
Applied Mathematical Sciences, Vol. 7, 2013, no. 61, 3007 - 3021

HIKARI Ltd, www.m-hikari.com

A Smart GPU Implementation of an Elliptic Kernel

for an Ocean Global Circulation Model

R. Farina

Centro Euro-Mediterraneo sui Cambiamenti Climatici

Bologna, Viale Aldo Moro 44, Italy

raffaele.farina@cmcc.it

S. Cuomo, P. De Michele and F. Piccialli

Department of Mathematics and Applications, University of Naples “Federico II”

Via Cinthia, 80126, Napoli, Italy

{salvatore.cuomo, pasquale.demichele}@unina.it francesco.piccialli@gmail.com

Copyright c© 2013 R. Farina et al. This is an open access article distributed under the Creative

Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

Abstract

In this paper, the preconditioning technique of an elliptic Laplace problem in

a global circulation ocean model is analyzed. We suggest an inverse precondi-

tioning technique in order to efficiently compute the numerical solution of the

elliptic kernel. Moreover, we show how the convergence rate and the perfor-

mance of the solver are strictly linked to the discretized grid resolution and to

the Laplace coefficients of the oceanic model. Finally, we present an easy-to-

implement version of the solver on the Graphics Processing Units (GPUs).

Mathematics Subject Classification: 65Y05; 65Y10; 65F08; 65F35; 37N10

Keywords: ocean modelling, preconditioning technique, GPU programming, sci-

entific computing

1 Introduction

The ocean plays a crucial role in regulating the global climate balance of the Earth:

it can absorb heat and distribute it to the world through the currents and interactions

3008 R. Farina et al.

with the atmosphere. In recent years, ocean numerical models have became enough

realistic as a result of many improved methods, fast computing and global data sets.

The rapidly advancing field of numerical ocean circulation modelling is supported

by several models and methods as NEMO, Hops, MOM, POP, et al. (see [12] for

a nice review). However, several of these numerical models are not yet optimized

in terms of ad-hoc preconditioning techniques and smart code implementations. In

all these frameworks the numerical kernel is represented by the discretization of the

Navier-Stokes equations [13] on a three dimensional grid and by the computation

of the evolution time of each variable for each grid point. The high resolution

computational grid requires efficient preconditioning techniques for improving the

accuracy in the computed solution and parallelization strategies for overcoming to

the huge amount of computational demand.

In this paper, for NEMO-OPA ocean model [15], a state of the art modelling frame-

work in the oceanographic research, we propose a preconditioning technique based

on inverse formulation [4]. The preconditioning is often a bottleneck in solving

linear systems efficiently and it is well established that a suitable preconditioner

increases significantly the performance of an application.

The NEMO-OPA elliptic sea-surface equation is originally solved by means of the

diagonal Preconditioned Conjugate Gradient (PCG). Here, we prove that, in most

cases, it works in a inefficiently and inaccurately way. Moreover, we implement

the solver on a Graphics Processor Unit (GPU) and adopt the Scientific Computing

libraries, in order to efficiently compute the linear algebra operations. GPUs are

massively parallel architectures that require a deep understanding of the underlying

computing architecture and programming on these devices involves a massive re-

thinking of existing CPU based applications [17]. In this paper, we present an easy-

to-implement version of the elliptic solver, by using the Compute Unified Device

Architecture (CUDA) framework [16]. We develop a code by using CUDA based

supported libraries CUBLAS [7] and CUSPARSE [10] for the sparse linear algebra

and the graph computations. The library GPU based approach allows a quick code

development times and an easy to use GPUs implementations that can fruitfully

speed up the expensive numerical kernel of an oceanographic simulator.

The paper is set out as follows. In section 2 we briefly review the mathematical

model: elliptic equations that are at the heart of the model. In section 3, the pre-

conditioned conjugate gradient method, used to invert the elliptic equations, are de-

scribed. In section 4, we outline an implementation strategy for solving the elliptic

solver by using standard libraries and, moreover, in section 5 we discuss the map-

ping of our algorithm onto a massively parallel machine. Finally, the conclusions

are drawn.

A smart GPU implementation of an elliptic kernel 3009

2 The mathematical model

Building and running ocean models able to simulate the world of global circulation

with great realism require many scientific skills. In modelling the general ocean cir-

culation it is necessary to solve problems of elliptic nature. Often, solving this kind

of problems becomes difficult [12]. In particular, the elliptic solvers have a low con-

vergence rate due to several problem dependent topics, i.e. complex geometry and

topography, space-time scales variability. Moreover, the elliptic solver implementa-

tions do not fit properly onto parallel and scientific computing systems [11, 19, 20].

In the NEMO-OPA numerical code the primitive equations are discretized within

sea-surface hypothesis [18] and the model is characterized by the three-dimensional

distribution of currents, potential temperature, salinity, pressure and density [13].

The numerical method NEMO-OPA is grounded on discretizing of the primitive

equation - by using of finite differences on a three dimensional grid - and computing

the time evolution to each variable “ocean” at each grid point for the entire globe [1].

A sketch of the NEMO-OPA computational model (Figure 1) shows the complex

dynamic processes that mimic the ocean circulation model, composed by steps that

are many time simulated.

Figure 1: NEMO-OPA model.

The kernel algorithm (highlighted with pink color, step 1) solves the sea-surface

height equation η. The elliptic kernel is discretized by the following semi-discrete

equations

ηn+1 = ηn−1 −2∆tDn (1)

2∆tgTc∆hDn+1 = Dn+1 −Dn−1 +2∆tg∆hηn (2)

3010 R. Farina et al.

∆h = ∇
[

(H +ηn)∇
]

(3)

where ηn (with n ∈ N), which describes the shape of the air-sea interface, is the

sea-surface height at the n-th step of the model, Dn is the centered difference ap-

proximation of the first time derivative of η, ∆t is the time stepping, g is the gravity

constant, Tc is a physical parameter, ∆h is the horizontal Laplacian operator and H

is the depth of the ocean bottom [15]. Whereas the domain of the ocean models

is the Earth sphere (or part of it), the model uses the geographical coordinates sys-

tem (λ,φ,r). In this system, a position is defined by the latitude φ, the longitude

λ and the distance from the center of the earth r = a+ z(k), where a is the Earth’s

radius and z the altitude above a reference sea level. The local deformation of the

curvilinear geographical coordinate system is given by e1,e2 and e3:

e1 = rcosφ, e2 = r, e3 = 1. (4)

The Laplacian Operator in spherical coordinates ∆hDn+1 in (2) becomes

∆hDn+1 =
1

e1e2

[

∂

∂i

(

α(φ)
∂Dn+1

∂i

)

+
∂

∂ j

(

β(φ)
∂Dn+1

∂i

)

]

(5)

where:

α(φ) = (H +ηn)e2/e1 β(φ) = (H +ηn)e1/e2 (6)

For the functions α(φ) in and β(φ) in (6), we have the following relations:

lim
φ−→± π

2

α(φ) = +∞ ∧ lim
φ−→± π

2

β(φ) = 0 (7)

From (7), if we choose M,ε ∈ R with M >> ε, then exists an interval
[

π
2
−δ, π

2

]

or
[

− π
2
, −π

2
+ δ

]

, such that the following inequality holds:

α(φ)> M >> ε > β(φ) (8)

In physical terms, in the proximity of the geographical poles, (λ,±φ/2,r), there are

several orders of magnitude between the functions α(φ) and β(φ). The result (8)

will significantly influence the rate of convergence in the iterative solver.

3 Inverse preconditioning techniques

Let us now consider the elliptic NEMO model [15] defined by the coefficients

CNS
i, j =2∆t2H(i, j)e1(i, j)/e2(i, j)

CEW
i, j =2∆t2H(i, j)e2(i, j)/e1(i, j)

bi, j =δi(e2Mu)−δ j(e1Mv)

(9)

A smart GPU implementation of an elliptic kernel 3011

where δi and δ j are the discrete derivative operators along the axes i and j. The

discretization of the equation (2) by means of a five-point finite difference method

gives:

CNS
i, j Di−1, j +CEW

i, j Di, j−1 −
(

CNS
i+1, j +CEW

i, j+1 +CNS
i, j +

+CEW
i, j

)

Di, j +CEW
i, j+1Di, j+1 +CNS

i+1, jDi+1, j = bi, j

(10)

where the equation (10) is a symmetric system of linear equations. All the elements

of the sparse matrix A vanish except those of five diagonals. With the natural order-

ing of the grid points (i.e. from west to east and from south to north), the structure

of A is a block-tridiagonal with tridiagonal or diagonal blocks. The matrix A is a

positive-definite symmetric matrix with n = jpi× jp j size, where jpi and jp j are

respectively the horizontal dimensions of the grid discretization of the domain.

The Conjugate Gradient Method is a very efficient iterative method for solving the

linear system (10) and it provides the exact solution in a number of iterations equal

to the size of the matrix. The convergence rate is faster as the matrix is closer to the

identity one. By spectral point of view a convergence relation between the solution

of the linear system and its approximation xm is given by

‖x−xm‖A < 2

(

√

µ2(A)−1
√

µ2(A)+1

)m−1

‖x−x0‖A. (11)

In (11), µ2(A) = λmax/λmin, where λmax and λmin are, respectively, the greatest and

the lowest eigenvalue of A, and ‖ · ‖A is the A-norm. The preconditioning frame-

work is to introduce a matrix M, that is an approximation of A easier to invert, and

to solve the equivalent linear system

M−1Ax = M−1b. (12)

The ocean global model NEMO-OPA uses the diagonal preconditioner, where M is

chosen to the diagonal of A. Let us introduce the cardinal coefficients

αE
i, j =Ci, j+1

EW/di, j αW
i, j =Ci, j

EW/di, j (13)

βS
i, j =Ci, j

NS/di, j βN
i, j =Ci+1, j

NS/di, j (14)

where di, j =
(

CNS
i+1, j +CEW

i, j+1+CNS
i, j +CEW

i, j

)

represents the diagonal of the matrix A.

The (10), using the diagonal preconditioner, can be written as

−βS
i, jDi−1, j −αW

i, jDi, j−1 +Di, j −αE
i, jDi, j+1 −βN

i, jDi+1, j = b̄i, j (15)

with b̄i, j = −bi, j/di, j. Starting from the observations (7) and (8) we proof that the

diagonal preconditioner does not work very well in some critical physical situations

involving curvilinear spherical coordinates.

3012 R. Farina et al.

Proposition 3.1 In the geographical coordinate, if φ→+π
2
−

, ∆λ→ 0, ∆φ→ 0 then

the conditioning number µ(M−1A) goes to +∞.

Proof. In the geographical coordinate, i.e. when (i, j)→ (λ,φ) and (e1,e2)→ (r cosφ,r),
for φ →+π

2
−

, ∆λ → 0 and ∆φ → 0, the functions αW and αE in (13) go to −1/2 while βN

and βS in (14) go to 0. Hence, the eigenvalues of the limit of matrix M−1A are

λk = 1+ cos

(

kπ

n+1

)

k = 1, ...,n (16)

then the condition number µ2(M
−1A) = λmax/λmin ≈ n2/2 (by using the series expansion of

cosx = 1− x2/2+ o(x2)). Moreover, for ∆λ → 0 and ∆φ → 0, the size n of the matrix A

goes to +∞, hence we obtain the thesis. �

By the Proposition (3.1), for n large and φ →±π/2, it is preferable to adopt more

suitable preconditioning techniques or a strategy based on the local change of the

coordinates at poles. In this paper we propose an approximate sparse inverse pre-

conditioning techniques [4] for the linear system (10). The problem is how to

build a preconditoner that preserves the sparse structure. We introduce a Factored

Sparse Approximate Inverse (FSAI) preconditioner P = Z̃Z̃t [5, 3], computed by

means of a conjugate-orthogonalization procedure. Specifically, we propose an “ad

hoc” method for computing an incomplete factorization of the inverse of the matrix

T ⊂ A, obtained by A taking only the elements ai, j such that | j− i| ≤ 1. The fac-

torized sparse approximate inverse of T is used as explicit preconditioner for (10).

In the following, we give several remarks for the sparsity pattern selection S of our

inverse preconditioner P.

Proposition 3.2 If T is a tridiagonal, symmetric and diagonally dominant matrix,

with diagonal elements all positive tk,k > 0, k = 1, ...,n, then the Cholesky’s factor

U of the matrix T is again diagonally dominant.

Proof. Since T is a tridiagonal matrix, then U is a bidiagonal matrix. Using the inductive

method we proof that U is diagonally dominant matrix. For k = 1 is trivially, indeed by

hypothesis we know that |a1,1|> |a1,2| ⇐⇒ |u2
1,1|> |u1,1u1,2|, then we obtain |u1,1|> |u1,2|.

Moreover, placed the thesis true for k− 1 i.e. |uk−1,k−1| > |uk−1,k| then, by the following

inequalities,

|ak,k|> |ak,k−1|+ |ak,k+1| ⇐⇒ |u2
k−1,k +u2

k,k|> |uk−1,kuk−1,k−1|+

+|uk,kuk,k+1|> u2
k−1,k + |uk,kuk,k+1|

(17)

and subtracting the inequality (17) for u2
k−1,k, the thesis also holds for k. �

This result allows to prove the following proposition:

A smart GPU implementation of an elliptic kernel 3013

Proposition 3.3 The inverse matrix Z of a bidiagonal and diagonally dominant

matrix U has column vectors zk,k = 1, ...n such that, starting from diagonal element

zk,k, they contain a finite sequence {zk−i,k}i=0,...,k−1 strictly decreasing.

Proof. Applying a backward substitution procedure for solving the system of equations

Uzk = ek, we get:

zk−i,k =











1
uk,k

i f i = 0

(−1)i

uk,k
·

i

∏
r=1

(uk−r,k−r+1

uk−r,k−r

)

i f 0 < i ≤ k−1
(18)

By means of the preposition (3.2) we obtain that zk−i,k > zk−i−1,k with 0 < i ≤ k−1 and

hence the thesis is proved. �

The previous propositions (3.2) and (3.3) enable to select a sparsity pattern S by

meand of the scheme in Algorithm 1.

Algorithm 1 Sparsity pattern selection.

Step 1. Consider the symmetric, diagonally dominant and triangular matrix T, obtained by

A taking only the elements ai, j such that | j− i| ≤ 1.

Step 2. Since T = UT U is a diagonally dominant matrix, its Cholesky factor U is diagonally

dominant (Proposition (3.2)).

Step 3. U is a bidiagonal and diagonally dominant matrix. Z = U−1 has columns vector

zk, k = 1, ...,n such that zk−i,k > zk−i−1,k with 0 < i ≤ k−1 (Proposition (3.3)).

Step 4. Fixed an upper bandwidth q, the entries zi, j with j > i+q of Z are considered

negligible.

Step 5. The preconditioner P = Z̃Z̃t is built as:

z̃i, j =

{

zi, j i f j ≤ i+q

0 i f j > i+q
(19)

Step 6. The sparse factor Z̃ is computed by T -orthogonalization procedure posing the

sparsity pattern S={(i, j) / j > i+q}.

T is a diagonally dominant matrix, then the incomplete inverse factorization of T

exists for any choice of the sparsity pattern S on Z [5]. From a computational

point of view, the T -orthogonalization procedure with the sparsity pattern S is based

on matrix-vector operations with computational cost of 5(q+1) floating point op-

erations. Moreover, for each column vector z̃k of Z̃ we work only on its q + 1

components z̃k[k−q], z̃k[k−q+1], . . . , z̃k[k] with consequently global complexity

of 5q(q+1)O(n). We observe that in this work we do not justify the choice of

the best preconditioning technique among the many possible ones. The inverse

3014 R. Farina et al.

preconditioning techniques are interesting due to the fact that their application in-

volves only sparse matrix-vector products, which can be executed very efficiently

on emergent multicore- and GPU-based architectures.

4 Library based GPU implementation

In this section we show that, by means of a GPU CUDA library based approach, it is

possible to develop scalable and optimized numerical solvers for free. The matrices

A, Z̃ and Z̃T are stored with the special storage format Compressed Sparse Row

(CSR), since this format is compatible with the NEMO-OPA software. The FSAI

is performed in serial on the CPU and its building requires a negligible time on

total execution of the elliptic solver. We show the implementation of the Algorithm

2 outlines on the GPUs [2, 9, 8]. In details, our solver is implemented by means

Algorithm 2 FSAI-PCG solver

1: k = 0; x0 = D0
i, j = 2Dt−1

i, j , the initial guess;

2: r0 = b−Ax0;

3: s0 = Z̃Z̃tr0, with P = Z̃Z̃t the FSAI preconditioner;

4: d0 = s0;

5: while
(

‖rk‖/‖b‖> ε .and. k ≤ n
)

do

6: qk = Adk; αk = (sk,rk)/(dk,qk);
7: xk+1 = xk +αkdk; rk+1 = rk −αkqk; sk+1 = Z̃Z̃trk+1;

8: βk = (sk+1,rk+1)/(sk,rk); dk+1 = rk+1 +βkdk;

9: k = k+1;

10: end while

of the CUDA language with the auxiliary linear algebra libraries CUBLAS, for

the “dot product” (xDOT), “combined scalar multiplication plus vector addition”

the (xAXPY), the “euclidean norm” (xNRM2) and the “vector by a constant scaling”

(xSCAL) operations, and CUSPARSE for the sparse matrix-vector operations in the

PCG solver. The linear algebra scientific libraries are extremely helpful to easily

implement a software on the GPU architecture. In the following, we show how

to implement the Algorithm 2 outlines by using library features. In order to use

the CUBLAS library it is necessary to inizialize it by means of the cublasInit()

function and execute the following statements for the initialization, creation and

setup of a matrix descriptor:

cusparseHandle_t handle=0; cusparseCreate(&handle);

cusparseMatDescr_t descra=0; cusparseCreateMatDescr(&descra);

cusparseSetMatType(descra, CUSPARSE_MATRIX_TYPE_GENERAL);

cusparseSetMatIndexBase(descra, CUSPARSE_INDEX_BASE_ZERO);

A smart GPU implementation of an elliptic kernel 3015

The libraries utilization avoids to configure the grid of the thread blocks and it

allows to write codes in a very fast way. For example, at line 6 of the Algorithm 2,

the computation of qk = Adk is required, and this operation can be made simply by

calling the CUSPARSE routine cusparseScsrmv(), that performs the operation

q = aAd+bq as follows:

cusparseScsrmv(handle, CUSPARSE_OPERATION_NON_TRANSPOSE, n, n,

a, descra, A, start, j, d, b, q);

In our context, A, j and start represent the symmetric positive-definite matrix

A, stored in the CSR format. More precisely, the vector A denotes the non-zero

elements of the matrix A, j is the vector that stores the column indexes of the non-

zero elements, the vector start denotes, for each row of the matrix, the address

of the first non-zero element and n represents the row and columns number of the

square matrix A. The constants a and b are assigned to 1.0 and 0.0 respectively.

Moreover, it happens that at line 6 of the Algorithm 2, the computation of (sk,rk) is

performed by means the CUBLAS routine for the dot product:

alfa_num = cublasSdot(n, s, INCREMENT_S, r, INCREMENT_R);

The constants INCREMENT S and INCREMENT R are both assigned to 1. Last opera-

tion of line 6 in Algorithm 2, is the xk+1 = xk +αkdk for updating the solution and

it is implemented by calling the CUBLAS routine for the saxpy operation:

cublasSaxpy(n, alfa, d, INCREMENT_D, x, INCREMENT_X);

The constants INCREMENT D and INCREMENT X are both assigned to 1. In addition,

the computation of sk+1 = Z̃Z̃trk+1 at line 7 is the preconditioning step of the linear

system (10) and it is computed by means of two matrix-vector operations:

cusparseScsrmv(handle, CUSPARSE_OPERATION_NON_TRANSPOSE, n, n,

a, descra, Z_t, start_Z_t, j_Z_t, r, b, zt);

cusparseScsrmv(handle, CUSPARSE_OPERATION_NON_TRANSPOSE, n, n,

a, descra, Z_t, start_Z, j_Z, zt, b, z);

In details, in the first call of cusparseScsrmv(), zt = Z̃trk+1 and sk+1 = Z̃zt are

computed. We have outlined just few of computational operations because the

other will be performed in the same way. The parameters handle, descra and

CUSPARSE OPERATION NON TRANSPOSE are discussed in the NVIDIA report [10] in

more details. In summary, we highlight that using standard libraries, designed for

the GPU architecture, it is possible to optimize the computational oceanographic

simulation model.

3016 R. Farina et al.

5 Numerical experiments

In this section we focus on the important numerical issues of our elliptic solver im-

plemented with GPU architecture in single precision. The solver is tested on three

grid size resolutions of the NEMO-OPA ocean model (Table 1). In the Table 2, we

compare the performance in terms of PCG iterations of the proposed inverse band-

width preconditioner P respect to P−1, that is the diagonal NEMO-OPA precondi-

tioner. We fix an accuracy of ε = 10−6 on the relative residue r = ||Ax−b||/||b||
on the linear system solution. The experiments are carried out in the case of well-

conditioned A matrix, corresponding to the geographical case of φ ≈ 0 and in the

case of ill-conditioned A with φ ≈ π/2. We can observe as in the worst case with

n large and A ill-conditioned the PCG with P−1 has a very slow convergence with

a huge number of iterations to reach the fixed accuracy. The experiments, reported

in Table 2, highlight the poor performance of the P−1 for solving the Laplace ellip-

tic problem (10) within NEMO-OPA. In the following, we show the performance

in terms of PCG iterations of P respect to the Bridson Class preconditioners, that

believe to CUSP library. In details, let us consider the PB1 and PB2 Bridson’s pre-

conditioners, obtained by means of the A-orthogonalization method. The first one is

given by posing a (fixed) drop tolerance and discarding the elements below the fixed

tolerance [6]; in the second one is predetermined the number of non-zeros elements

on each its row [14].

Matrix Name Size Matrix non-zeros elements

ORCA-2 180×149 133800

ORCA-05 751×510 1837528

ORCA-025 1442×1021 7359366

Table 1: NEMO-OPA grid resolutions.

The required accuracy on the solution is fixed to ε = 10−6 on the relative residue. In

Figure 2 (on the left) we report the PCG iterations of P, PB1 and PB2 in the case of

the matrix A well-conditioned (φ≈ 0). In Figure 2 (on the right) we present the case

of the ill-conditioned (φ≈ π/2) matrix A. The numerical results show how the num-

ber of the solver iteration P is comparable to PB1 and PB2 when the dimensions of

the problem are small or middle. Furthermore, it is strongly indicated to use P with

A Dimension P (φ ≈ 0) P−1
(φ ≈ 0) P (φ ≈ π

2
) P−1

(φ ≈ π
2
)

ORCA-2 271 460 8725 26820

ORCA-05 1128 1593 22447 86280

ORCA-025 2458 3066 28513 139742

Table 2: Comparison between P and P−1 in terms of Number of Iterations of the

PCG in the case A is well-conditioned (φ ≈ 0) and A ill-conditioned (φ ≈ π/2),

varying the problem dimensions.

A smart GPU implementation of an elliptic kernel 3017

Figure 2: Comparison between P, PB1 and PB2 in terms of Number of Iterations

of the PCG (y−axis) when A is well-conditioned (left) and ill-conditioned (right),

varying the problem dimensions (x−axis).

Figure 3: PCG iterations. P is the proposed preconditioner, P d is P−1, P B1 P B2 are PB1

and PB2

a huge problem dimension. We have tested P, P−1, PB1 and PB2 on the sparse matrix

NOS6 of the Market Matrix database (http://math.nist.gov/MatrixMarket) by

setting the required accuracy on the computed solution to ε = 10−6 and the band

q of the preconditioner to 4. This sparse matrix is obtained in the Lanczos algo-

rithm with partial re-orthogonalization Finite difference approximation to Poisson’s

equation in an L-shaped region, mixed boundary conditions. The figure 3 shows as

P achieves the best performance in terms of iterations. Finally, we have tested the

elliptic solver implementation on GPU architecture. The numerical experiments are

carried out on an “NVIDIA TESLA S2050” card, based on the “FERMI GPU”. The

“TESLA S2050” consists of 4 GPGPUs, each of which with 3GB of RAM mem-

ory and 448 processing cores working at 1.15 GHz. All runs are given on 1 GPU

device. We have adopted CUDA release 3.2, provided by NVIDIA as a GPGPU

environment and the numerical code is implemented by using the single precision

arithmetic. As described in the previous sections, by using scientific computing li-

brary it is not necessary manually setting up the blocks and grid configuration on

3018 R. Farina et al.

the device memory. The number of blocks required to store the elliptic solver input

data (in CSR format) do not have to exceed the maximum sizes of each dimen-

sion of a GPU grid device. Schematic results of GPU memory utilization for ocean

model resolutions are presented in the Table 3. Observe that, in our numerical ex-

periments, we do not fill the memory of the TESLA GPU and the simulations run

also on cheaper or older boards, as for example the Quadro 4700FX. Generally, it

is possible to grow the grid dimensions of the ocean model according to the mem-

ory capacity of the available GPU. The elliptic solver requires a large amount of

Sparse-Matrix Vector (cusparseCsrmv()) multiplications, vector reductions and

other vector operation to be performed. CPU version is implemented in ANSI C

executed in serial on a 2.4GHz “Intel Xeon E5620” CPU, with 12MB of cache

memory. Serial and GPU versions are in single precision. In Table 3 we report the

execution times and speed-up of the CPU and GPU implementation of the solver

on several matrix configuration sizes. We observe the well speed-up values in-

cresing the size of the problem from ORCA-2 to ORCA-025 due to utilization of

GPU implementation and optimized numerical libraries. Moreover, we tested the

Matrix Name Non-zeros Elem. Mem. GPU. CPU GPU Speed-up

ORCA-2 133800 4MB 61.5 37.03 1.6
ORCA-05 1837528 37MB 4521.29 240.11 18.8

ORCA-025 7359366 135MB 57898.59 1090.53 53.1

Table 3: Matrix memory occupancy and execution times (in seconds) on the CPU

and GPU and speed-up, varying the size of the problem from ORCA-2 to ORCA-

025.

performance of the solver in terms of Floating Point Operations (FLOPs). The per-

formance of the numerical experiments (reported in the Figure 4) are given in the

case of A ill-conditioned matrix (φ ≈ π/2). We count an average of the iterations

of solver and the complexity of all linear algebra operations involved in both serial

and parallel implementations. The ”GPU solver“ (blue) and ”CPU solver“ (orange)

curves represent the GFLOPS of the solver, respectively, for the CPU and GPU ver-

sions. The main recalled computational kernels in the solver are the Sparse-Matrix

Vector. In Figure 4 we highlight the improvement in terms of GFLOPs speed-up

by replacing gemv() with cusparseCsrmv() function. These results prove that, in-

creasing the model grid resolution, it is possible to exploit the computational power

of the GPUs. In details, the GPU solver implementation in the ORCA-025 configu-

ration has a peak performance of 87 GFLOPS respect to 1,43 GFLOPS of the CPU

version.

6 Conclusions

In the ocean modelling, the elliptic Laplace equations represent critical computa-

tional points since the convergence of the numerical solvers to a solution, within a

A smart GPU implementation of an elliptic kernel 3019

Figure 4: Left: Sparse-Matrix Vector multiplications speed-up. Right: CPU and

GPU comparison of the solver in terms of GFLOPS.

reasonable number of iterations, it is not always guaranteed. In our case, this hap-

pens to the preconditioning technique of the NEMO-OPA ocean model, for which

we prove to be inefficient and inaccurate. In this paper, we propose a new inverse

preconditioner that shows better results respect to the NEMO-OPA diagonal one

and to others of the Bridson class. Moreover, we show a parallel approach of the

elliptic solver on GPU, by means of the scientific computing libraries. The library

based implementation of the computing codes allows to optimize oceanic frame-

work reducing the simulation times and to develop computational solvers easy-to-

implement.

Acknowledgment. The research leading to these results has received funding from the

Italian Ministry of Education, University and Research and the Italian Ministry of Environ-

ment, Land and Sea under the GEMINA project.

References

[1] A. Arakawa and F. Mesinger, Numerical Methods used in Atmospheric Mod-

els, Garp Publication Series NO 17, Paris, France, 1976.

[2] N. Bell and M. Garland, Efficient sparse matrix-vector multiplication on cuda,

Technical report, NVIDIA Corporation NVR-2008-004, 2008

[3] M. Benzi, An explicit preconditioner for the conjugate gradient method,

Proceedings of the Cornelius Lanczos International Centenary Conference,

Philadelphia USA, 1994.

[4] M. Benzi, Preconditioning techniques for large linear systems: A survey, J

Comput Phys 182: 417–477, 2002.

3020 R. Farina et al.

[5] M. Benzi, C. D. Meyer and M. Tuma, A sparse approximate inverse precon-

ditioner for the conjugate gradient method, SIAM J. Sci. Comput 17: 1135–

1149, 1996.

[6] R. Bridson and W. Tang, Refining an approximate inverse, J. Comput. Appl.

Math. 22, 2000.

[7] CUBLAS Library, Technical report, NVIDIA. http://developer.

download.nvidia.com, 2007.

[8] S. Cuomo, P. De Michele and R. Farina, An inverse preconditioner for a free

surface ocean circulation model, AIP Conference Proceedings, pp. 356-362,

Vol. 1493, 2012.

[9] S. Cuomo, P. De Michele and R. Farina, A CUBLAS-CUDA implementation

of PCG method of an ocean circulation model, AIP Conference Proceedings,

pp. 1923-1926, Vol. 1389, 2011.

[10] CUSPARSE Library, Technical report, NVIDIA. http://developer.

download.nvidia.com, 2012.

[11] J. K. Dukowicz, A reformulation and implementation of the bryan cox semtner

ocean model on the connection machine, J Atmos Ocean Tech 10: 195–208,

1993.

[12] S. M. Griffies, C. Boning, F. O. Bryan, E. P. Chassignet, R. Gerdes, H. Hasumi,

A. Hirst, A. Treguier and D. Webb, Developments in ocean climate modelling,

International Journal of Applied Mathematics and Computer Science 2: 123–

192, 2000.

[13] R. L. Higdon, Numerical modeling of ocean circulation, Acta Number

15: 385–470, 2006.

[14] C. J. Lin and J. More, Incomplete cholesky factorizations with limited memory,

SIAM J.Sci. Comput. 21, 2000.

[15] G. Madec, NEMO-OPA Ocean Engine, Institute Pierre-Simon Laplace, Paris,

France, 2012.

[16] NVIDIA CUDA programming guide, Technical report, NVIDIA, 2012.

[17] F. Piccialli, S. Cuomo and P. De Michele, A regularized MRI image recon-

struction based on Hessian penalty term on CPU/GPU systems, International

Conference on Computational Science (ICCS), 2013.

A smart GPU implementation of an elliptic kernel 3021

[18] G. Roullet and G. Madec, Salt conservation, free surface, and varying lev-

els: a new formulation for ocean general circulation models, J Geophys Res

105: 23927–23942, 2000.

[19] D. J. Webb, A multiprocessor ocean general circulation model using message

passing, Comput Geosci 22: 569–578, 1996.

[20] D. J. Webb, A. C. Coward, B. A. de Cuevas and C. A. Gwilliam, An ocean

model code for array processor computers, J Atmos Ocean Tech 22: 175–

183,1997.

Received: March 21, 2013

