 1.1450 �0.0418 1.0057 10 6.13 5.90 3.33 3.11

S �0.0159 1.1334 �0.0218 1.0036 10 5.92 5.69 3.16 2.97

O �0.0022 1.1570 0.0066 1.0101 10 6.03 5.84 3.06 3.25

CU 0.0210 1.2223 0.0662 1.0141 9 5.97 6.59 3.22 3.87

CN �0.0154 1.1894 �0.0574 1.0123 9 6.30 6.32 3.60 3.30

CT �0.0118 1.1808 �0.0745 0.9983 9 6.38 6.22 3.44 3.36

CX 0.0005 1.2249 �0.0389 0.9980 9 6.65 6.48 3.70 3.44

CD �0.0007 1.2195 �0.0914 1.0084 9 6.54 6.59 3.48 3.52

CS �0.0059 1.2373 0.0030 1.0004 9 6.91 6.61 3.74 3.58

CO 0.0012 1.1679 �0.0313 1.0222 9 6.60 5.81 3.29 3.04

CUX 0.0020 1.2334 �0.0641 1.0012 8 6.73 6.47 3.79 3.57

CTX �0.0001 1.2821 0.0135 1.0041 8 7.02 6.72 3.62 3.52

CTD �0.0124 1.2539 �0.0887 1.0038 8 6.88 6.54 3.88 3.30

CTS �0.0030 1.2833 �0.0229 1.0042 8 7.22 6.75 3.89 3.73

CDS 0.0061 1.2731 �0.0260 1.0021 8 6.89 6.89 3.54 3.75

CDO �0.0131 1.2569 �0.1138 1.0195 8 6.95 6.37 3.69 3.44

UTXDO �0.0014 1.4571 �0.1368 1.0078 6 7.99 8.04 4.89 4.33

CUTXDO �0.0099 1.6458 0.0156 1.0057 5 9.19 8.13 5.28 4.61

CUNDD*O �0.0153 1.5368 �0.2845 1.0116 5 8.37 7.56 5.09 4.33



Table 10a

Monte Carlo Summary Statistics for t̂�c
Tests for 1st Order Serial Correlation

Various smaller degrees of freedom; Replications = 5,000

Model CT

degrees asymptotic 10% two-tailed test: actual percentage

of sample approx. to uncorrected corrected

freedom mean variance skewness variance lower tail upper tail lower tail upper tail

(1) (2) (3) (4) (5) (6) (7) (8) (9)

7 �0.0580 0.8221 �0.1213 0.8533 2.46 1.50 5.56 3.72

9 �0.0429 0.8568 �0.1712 0.8687 2.84 2.32 5.34 4.44

10 �0.0331 0.8582 �0.0954 0.8757 3.12 2.22 5.56 4.22

11 �0.0415 0.8842 �0.0573 0.8823 3.22 2.58 5.58 4.64

12 �0.0020 0.8538 �0.1543 0.8883 3.08 2.58 5.14 4.18

13 �0.0384 0.8624 �0.0426 0.8938 3.22 2.70 5.10 4.64

14 �0.0226 0.8931 �0.0639 0.8988 3.12 2.78 4.90 4.38

15 �0.0171 0.8686 0.0587 0.9034 3.04 3.42 4.66 4.90

16 �0.0266 0.9172 �0.0646 0.9077 3.36 3.08 5.06 4.72

Table 10b

Monte Carlo Summary Statistics for t̂�c
Tests for 1st Order Serial Correlation

Various smaller degrees of freedom; Replications = 5,000

Model CD

degrees asymptotic 10% two-tailed test: actual percentage

of sample approx. to uncorrected corrected

freedom mean variance skewness variance lower tail upper tail lower tail upper tail

(1) (2) (3) (4) (5) (6) (7) (8) (9)

7 �0.0225 1.0138 �0.1684 0.9286 3.72 2.60 6.14 4.76

9 �0.0081 0.9873 �0.1681 0.9517 3.90 3.08 6.16 4.84

10 �0.0201 0.9680 �0.0189 0.9484 3.48 3.28 5.30 5.36

11 �0.0312 0.9847 �0.0587 0.9510 3.78 2.82 5.82 4.52

12 �0.0263 0.9503 �0.0349 0.9555 3.68 3.14 5.18 4.54

13 �0.0207 0.9531 0.0515 0.9524 3.62 3.52 5.28 5.02

14 �0.0140 0.9170 �0.1333 0.9248 3.50 3.02 5.02 4.60

15 �0.0334 0.8900 �0.1065 0.9254 3.62 2.88 4.96 4.44

16 �0.0100 0.9021 0.0194 0.9149 3.54 2.88 5.02 4.44


