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	e activity model based on 3D acceleration and gyroscope is created in this paper, and the di
erence between the activities of
daily living (ADLs) and falls is analyzed at �rst. Meanwhile, the �NN algorithm and sliding window are introduced to develop a
smart device enabled system for fall detection and alert, which is composed of a wearable motion sensor board and a smart phone.
	e motion sensor board integrated with triaxial accelerometer, gyroscope, and Bluetooth is attached to a custom vest worn by the
elderly to capture the reluctant acceleration and angular velocity of ADLs in real time. 	e stream data via Bluetooth is then sent
to a smart phone, which runs a program based on the �NN algorithm and sliding window to analyze the stream data and detect
falls in the background. At last, the experiment shows that the system identi�es simulated falls from ADLs with a high accuracy
of 97.7%, while sensitivity and speci�city are 94% and 99%, respectively. Besides, the smart phone can issue an alarm and notify
caregivers to provide timely and accurate help for the elderly, as soon as a fall is detected.

1. Introduction

	ere are about 30% living people over the age of 65 who fall
at least one time each year in the USA, and the prevalence
of fall in the elderly is about 20% in China [1]. Falls and fall
induced injuries account for over 80% of all injury-related
hospital admissions among people over 65 [2]. Consequently,
falls a
ect tens of millions of the elderly throughout the
world. For example, falls among the elderly cost the National
Health Service more than m4.6 million per day according to
a report by the Centre for Social Justice UK [3]. Researches
showed that the risk of hospitalization could be reduced by
26% and death by over 80% a�er fall event detection followed
by immediate noti�cation to caregivers [4]. 	erefore, the
high incidences of falls, combined with their associated costs,
make it imperative to develop a reliable and e
ective fall
detection solution.

Over the last decade, a variety of di
erent methods were
developed to automatically detect falls. 	ey are categorized
into three di
erent classes depending on the deployed sensor
technology, namely, vision-based sensors [5], ambient sen-
sors [6], and wearable devices [7]. For example, Yu’s team [8]

developed a vision-based fall detection method by applying
background subtraction to extract the foreground human
body and postprocessing to improve the result, and infor-
mation is fed into a directed acyclic graph SVM for posture
recognition in order to detect a fall. Yazar et al. introduced
vibration and PIR sensors and deployed winner-takes-all
decision algorithm to detect fall [9]. However, both vision-
based and ambient sensors have a constrained monitoring
area and require installation, adjustment, and maintenance
which can result in higher costs. Recently, technological
advancements in the �elds of electrical,mechanical, and com-
puter engineering, particularly involving microelectrome-
chanical systems (MEMS), have resulted in smaller and
cheaper inertial sensors. An inertial sensor (such as 3D accel-
erometer, 3D gyroscope, and 3D compass) is as tiny as 5 ∗ 5
millimeters and is as cheap as one US dollar [7]. 	ere-
fore, it is widely used to developwearable devices which allow
the measurement of physical activity under real-life environ-
ment. 	is includes indoor and outdoor activities as well as
recordings in very private areas like the bathroom or the
toilet [10]. Meanwhile, smart phone integrated with inertia
sensors is more and more popular; many works have been
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done for the fall detection on the smartphone. For example,
Bai et al. proposed a system based on a triaxis accelerometer
embedded in a smart phone with global positioning system
(GPS) function to detect falls [11]. But such systems face the
relatively high energy consumption of current smart phones,
and it is inconvenient for the elderly to take smart phone at
any time.

	is paper presents a smart device enabled fall detection
solution by using a smart phone and a custom vest integrated
with triaxial accelerometer and gyroscope.	e system incor-
porates an array of features, such as sending alerts, shortest
message service (SMS), and global positioning system (GPS)
location for easy alerting andmonitoring. In short, the system
takes advantage of wearable device and smart phone and can
provide the elderly with an unobtrusive fall detection.

	e rest of this paper is organized as follows. Section 2
introduces the available technology for automatic fall detec-
tion based on inertial sensors. 	e methodology to deploy
the system is discussed in Section 3. Section 4 presents the
implementation of the system.	e simulated experiment and
its analysis are discussed in Section 5. 	e conclusion and
future research are proposed in Section 6.

2. Related Work Based on Inertial Sensors

Di
erent approaches have been explored to solve the fall
detection problem by using inertial sensors. 	e majority
of these approaches can be divided in two main types:
threshold-based and machine learning (or data mining) [12].
Both types are based on features extracted from the recorded
signals.

	reshold-based methods for fall detection use single or
multiple thresholds on the extracted features. Bourke et al.
[13] presented an approach to detect falls, which is based
on an assumption that acceleration in falls is sharper than
those in ADLs. Purwar et al. [14] used a triaxial accelerom-
eter to set thresholds of acceleration and orientation of
trunk through experiments to detect falls and achieved an
accuracy of 81%. Lindemann et al. [15] integrated a triaxial
accelerometer into a hearing aid device and used thresholds
for acceleration and velocity to judge whether a fall had
occurred. Noury et al. [16] developed a sensor with two
orthogonally oriented accelerometers and used this sensor
to monitor the inclination and inclination speed to detect
falls. 	ough body orientation can improve the fall detection
accuracy. Using one single device can only monitor the body
orientation, and su�cient posture information cannot be
collected using this method. Wang et al. [17] applied triaxial
accelerometer and wireless sensor network to develop an
enhanced fall detection system for the elderly monitoring.
	e main problem was that the use of only acceleration for
fall detection led to many false positives. For instance, sitting
down quickly produced similar vertical acceleration data.
As a result, more and more researchers study technology of
combining triaxial accelerometer with gyroscope to detect
fall events accurately. Li et al. [18] proposed a system where
two accelerometers are placed on the abdomen and the
right thigh, and the data stream is segmented into one
second window. 	e system could reduce both false alarms

by deriving the posture information from both gyroscopes
and accelerometers. Gjoreski et al. [19] introduced RAReFall
which measures the di
erence between maximum value and
minimum value within one-second window; if the di
erence
is larger than 1 g and the maximum value is at the back of
minimum value, then a fall is detected.

Machine learning techniques use automatic methods
starting from the extracted features and try to di
erentiate
between a fall and ADLs [20]. Ojetola et al. [3] introduce
two sensor motes (each has one accelerometer and one gyro-
scope) that are wore on chest and right thigh to di
erentiate
ADLs and fall. In the system, raw data is �rst processed by
mean �lter and lower resampling; then vector magnitude
of acceleration and angular velocity are used as features to
train a C4.5 Decision Tree model. However, the accuracy and
timeliness were not mentioned. Zhang et al. [21] presented
a fall detection method based on one-class support vector
machine where a triaxial accelerometer is used to capture the
movement data of human.	ismethodneeds speci�c activity
patterns and computation, which is not appropriate for real-
time and comfort fall detection. Tong et al. [22] used hidden
Markov model (HMM) and triaxial accelerometer to detect
and predict falls through analyzing the features of human
motion series during fall processes. 	e experiment results
showed that this method could predict falls in 200∼400ms
before the impact and also accurately distinguish falls from
other daily activities. However, the HMM � and thresholds
of the system were set based on the data samples of young
people’s simulated activities; the mathematical model and
thresholds should be trained and reset based on the large
real-world samples of the elderly. Dinh and Struck transform
the acceleration data from Cartesian coordinates to spherical
coordinates and develop the algorithm based on a fuzzy logic
and a neural network to detect falls [23]. Gjoreski et al.
[24] study a combination of body-worn inertial and location
sensors, and the Random Forest classi�er is introduced to
detect falls. However, hybrid sensor approaches or location
information increases energy consumption and data storage,
which thereby limits recording duration and increases cost,
size, and so forth.

Since wearable device based on inertial sensors is limited
to its computing power, storage, and energy consumption, it is
not suitable for running complex algorithm.Nevertheless, the
smart phone has strong computing and communicating capa-
bility. So an innovative technology which takes advantage of
wearable device and smart phone is introduced to provide the
elderly with an unobtrusive fall detection.

3. Method and System Setup

Researches [25] studied acceleration of falls and activities
of daily living (ADLs) from the waist, wrist, and head. 	e
research data show that the upper trunk, which is below the
neck and above the waist, is the most suitable feature region
for distinguishing falls fromothermovements using accelera-
tion.Meanwhile, in order to reduce the inconvenience caused
by wearable device, the motion sensor board is put on the top
of the custom vest to capture the activities of the individual
in this paper.
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Figure 1: De�nition of coordinate systems. (a) 	e sensitivity axes of the accelerometer. (b) 	e sensitivity axes of the angular velocity.

Figure 2: Bw-Fall.

3.1. Activity Model. In the process of human motion, the
acceleration and the de�ection angle vary in real time. So
the upper trunk Cartesian coordinate system oxyz, whose
origin is close to the neck of human body, is paralleled with
the geodetic coordinate system OXYZ as shown in Figure 1.
Accelerations along �-, �-, and �-axis are denoted as 	�,
	�, and 	�, respectively. 	e resultant acceleration can be
calculated in

	 = √	2� + 	2� + 	2�. (1)

	e resultant angular velocity (�) can be calculated in (2).
��, ��, and �� are the angular velocity along the �-, �-, and
�-axis. In general falls, �� is very small:

� = √�2� + �2� + �2�. (2)

Falls are usually characterized by rapid acceleration and
angular velocity. In order to �nd out the di
erences between
ADLs and falls, 3 typical subcategories of ADLs, walking-
turning-walking (W-T-W), sitting down-standing up (Sd-
Su), squatting-standing (Sq-Su), are analyzed and compared
with two types of falls: Bw-Fall means backward falling
without recovery in 2 seconds (as shown in Figure 2), and
Sd-Fall means falling either to the le� or to the right side (as
shown in Figure 3).

Figure 4 shows the resultant acceleration and angular
velocity curves from each kind of motion process. Both the
resultant acceleration and angular velocity are normalized
treatment so as to simplify the expression.	e horizontal axis
is for time in unit of 0.1 s, while the longitudinal axis is for the
resultant acceleration or angular velocity.

As can be seen from Figure 4, falls are usually character-
ized by rapid acceleration and great angular velocity, and they
could be identi�ed from ADLs as long as proper features are
extracted.

Algorithm Sliding-Window
Input: Sensor data stream
Output: Type(label) of a slide instance
(1) label =
(2) �width = 20, // set the width of sliding window
(3) for (�ref = 0; size(�ref + �width) ≥ �width; �++)
(4) label = �NN(�train, �ref + �width, �)
(5) end for

(6) return label;

Algorithm 1: Sliding window algorithm pseudocode.

3.2. Data Processing and �NN Algorithm. In the process
of human motion, the reluctant acceleration and angular
velocity vary real-timely and then make up stream data. It
faces great challenges to classify stream data because of its
in�nite length. Hence, sliding window which just takes the
last seen N elements of the stream into account is introduced
to maintain similarity queries over stream data.

Figure 5 illustrates the conventions that new data ele-
ments are coming from the right and the elements at the
le� are ones already seen. 	e sliding window covers a time
period of �� × �, where �� is the same sampling period. Each
element of sensor data stream has an arrival time, which
increments by one at each arrival, with the le�most element
considered to have arrived at time 1, since the duration of fall
is less than 2 seconds, and the sample period is 0.1 second. So
� is set to 2, and the width of the sliding window is 20.

For an illustration of this notation, consider the situation
presented in Figure 5. 	e start time of the sliding window is
17, the current time instant is 36, and the last seen element of
the stream data is �36. Each element �� consists of the resultant
acceleration and angular velocity collected by sensors at time
�.

Based on such sliding window, two kinds of features are
selected to classify falls from ADLs. 	e �rst one (namely,
	) is the set of 20 reluctant accelerations, and the other
one (namely, �) is the set of 20 reluctant angular velocities.
Meanwhile �NN algorithm is used as a classi�cation model.
Algorithm 1 represents the program code for how the sliding
window slides through the data stream. �train is the training
dataset for fall patterns.
�NNalgorithm is introduced tomeasure the di
erence or

similarity between instances according to a distance function.
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Figure 3: Sd-Fall. (a) Right side fall. (b) Le� side fall.
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Figure 4: Data examples (the resultant of acceleration and angular velocity) of ADLs and fall. (a) Process of W-T-W. (b) Process of Sd-Su. (c)
Process of Sq-Su. (d) Process of Bw-Fall.

Given a test instance �, its � closest neighbors, �1, . . . , ��,
are calculated, and a vote is conducted to assign the most
common class to �. 	at is, the class of �, denoted by �(�),
is determined as follows [26]:

� (�) = argmax
�
∑
�=1
� (�, � (��)) , � ∈ �, (3)

where �(��) is the class of�� and � is a function that �(�, V) = 1
if � = V.

Since there are two kinds of features (namely, 	 and �)
used for classifying, Euclidean distance de�ned in formula
(4) is selected as the distance function. Among formula (4),
�(�, �) is the Euclidean distance, 	� is a test instance, �	 is
a training instance, and both of them are 2-dimensional real
vector:

� (�, �) = √(	�1 − 		1)2 + (��1 − �	1)2 + ⋅ ⋅ ⋅ + (	�20 − 		20)2 + (��20 − �	20)2. (4)
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Figure 5: Illustration for the notation and the conventions of sliding
window.

4. Implementation

Since most smart devices (such as smart phone and pad) are
also integrated with the Bluetooth module and have strong
computing capability, a smart phone integrated with Blue-
tooth is introduced to receive the stream data from sensors,
and program based on the above technologies is developed to
detect fall and issue alarm.

4.1. System Architecture. Figure 6 shows the architecture of
the system. 	e system mainly consists of a custom vest and
a smart phone running the fall detection program. First the
mainboard reads the individual accelerations and angular
velocities from the accelerometer and gyroscope. 	en it cal-
culates the resultant acceleration and angular velocity and
sends the data to the smart phone via the Bluetooth. A�er
getting the data from the mainboard, the fall detection pro-
gram judges whether the individual is falling or not based
on the �NN algorithm presented in Section 2.	e phone can
make a call or send a message with GPS position to a health-
care center or family member as soon as it detects a fall. 	is
then provides a timely warning that a fall has occurred.

4.2. Data Acquisition. 	e sensor board measures 24mm ×
38mm × 9mm (width × length × thickness), which is suit-
able for use in a vest. It consists of a high-performance, low-
power microcontroller and a class 2 Bluetooth module. 	e
Bluetooth module has a range of 10m and a default trans-
mission rate of 115 k baud. 	e microcontroller reads the
data from the accelerometer and gyroscope and calculates
the resultant acceleration and angular velocity and transmits
them to the smart phone. 	e triaxial accelerometer has a
range of ±16 g. 	e triaxial gyroscope has a full-scale range
of ±2000∘/sec.

Ten healthy individuals (5 males and 5 females, aged
from 20 to 45) are asked to perform the intentional falls and
ADLs both indoors and outdoors so as to get the training
dataset. 	ere are three kinds of ADLs (namely, W-T-W, Sd-
Su, and Sq-Su) and fall. Each one includes 5 sets of resultant
acceleration and angular velocity. As a result, there are a total
of 200 sets of training samples in the training dataset.

4.3. So�ware Design. 	e so�ware includes the on-chip pro-
gram inserted into the custom vest and the fall detection
program app downloaded onto the smart phone. 	e key
steps of the on-chip program are as follows:

(A) Initialize the triaxial accelerator and gyroscope and
set the frequency for viewing the triaxial acceleration
and angular velocity and the baud rate for Bluetooth.

(B) Monitor the accelerations and angular velocities from
triaxial accelerometer sensor and gyroscope in inter-
val of 0.1 s.

(C) Calculate the resultant acceleration and angular ve-
locities according to the data from triaxial accelerator
and gyroscope.

(D) Send the resultant acceleration and angular velocities
to the smart phone via Bluetooth.

A�er getting the training dataset, the �NN classi�cation
algorithm can be easily adapted for fall detection program.
According to the instance of a sliding window from the
input stream, the similarity between the instance and training
sample in the training dataset is calculated using Euclidean
distance function. If the similarity score of all NNs (from 1 to
�) of the instance is voted to fall label, then it is classi�ed as
a fall pattern immediately. Otherwise, it is not classi�ed as a
fall pattern. 	e pseudocode for the adapted �NN algorithm
is presented in Algorithm 2.

5. Experiment

Since it is very dangerous for the elderly to test falls, there is
not any experiment on the elderly over 50 years old. Fi�een
healthy individuals, including 10 males and 5 females, aged
from 20 to 45 years, are asked to perform the simulated falls
and normal ADLs indoors and outdoors. 	e average height
and mass of volunteers are 172.3 cm and 64.5 kg, respectively.
According to the fall simulation protocol [27], fall simulation
is conducted onto a 15 cm thick spongy cushion (hardness
= 4 kPa, pressure to compass a piece of foam by 35% of its
original height) to reduce the impact. Participants stand at
a distance of 1.5 times the lengths of their foot apart from
the spongy cushion and are instructed to do Sd-Fall (or
Bw-Fall) like a frail old person, and there are no warm-up
trials to familiarize with spongy cushion. In order to evaluate
the fall detection system, the sensitivity and speci�city are
introduced.

5.1. Experiment Results. 	e experiment includes 100 sim-
ulated falls, 100 W-T-W, 100 Sd-Su, and 100 Sq-Su. 	e
experiment results are shown in Table 1. Most samples are



6 International Journal of Distributed Sensor Networks

3G/GSM

SMS

Call

Service

Family

Health care
So�ware

Internet

Sensor board

Bluetooth

3G/GSM

Custom vest

Figure 6: 	e system architecture.

Algorithm k-Nearest Neighbour
Input:�train{((	11, �11), . . . , (	120, �120), �1), . . .,

((	�1, ��1), . . . , (	�20, ��20), ��)} // training data set
� = ((	�1, ��1), . . . , (	�20, ��20)) // sliding window instances // to be classi�ed
� // number of nearest neighbour

Output: Label = {(	�1, ��1), . . . , (	�20, ��20), ��} // labelled test set
(1) for (� = 0; �; �++)�� = 0;
(2) for each labelled instance

((	�1, ��1), . . . , (	�20, ��20), ��) do
(3) calculate sim� = sim(((	�1, ��1), . . . , (	�20, ��20)), ((	�1, ��1), . . . , (	�20, ��20)));
(4) Order sim� from low to highest, (� = 1, . . . , �)
(5) end for

(6) Select the � nearest instances to �� :����
(7) for each���� do
(8) if���� = �� then��++
(9) end for
(10) if max(�1, . . . , ��) = �� then
(11) Label = {(	�1, ��1), . . . , (	�20, ��20), ��}
(12) return Label

Algorithm 2: Pseudocode for the �NN classi�er algorithm.

Table 1: Experiment results.

Tests Total Correct Wrong Accuracy

W-T-W 100 100 0 100%

Sd-Su 100 99 1 99%

Sq-Su 100 98 2 98%

Fall 100 94 6 94%

detected successfully; only a few samples are undetected.
Table 1 shows the statistic for the test samples. It can be
calculated that the accuracy is 97.7%, while the sensitivity
and speci�city are 94% and 99%, respectively. It proves that
the algorithm coupled with accelerometers and gyroscopes
reduces both false positives and false negatives, while improv-
ing fall detection accuracy.

Compared with the thresholds method using accelera-
tions or gyroscopes at several single time points, the tech-
nology in this paper is an e
ective method for human fall
detection.Most thresholdsmethods use the results of sensing
information at uncontinuous time points to detect falls;
thus some misdetection may be caused by the incomplete
information in some experiments. For example, Wang et al.
[17] achieved sensitivity of 91% and speci�city of 92%. In

this paper, the new method analyzes the steam data of accel-
erations and angular velocities during the whole course of
human fall process in a 2 s sliding window, so more complete
sensing information is used to study the features of human
fall process. As a result, the experiment shows better results.

Report shows that approximately 3% of all fallers lie for
more than 20min without external support, and 80% of the
fallers aged 90 years or older are unable to get up by them-
selves [27]. Hence, an autonomous noti�cation to caregiver
a�er detecting fall will be greatly helpful for the elderly by
reducing the time between the fall and the arrival of medical
attention. 	e �NN-based program running on smart phone
takes advantage of several smart phone components (such
as XML �le, phone, and GPS) to provide a convenient and
e�cient alerting service. For example, Figure 7 shows the
interface where user can set the interval time for autonomous
noti�cation to caregiver a�er detecting fall and can con�gure
di
erent warning methods on the smart phone. All of the
con�gurations are stored into an XML �le. Each of the
detected falls triggers an alarm. If the user could not stop the
alarm in the interval time, a call notifying caregiver is made,
or an emergency message with GPS location is immediately
sent to caregivers, so as to provide a timely and accurate help.
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Table 2: General comparison of di
erent learning algorithms.

Algorithm Correctness (%) Sensitivity (%) Speci�city (%) Times (s)

�NN ( = 3) 97.8548 93.8 99.1 <0.01
�NN ( = 7) 97.8548 93.8 99.1 <0.01
�NN ( = 7) 97.6898 93.2 99.1 <0.01
Native Bayes 97.5248 95.2 98.3 0.01

Bayes Net 96.2046 91.8 97.6 0.04

ANN 97.5248 93.8 98.7 0.44

Decision Tree (J48) 96.5347 91.1 98.3 0.08

Bagging 96.3696 91.8 97.8 0.03

Ripper 97.0297 93.8 98 0.03

Figure 7: Option menu to con�gure warning messages.

Figure 8: An alarm message with GPS location.

Figure 8 shows an example about an alerting message with
GPS location when Mr. He fell down and could not stop the
alarm in the interval time.

5.2. Comparison of Di	erent Learning Algorithms. 	eWeka
which integrates with various machine learning algorithms
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for data mining is introduced to compare �NN with other
learning algorithms according to the same training dataset
and experimental data. A Lenovo 	inkCenter m6200t with
an i5 CPU and 4G memory is selected to run Weka. Table 2
shows the comparison of di
erent learning algorithms. It can
be seen that �NN algorithm has the most correctness, and its
running time is much less than 0.01 seconds. 	e sensitivity
of �NN while � equals 7 is less than others (i.e., � equals 3 or
5), and they have the same speci�city. Besides, native Bayes
algorithm has the most sensitivity (namely, 95.2%), but its
speci�city is less than �NN, and its running time is about 0.01
seconds.	e correctness of ANN is about 97.5%; it takesmore
than 0.44 seconds to run ANN algorithm.

Figure 9 shows the correctness comparison of di
erent
learning algorithms between male and female. It can be seen
that the male’s correctness is usually higher than female’s
correctness except the Bayes Net and Bagging algorithms.
Figure 10 shows the correctness comparison of di
erent
learning algorithms in different ages. It can be seen that �NN
algorithms have higher accuracy in those aged 21–25 and
36–40. ANN algorithm has higher accuracy in those aged
21–25, 26–30, and 41–45 than in those aged 31–35 and 41–
45. 	ere is not any clearly accurate di
erence on Decision
Tree algorithm among di
erent ages. Since �NN is the most
e�cient learning algorithm with highest accuracy, it is quite
suitable for running on smart phone.
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5.3. Discussion. Because of ethical constraints, a spongy
cushion is used to avoid injuries to the participants during
the simulated fall. While many (injurious) falls occur on
hard materials (e.g., tiles), the spongy cushion can absorb the
impact. As a result, the acceleration values of the simulated
falls could not re�ect a real-world fall. Besides, though there
is not any warm-up trials for anticipants to familiarize with
spongy cushion, the anticipants know that they will fall. 	is
leads to anticipation that the anticipants may change postural
control and response mechanisms. Just as Bagalà et al. out-
lined, algorithms calculated from fall simulations in healthy
young subjects lack the necessary accuracy requirements for
real-world fall detection [28].

Due to access problems to the elderly and other di�-
culties (e.g., cost and adherence), the number of recorded,
documented, and published real-world fall data of older
people isminimal [29]. Bourke et al.made a systematic review
of a total number of 96 articles on fall detection with body-
worn sensors published between 1998 and 2012. It showed
that less than 7% of studies have used fall data recorded from
elderly people in real life, and simulated fall data were used
in 90 (93.8%) studies. However, recently the FARSEEING is
a European collaborating project, and one goal of the project
is to generate a large metadatabase of real-world fall signals
[30]. We plan to verify our system as soon as we can access
the database of real-world falls.

In Schwickert et al.’s review [29], most of the sensors were
placed at waist, chest, thorax, and trunk. In order to reduce
the inconvenience for anticipants caused by wearable device
and protect the motion sensor board from being broken, it
is put on the top of the custom vest. Figure 11 shows that
this results in higher impact signals than of those which the
motion sensor board is putting at waist.

Since our fall detection systemaims to detect fall and issue
alarm, we do not divide the fall process into multiple phases,
such as prefall phase, fall phase, and recovery phase. 	e
system will just issue an alarm as soon as it detects fall, and
a call to notify caregiver is made, or an emergency message
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Figure 11: 	e comparison between the impact signal from the
motion sensor put on the top of vest and of those put at waist. (a)
	e comparison on resultant acceleration. (b) 	e comparison on
resultant angular velocity.

with GPS location is sent to caregiver, as long as the user does
not stop the alarm in the interval time.

6. Conclusion and Future Work

Taking into account the results and analysis provided above,
it can be concluded that the proposed system is able to
detect simulated falls with su�cient accuracy and can provide
timely help for the elderly.

In China, there is not any available data of real-world fall
as well nowadays. Based on the encouraging results achieved,
we will cooperate with community geracomium, supply our
motion sensor board and so�ware to the elderly without
compensation, so as to collect data of the daily activities,
and harvest the database of real-world falls. A�er getting the
database of real-world falls, our fall detection system will
be veri�ed and improved. Besides, we will study di
erent
important aspects of a fall event according to the multiphase
model of fall supposed by Klenk et al. [27]. For example, we
will study algorithm to predict fall according to the research
of the prefall activity.
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[20] A. T. Özdemir and B. Barshan, “Detecting falls with wearable
sensors usingmachine learning techniques,” Sensors, vol. 14, no.
6, pp. 10691–10708, 2014.

[21] T. Zhang, J. Wang, L. Xu, and P. Liu, “Fall detection by wear-
able sensor and one-class SVM algorithm,” in Intelligent Com-
puting in Signal Processing and Pattern Recognition, vol. 345
of Lecture Notes in Computer Science, pp. 858–886, Springer,
Berlin, Germany, 2006.

[22] L. Tong, Q. Song, Y. Ge, and M. Liu, “HMM-based human fall
detection and predictionmethod using tri-axial accelerometer,”
IEEE Sensors Journal, vol. 13, no. 5, pp. 1849–1856, 2013.

[23] C.Dinh andM. Struck, “Anew real-time fall detection approach
using fuzzy logic and a neural network,” inProceedings of the 6th
InternationalWorkshop onWearableMicro&Nano Technologies
for Personalized Health, pp. 57–60, Oslo, Norway, June 2009.
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