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Accurately digitizing the brain at the micro-scale is crucial for investigating brain

structure-function relationships and documenting morphological alterations due to

neuropathies. Here we present a new Smart Region Growing algorithm (SmRG) for

the segmentation of single neurons in their intricate 3D arrangement within the brain.

Its Region Growing procedure is based on a homogeneity predicate determined by

describing the pixel intensity statistics of confocal acquisitions with a mixture model,

enabling an accurate reconstruction of complex 3D cellular structures from high-

resolution images of neural tissue. The algorithm’s outcome is a 3D matrix of logical

values identifying the voxels belonging to the segmented structure, thus providing

additional useful volumetric information on neurons. To highlight the algorithm’s full

potential, we compared its performance in terms of accuracy, reproducibility, precision

and robustness of 3D neuron reconstructions based on microscopic data from

different brain locations and imaging protocols against both manual and state-of-the-art

reconstruction tools.

Keywords: neuron segmentation, confocal microscopy, 2 photon microscopy, expectation - maximization (EM)

algorithm, mixture models, CLARITY

INTRODUCTION

Digitizing a high-fidelity map of the neurons populating the brain is a central endeavor for
neuroscience research and a crucial step for the delineation of the full Connectome (Alivisatos
et al., 2012). Moreover, single-neuron reconstruction from empirical data can be used to generate
models and make predictions about higher-level brain organization, as well as to study the normal
development of dendritic and axonal arbors or document neuro-(patho)physiological changes
(Budd et al., 2015).

Confocal and two-photon microscopy are considered the best candidates to image defined
cellular populations in three-dimensional (3D) biological specimens (Wilt et al., 2009;
Ntziachristos, 2010). Their imaging depth, as well as the quality of the acquired datasets can be
further improved thanks to recent tissue-clearing solutions, which render brain tissue transparent
to photons by reducing the source of scattering, allowing confocal acquisitions with enhanced
Signal to Noise Ratios and Contrast to Noise Ratios while maintaining low laser power (Chung and
Deisseroth, 2013; Richardson and Lichtman, 2015; Magliaro et al., 2016). While these technologies
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and protocols, combined with fluorescence-based labeling
techniques, enable the imaging of the brain’s intricacies at the
microscale, single-cell segmentation algorithms able to deal with
these datasets are still lacking (Magliaro et al., 2019), despite
targeted initiatives such as the DIADEM (DIgital reconstructions
of Axonal and DEndrite Morphology) challenge in 2009–2010
(Gillette et al., 2011) and the BigNeuron project in 2015 (Peng
et al., 2015). In fact, different approaches have been implemented
for reaching the goal of segmentation of single cells (Acciai
et al., 2016). Most of these tools reconstruct the pathway of
neurite or neural processes, i.e., neuron tracing (Quan et al.,
2016; Kayasandik et al., 2018) using different approaches, ranging
from active contour methods (Kass et al., 1988; Wang et al.,
2009; Baswaraj et al., 2012) to hierarchical pruning (Peng et al.,
2011a; Xiao and Peng, 2013), in an attempt to face the a
number of key challenges: (i) noisy points causing over-tracing,
(ii) gaps between continuous arbors causing under-tracing, and
(iii) non-smooth surfaces of the arbors violating geometric
assumptions (Liu et al., 2016). Among them, machine learning
approaches are widely considered as robust for neural structure
segmentation in image stacks (Januszewski et al., 2018; Sakkos
et al., 2018). These methods mainly consist in building a classifier
able to discern between foreground and background, thanks
to prior information obtained through a training dataset of
manually-segmented neuron structures. However, building the
training dataset is very time consuming, in particular because
it needs to be fleshed out when dealing with different images
(e.g., neuron types with different morphology or stacks with
different background/foreground features). Finally, many tools
and algorithms for neuron segmentation primarily focus on
sparsely labeled data, such that their application to images
(or volumes) representing densely packed neurons, typical of
mammalian brains, is limited (Chothani et al., 2011; Wang et al.,
2011, 2017; Peng et al., 2014; Hernandez et al., 2018).

The outcomes of neuron reconstructions are traditionally
stored in a.swc file format, where spatial (i.e., x, y, and z
coordinates) and morphological (e.g., neurite thickness)
information about specific points of interest (e.g., neuron
nodes) are listed. This standard describes neuron morphology
with a number of structurally connected compartments (e.g.,
cylinders or spheres representing neuron arborization or
soma, respectively), thereby neglecting the morphological
and volumetric information along the neuron’s length
(Magliaro et al., 2019).

Confocal and 2-photon datasets are characterized by on-
plane and intra-plane pixel intensity heterogeneities, deriving
from optical phenomena and the non-uniform distribution of
fluorophores through the sample (Diaspro, 2001). Given these
intrinsic features, a valid procedure for accurately digitizing the
neural structures in the stack could be obtained by leveraging
on local approaches and methods enforcing spatial constraints,
such as region growing procedures (RG) (Brice and Fennema,
1970; Xiao and Peng, 2013; Acciai et al., 2016). RG is a
pixel intensity-based segmentation method that identifies the
foreground starting from a pixel, i.e., the seed, belonging
to the foreground itself. The neighboring pixels of the seed
are iteratively examined based on a predefined rule, usually

a homogeneity predicate, which can be estimated locally to
determine whether they should be added to the foreground or
not. The performance of the procedure may be influenced by
both the seed selection and the rule (Baswaraj et al., 2012). The
choice of the rule may be non-trivial, in particular in view of
delivering a general-purpose segmentation algorithm. Adaptive
strategies based on mixture models have been successfully used
in video foreground/background segmentation (Stauffer and
Grimson, 1999; Barnich and Van Droogenbroeck, 2010). Here,
we exploit a similar approach that takes into account the image
formation process. Here we propose a novel RG strategy based
on an estimation which considers the image formation process
(Calapez and Rosa, 2010) to define intrinsic properties of signal
distribution in the image in question.

Our rationale is that confocal and 2-photon microscopy are
based on sampling successive points in a focal plane to reproduce
the spatial distribution of fluorescent probes within a sample.
Hence, each pixel contains a discrete measure of the detected
fluorescence within a sample interval, represented by a photon
count, and certain amount of noise, deriving from different
sources (Pawley, 2006; Calapez and Rosa, 2010). Therefore,
statistical methods represent a natural way of describing confocal
or 2-photon datasets. Different models have been proposed
to depict confocal image properties (Calapez et al., 2002;
Pawley, 2006). Specifically, mixture models (MM) have been
suggested as the best descriptor of the sharp peaks and the long
tails typical of background and low fluorescence distributions
(Calapez and Rosa, 2010).

Given these considerations, we have developed a new Smart
Region Growing algorithm (SmRG), which couples the RG
procedure with a MM describing the signal statistics, to calculate
local homogeneity predicates (i.e., local thresholds) for iteratively
growing the structure to be segmented. Here, we describe
the SmRG workflow for single-neuron segmentation. Then, we
evaluate its performance in segmenting different neuron types
from confocal and 2-photon datasets, comparing the results with
those obtained with a gold standard manual reconstruction.
Furthermore, we compare our algorithm with state-of-the-art
(SoA) tools widely used in the field of neuron reconstruction.

THE SMART REGION GROWING (SmRG)
ALGORITHM

The Mixture Model
In its original version (Calapez and Rosa, 2010), the model is
supposed to describeK different fluorescence levels or classes; the
k-th class is described by the linear mixture model:

ψk

(

y
)

= αkψB

(

y − K0

)

+ (1 − αk) ψSk

(

y − K0

)

(1)

where y, K0 and αk denote the pixel intensity level, the
system offset and the mixture parameter respectively. ψB is the
distribution for the background pixels and is modeled according
to a discrete normal distribution, with variance vB and mean
K0, and ψSk is the intensity distribution of the k-th class pixels,
described by a negative-binomial distribution with variance vSk

Frontiers in Neuroinformatics | www.frontiersin.org 2 March 2020 | Volume 14 | Article 9

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


Callara et al. Smart-Region Growing for Confocal and 2-Photon Datasets

and mean µSk. In accordance with (Calapez and Rosa, 2010) the
negative-binomial distribution is re-parameterized in terms of

pk =
µSk

vSk
(2)

and

rk =
µ2
Sk

vSk − µSk
(3)

For region growing purposes, it is reasonable to assume the
presence of a single class k of pixels, at least locally. In this case,
the complete model for a pixel yl is described by the 5-parameter
distribution:

ψ
(

yl;K0, vB, α, r, p
)

= α
1

Z (vB)
exp
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−

(
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2vB
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+ (1 − α)
Ŵ
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yl − K0

)

!Ŵ (r)
pr
(

1 − p
)yl−K0 (4)

where all the parameters are real values except for K0 which is an
integer and α ∈ [0, 1].

The model fitting is done by means of an Expectation-
Maximization (EM) algorithm in which:

1. p and r are obtained by the method of moments (eqs. 2, 3)
2. K0 and vB are given by the maximization of the log-

likelihood

L (2|Y,X) =

maxY
∑

y=minY

ln (ψ) (5)

3. α is given by the posterior density

α =

∑maxY
y=minY αy

N
(6)

The Algorithm Outlined
The SmRG is an open-source algorithm developed in Matlab
(The Mathworks-Inc., United States). A package of the
functions needed for running the algorithm are available
at http://www.centropiaggio.unipi.it/smrg-algorithm-smart-
region-growing-3d-neuron-segmentation.

The SmRG is driven by a homogeneity predicate for
establishing a local threshold based on the intensity levels
of confocal datasets. Specifically, it exploits the statistics of
the background and the signal distributions of the confocal
acquisitions and a linear MM to determine the probability
with which a given pixel (voxel) can be considered as part of
the foreground or not, as described in section “The Mixture
Model.” The rule to grow regions is then designed from
these probabilities.

The workflow of the SmRG is sketched in Figure 1. It begins
by selecting a seed, either manually or automatically (Figure 1A).

In the first case, the user is asked to identify the seed position
by selecting a point on a focal plane (e.g., a pixel belonging
to the soma), while in the latter the Hough transform (Nixon
and Aguado, 2012) searches for spherical objects within the

FIGURE 1 | Workflow of the SmRG. (A) Manual or automatic seed selection.

(B) Dip test to test for unimodality against multimodality on a MxNx3 crop

centered on the seed. The threshold is determined with Otsu’s method or

through the Mixture Model according to whether the distribution is multimodal

or not. (C) 3D segmentation of a MxNx3 crop. (D) The regional maxima of the

distance transform of the segmented MxNx3 crop are chosen as new seeds.

(E) The procedure iterates until there are no more new seeds.

stack to identify the somata: the seed (or the seeds) is (or
are) chosen as the center of the detected sphere (or spheres).
Then, the homogeneity predicate is derived locally on an
image volume centered on the seed. The volume dimension
is a trade-off between the goodness-of-fit of the MM and
the localness of the segmentation and by default is set to
N
8 × M

8 × 3, where N and M are the on-plane size of the
image stack. To ensure enough data points for MM fitting,
the crop size is never smaller than 32×32×3. At this step a
Hartigan’s dip test (Hartigan and Hartigan, 1986) (p < 0.01)
is performed on the pixel intensity distribution of the crop to
test for unimodality against multimodality (Figure 1B). In the
case of multimodality the segmentation proceeds with Otsu’s
method (Otsu, 1979), a well-known thresholding technique for
multimodal distributions (Guo et al., 2012). Otherwise, a linear
MM, considering the background as a normal distribution and
the signal as a negative binomial, is fitted by means of an
Expectation Maximization (EM) algorithm on the crop pixel
intensity distribution. Indeed, mixturemodels combining normal
and negative binomial distributions have been observed to fully
characterize the signal associated with confocal images (Calapez
and Rosa, 2010). The homogeneity predicate is derived from
the posterior probability of the MM, α (or 1-α), denoting the
probability at which a given pixel can be considered as part of
the background (or the signal) distribution. The rule is thus
obtained as a user defined threshold for α (e.g., with 1-α > 0.999
all the seed’s neighboring pixels whose probability of belonging
to the signal exceeds 99.9% are segmented) (Figure 1C). Each
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FIGURE 2 | An example of SmRG outcome: (A) a Purkinje cell from clarified

murine cerebellum acquired using a Nikon A1 confocal microscope; (B) the

same Purkinje cells identified within its confocal dataset.

pixel that satisfies this rule and is spatially connected to the
seed within the crop is added to the object to be segmented.
At this point, new seeds are chosen from the points just
recognized as part of the neuron to be segmented. In particular,
for each segmented plane the regional maxima of the distance
transform (Maurer and Raghavan, 2003) are taken as new
seeds (Figure 1D). The algorithm iterates for each detected
seed and the process stops when there are no more pixels to
add (Figure 1E).

The result of the SmRG is a 3D matrix of logical values, whose
true values represent the voxels constituting an isolated neuron.
Figure 2 shows an example of a Purkinje cell segmented using the
SmRG from a confocal dataset representing a 1 mm-thick slice
from murine cerebellum, obtained after applying the CLARITY
protocol described in Magliaro et al. (2016).

MATERIALS AND METHODS

To evaluate the SmRG’s performance, we processed two different
sets of data. First, confocal acquisitions of 1 mm-thick slices
of clarified cerebellum from a L7GFP mouse were analyzed
to isolate Purkinje Cells (PCs) expressing Green Fluorescent
Protein (GFP). The aim was to demonstrate (i) the SmRG’s
accuracy with respect to a manual segmentation performed
by experts, as it is still considered the gold standard for
neuron segmentation (Al-Kofahi et al., 2003; Meijering, 2010),
(ii) the SmRG’s reproducibility, and (iii) its ability to handle
3D microscopic datasets representing dense-packed neurons
compared with other tools available in literature.

Then, Olfactory Projection (OP) Fibers dataset from the
DIADEM challenge was processed with the SmRG. The SmRG
reconstructions were quantitatively compared to the manually-
traced gold-standards provided by the DIADEM. Moreover,
3D neuron segmentation was performed using other SoA tools
evaluating the outputs against the DIADEM gold standards
through the metrics SD, SSD and SSD%. This allowed an
assessment of the SmRG’s ability to reconstruct 3D neuron
morphology with the same precision and accuracy as SoA
algorithms.

The tools used for both PC and OP datasets were the Vaa3D
(version 3.200) app2 (Xiao and Peng, 2013), MST-tracing (Basu
and Racoceanu, 2014), SIGEN (Ikeno et al., 2018) and MOST
(Ming et al., 2013) plug-ins. They have been extensively validated
in other reports and are widely used to compare reconstructions
provided by new segmentation algorithms (Peng et al., 2014; Liu
et al., 2016). A further quantitative comparative analysis with
NeuroGPS (Quan et al., 2016) was performed was performed on
the PC datasets.

Datasets Representing PCs
Accuracy Test: SmRG Algorithm Versus Manual

Segmentation

The confocal datasets representing dense-packed PCs from
1 mm-thick slices from clarified L7GFP murine cerebellum were
those already manually segmented in Magliaro et al. (2017).
They are available for download at http://www.centropiaggio.
unipi.it/mansegtool. Specifically, n = 3 Purkinje cells from
three different datasets were segmented automatically with
the SmRG algorithm and manually by 6 experts with the
ManSegTool, a tool purposely developed for facilitating the
manual segmentation of 3D stacks (Magliaro et al., 2017). The
matrix and voxel sizes for the three datasets are: (i) Dataset
1: 512 × 512 × 143, x = 0.62 µm/pixel, y = 0.62 µm/pixel,
z = 1.24 µm/pixel; (ii) Dataset 2: 1024 × 1024 × 389,
x = 0.31 µm/pixel, y = 0.31 µm/pixel, z = 0.62 µm/pixel (iii)
Datasets3: 512× 512× 139, x = 0.62µm/pixel, y = 0.62µm/pixel,
z = 1.24 µm/pixel.

The SmRG’s segmentation accuracy was evaluated by
comparing morphometric features extracted from the two
outputs. Briefly, we considered (i) the surface area, (ii) the
volume, and (iii) the Sholl analysis (Sholl, 1955; Magliaro et al.,
2017) of segmented structures. To compare Sholl profiles, we
calculated the total area under the curve (AUC) using the
trapezoidal rule thus obtaining a single measure for each profile
(Binley et al., 2014). Statistical differences between the features
in the manual segmented structures and those resulting from
the SmRG were evaluated by means of the Friedman’s test
with replicates. Friedman’s test allows testing treatments under
study (i.e., columns) after adjusting for nuisance effects (i.e.,
rows). Replicates refer to more than one observation for each
combination of factors. In our case, surface area, volume and
the AUC of Sholl profiles were blocking factors (i.e., rows)
with replicates represented by the three neurons, while users
and SmRG represented treatments (i.e., columns). Thus, we are
testing the null hypothesis of no difference between manual and
SmRG-based segmentation.

SmRG Reproducibility

Reproducibility tests were performed by segmenting the same
n = 3 PCs starting from different seeds. Specifically, we randomly
chose 10 pixels picked from different regions of the neuron.
Volume, surface area and AUC of Sholl profiles were obtained for
each seed and the reproducibility was quantified for each neuron
as the coefficient of variation of each measure (i.e., the standard
deviation normalized by the mean).
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SmRG vs. SoA Tools

In order to highlight the SmRG’s ability to segment single-
neurons from confocal datasets represented densely-packed cells,
we processed a 3D image stack with the App2, MST, SIGEN,
MOST Vaa3d plugins and with NeuroGPS.

The reconstructions provided by the Vaa3D plugins and by
SmRG were visually compared. On the other hand, n = 6
neurons were segmented with SmRG and NeuroGPS and
manually through ManSegTool. After translating the volumetric
information obtained with SmRG and ManSegTool in swc
format, the three reconstructions were quantitatively compared
by means of the following metrics: (i) the spatial distance (SD),
(ii) the substantial spatial distance (SSD), and (iii) the percentual
substantial spatial distance (%SSD). The spatial distance is
estimated as it follows:

SD =

∑

i dAB (i)

2 |nA|
+

∑

j dBA
(

j
)

2 |nB|
(7)

With

dAB(i) = argminj
∣

∣nA (i) − nB
(

j
)
∣

∣ , j ∈ [1, |nB|] , i ∈ [1, |nA|]
(8)

and

dBA(j) = argmini
∣

∣nB
(

j
)

− nA (i)
∣

∣ , i ∈ [1, |nA|] , j ∈ [1, |nB|]
(9)

i.e., given two reconstructions, A and B, the spatial distance is
obtained by averaging the Euclidean distance between the nodes
of A and the nodes of B, i.e., dAB, with the reciprocal measure, i.e.,
dBA. Specifically, for each node belonging to A, dAB is obtained by
selecting the minimum distance between each node of B. dAB is
thus obtained by repeating this operation for every node of A and
averaging the results. The same operation is performed with the
nodes belonging to B, to obtain dBA.

The SSD is obtained by selecting the node pairs in A and
B with a minimal distance above a given threshold S and then
performing their average. Specifically, given:

DAB =
{

dAB (i) |dAB (i) > S
}

(10)

and
DBA =

{

dBA
(

j
)

|dBA
(

j
)

> S
}

(11)

Then, the SSD is defined as follows:

SSD =
DAB

2
+

DBA

2
(12)

Finally, the % SSD is obtained by estimating the ratio of nodes
contributing to SSD. These metrics express the similarity of
two different reconstructions (Peng et al., 2011b). Essentially,
SD is a measure of how different two reconstructions are,
while SSD and SSD% measure the extent of differences between
two reconstructions considering only points above a tolerance
threshold S. The tolerance threshold for the evaluation of the
SSD metric was 2 (i.e., S = 2) voxels, as suggested in Peng
et al. (2011a). Given that the SmRG’s output is a 3D logical
matrix constituting the whole neuron, while the DIADEM gold-
standard is a set of points of interest (i.e., a ∗.swc file), a thinning

procedure was necessary to reduce the volumetric information in
SmRG to a skeleton. To this end, we calculated the 3D skeleton
of the SmRG output via a 3-D Medial Surface Axis Thinning
Algorithm (Lee et al., 1994). From the points constituting
the skeleton we reconstructed the corresponding ∗.swc file,
ensuring a fair mapping between the DIADEM reference points
and the SmRG ones.

Moreover, the precision, recall and F-score of the SmRG
reconstructions were determined with respect to the gold-
standard, quantifying the spatial overlap between the closest
corresponding nodes of the two reconstructions (Powers,
2011) and varying the tolerance threshold from 0.5 to 5
voxels, to evaluate the SmRG’s sensitivity to this parameter
(Radojeviæ and Meijering, 2018).

DIADEM Datasets Representing OP
Fibers
The dataset representing OP Fibers is available at http://
diademchallenge.org/olfactory_projection_fibers_readme.html.
It contains 9 separate drosophila olfactory axonal projection
image stacks acquired with a two-photon microscope and
their respective gold standard reconstructions provided by
the DIADEM (Evers et al., 2005; Jefferis et al., 2007). We
segmented all the neurons except OP2, since it contains many
irrelevant structures (Liu et al., 2016). The SmRG and SoA
algorithm reconstructions were compared with the DIADEM
gold-standards. Comparisons between automatic tools were
made by means of the metrics described in section “SmRG vs.
SoA Tools.”

RESULTS

Purkinje Cell (PC) Segmentation
SmRG vs. Manual Segmentation

Figure 3 shows an example of the same PC segmented by
an expert and by the SmRG. The SmRG’s accuracy was
assessed by comparing volume, surface area and AUC of Sholl
profiles extracted from the segmented PCs with the results
obtained by manually segmented ones (Figure 4). The single-
neuron reconstructions provide quantitative information on
the morphology of individual neurons in their native context
where they are surrounded by neighboring cells. Clearly the
algorithm developed is able to follow neurite arborization,
segmenting smaller branches with similar performance to
manual segmentation. Furthermore, the structure obtained with
the SmRG is consistently characterized by a smooth volume,
compared with the manual segmentation. A typical example is
reported in Figure 5, showing a zoomed detail of manual and
SmRG segmentation results.

The Friedman’s test showed no significant differences between
the SmRG and the ManSegTool segmentation in terms of surface
area, volume and Sholl profiles of the segmented structures
(p = 0.8233); a detailed ANOVA table of the Friedman’s
test is reported in Table 1. In summary, the results in the
table demonstrate that the SmRG’s performance is comparable
to that obtained from manual segmentation performed by
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FIGURE 3 | SmRG versus Manual Segmentation. (A) Gold-standard manual

segmentation. (B) SmRG automatic segmentation. (C) Merge of manual

(green) and automatic (red) segmentation, common voxels are reported in

purple.

FIGURE 4 | Testing SmRG accuracy (A) Neuron volume. (B) Neuron surface.

(C) AUC (area under the curve) of Sholl profiles. Friedman’s test was

performed with Volume, Area and AUC as blocking factors (rows, nuisance

effects) with replicates (neurons #1, #2 and #3), and with users and SmRG as

treatments (column). No statistical differences were observed

(p-value = 0.8233).

experts in terms of the accuracy of the morphological
parameters considered.

SmRG’s Reproducibility

Table 2 reports the coefficients of variation of volume, surface
area and AUC of Sholl profiles for each segmented PC.
The maximum coefficient of variation was equal to 0.0258,
demonstrating the robustness of the SmRG to changes in
initial conditions (i.e., the position of a seed belonging to the
structure of interest).

SmRG vs. Other Tools

Figure 6 shows an example of the outputs obtained segmenting
the same confocal 3D stack with the App2, MST, SIGEN and
MOST routines and with the SmRG. We were only able to assess
the comparisons visually, since none of Vaa3D plugins was able
to handle such dense datasets.

Figure 7 reports the same dense packed PCs segmented
with both SmRG and NeuroGPS, showing that the performance
of the two tools is comparable. This is also evident from the
SD, SSD and SSD% metrics obtained with respect to the gold
standard provided by the manual segmentation for all the
neurons segmented except for PC2 (Figure 8). Moreover, the
average precision, recall and F-score in Figure 9 shows better
precision and accuracy for our tool with respect to NeuroGPS
for S = 2.

OP Fibers: SmRG vs. the DIADEM
Gold-Standard
Olfactory Projection fibers segmented with the SmRG are
reported in Figure 10, along with the manually-traced gold-
standard provided by the DIADEM.

One of the distinctive characteristics of the SmRG is its ability
to trace the axon topology of OP fibers while maintaining 3D
volumetric information on neurons and their arbors. Indeed, the
structure obtained with the SmRG is a smooth three-dimensional
volume with voxel-resolution details on neuron morphology; a
feature not available from swc structures. As a consequence, the
SmRG reconstructions in Figure 10 appear thicker than the 3D
rendering of ∗.swc gold-standards.

As evident from the figure, some terminal branches of OP
fibers are not comprised in the manually traced gold standard,
since they have no effect on DIADEMmetrics (Brown et al., 2011;
Gillette et al., 2011). Nonetheless, the SD, SSD, and SSD%metrics
used in this work are naturally biased by these missing branches.
Thus, the comparison between automatic reconstructions and
gold standard were limited to those branches included in by the
DIADEM gold standard.

When evaluated against other SoA tools, the SmRG was
observed to be comparable in terms of SD. On the other hand,
our algorithm achieved the lowest values of SSD among all
tools considered (with the exception of segmentation of OP5).
It should be noted that the value of SSD% was higher for the
SmRG with respect to other algorithms, since the estimation of
the skeleton from the 3D output of SmRG produced a higher
number of nodes compared to the other methods (Figure 11).

In Figure 12 the average precision, recall and F-score across
OP fibers are reported for SmRG and SoA tools as a function of
the value of S. For S = 5, the SmRG outperforms other tools in
terms of F-score which highlights its ability to segment OP fibers
with high accuracy.

DISCUSSION

The SmRG for the automatic segmentation of microscopic data
exploits the signal statistics typical of confocal and 2-photon
images (Calapez and Rosa, 2010). Datasets representing neural
tissues from different species, processed using different protocols
(i.e., clarified murine cerebella and Drosophila brains fixed using
classical procedures) and acquired with different imaging tools
(i.e., confocal and two photon microscopy) were used to test
the algorithm. The goodness of the SmRG reconstruction was
compared with manually traced gold-standards as well as with
algorithms available in the SoA.

A quantitative analysis of the SmRG’s accuracy with PC
datasets was performed for three different neurons, whose
manually segmented counterpart was available in Magliaro et al.
(2017). Although a limited set of neurons were analyzed, the
reconstructions of the SmRG and the manually-segmented gold
standards were comparable; moreover, the seeding and RG
procedure was shown to be robust and independent of initial
conditions. The analysis performed on PCs from clarified tissues
highlighted the efficacy of the algorithm developed in isolating
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FIGURE 5 | A detail of the manual and SmRG neuron reconstruction. It is clear that the SmRG segmentation (red) leads to a smoother volume than the manual

(green) one.

single neurons from densely-packed data with respect to some of
the most widely used single neuron reconstruction tools available
in the SoA (i.e., app2, MOST, MST-tracing, SIGEN) (Ming
et al., 2013; Xiao and Peng, 2013; Basu and Racoceanu, 2014;
Ikeno et al., 2018). In particular, none of the Vaa3D plug-
ins allowed the reconstruction of 3D neuron morphology from
the confocal stacks representing neurons in their native 3D

TABLE 1 | Friedman’s ANOVA table.

Source SS Df MS Chi-sq p>Chi-sq

Columns 110.94 6 10.4907 2.08 0.8233

Interaction 64.89 12 5.4074

Error 2132.67 42 50.7778

Total 2308.5 62

SS = Sum of Squares due to each sources; Df = Degree of freedom associated with

each source; MS = Mean Squares, which is SS/Df; Chi-sq: Freedman Chi-square

statistic; p: p-value for the Chi-square statistic.

context, limiting the evaluation of the SmRG’s performance to
a visual comparison. Indeed, many SoA algorithms perform
extraordinarily well with low-quality images possessing noisy
points, large gaps between neurites and non-smooth surfaces
(Liu et al., 2016), since they were likely developed specifically for
such purposes. On the contrary, they may perform modestly or
even fail in reconstructing densely-packed neurons (Hernandez
et al., 2018), such as PCs in the murine cerebella because the

TABLE 2 | Results of SmRG’s reproducibility.

Neuron Volume Area AUC

#1 0.0015 0.0025 7.8e−04

#2 0.0176 0.0258 0.0138

#3 0.0017 6.1e−04 0.0026

Coefficients of variation for neuron volume, area and AUC for n different RG seeds.

*The coefficient of variation corresponds to the standard deviation divided by the

mean σ/µ.

Frontiers in Neuroinformatics | www.frontiersin.org 7 March 2020 | Volume 14 | Article 9

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


Callara et al. Smart-Region Growing for Confocal and 2-Photon Datasets

FIGURE 6 | An example of a confocal dataset representing PCs from a

clarified L7GFP murine cerebellum, segmented with MST, app2, MOST,

SIGEN, and SmRG. None of the SOA tools is able to deal with this dense

dataset, while the SmRG is able to isolate the PCs within the dataset. Different

colors refer to the different neurons recognized.

FIGURE 7 | PCs segmented with SmRG (green) and NeuronGPS (blue) and

compared with the manually segmented gold-standard (red).

images have very different properties (i.e., a large number of
pixels with high intensities). The quantitative analyses of SmRG
and NeuronGPS’ outcomes showed comparable performance of
the two tools in terms of reconstructed arbors. In particular,
SSD and SSD% values were similar for all PCs except for PC2,
in which SmRG performs drastically better than NeuronGPS.
Interestingly, SmRG reached a better precision (P) and accuracy
(F-score) for all used thresholds with respect to NeuronGPS.

Reconstructions of OP fibers from the DIADEM challenge
resulted in a comparable performance between the SmRG and
well-established tools for neuron reconstruction in terms of
SD, SSD, and SSD%. Specifically, the algorithm proposed here
outperformed other tools in terms of SSD, which quantifies
the discrepancy between two outcomes (Peng et al., 2011a),
in almost all reconstructions. On the other hand, the SmRG

FIGURE 8 | Accuracy of SmRG and NeuronGPS against the manually

segmented gold standard for different PCs. (A) SD (B) SSD, and (C)

percentage SSD.

exhibited higher values in the SSD% score. It should be noted
that the gold-standard OP reconstructions are available in.swc
format. Therefore, in order to compare the volumetric SmRG’s
outputs with the gold standards, firstly we were forced to
reduce the information by means of a thinning algorithm. The
thinning algorithm inevitably introduces mismatches, since it
depends on the 3D morphology of the neuron, thus biasing the
meaningfulness of the SSD% values when comparing SmrG and
SoA tools (Liu et al., 2016). The precision and recall of SmRG
outcomes with respect to the manually traced gold-standard
provided by the DIADEM highlighted the performance of our
tool with respect to SoA algorithms in the segmentation of
OP fibers). In particular, for the highest values of the tolerance
threshold considered, the SmRG’s average values of precision,
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FIGURE 9 | Precision, Recall and F-Score for varying thresholds of SSD

evaluation. SmRG has always better performance than NeuronGPS for

increasing values of the threshold.

recall and f-score were all above 95%. This suggests that,
although the algorithm was developed for segmenting neurons
from clarified cerebral tissue, segmentation procedures based on
local signal and noise statistics may be a successful strategy for
“single-neuron” settings, and thus for delivering an adaptive and
generalized algorithm, applicable to different contexts.

When two neurons naturally touch each other and
the signal intensity is high, SmRG may reconstruct the

FIGURE 10 | OP fibers segmented with SmRG and compared with the

DIADEM gold-standard (GS). Please note that for OP3, OP5, OP7, and OP8

the gold standard reconstruction misses some terminal branches (see

DIADEM FAQ at http://diademchallenge.org/faq.html).

FIGURE 11 | Accuracy of SmRG and SoA tools against the DIADEM gold

standard for different OP fibers. (A) SD (B) SSD, and (C) percentage SSD.
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FIGURE 12 | Precision, Recall and F-Score for varying thresholds of SSD

evaluation. SmRG and SoA tools have similar performance for increasing

values of the threshold. For thresholds greater than four voxels, SmRG has

the highest F-Score. For S = 5, we obtained P = 0.9538 ± 0.0350,

R = 0.9770 ± 0.0183 and F = 0.9651 ± 0.0248 (mean ± st. deviation) for the

SmRG.

two objects as one, thus requiring their post-splitting.
A watershed-based routine for separating neurons is
provided at http://www.centropiaggio.unipi.it/smrg-
algorithm-smart-region-growing-3d-neuron-segmentation.
Nevertheless, we also take advantage of the lower
intensity values of neuron boundaries with respect to
neuron bodies. This heterogeneity in pixel intensity
is exploited in SmRG and quantified by the mixture
parameter. As a result, neuron boundaries with lower
intensity values are not segmented, controlling for possible
false merge errors.

We would like to highlight that SmRG was not compared
with SoA segmentation approaches in terms of computational
times. Indeed, tools such as app2, MST, SIGEN, MOST
and NeuroGPS outperform our algorithm as they provide
faster segmentations. However, while the Vaa3D plugins
provide 3D neuron reconstructions with comparable accuracy
and precision (Figure 8) for sparsely labeled data, they fail
when performing segmentations of densely-packed neurons.
As regards the tool described by Quan et al. (2016), the
strength of SmRG lies in the amount of morphological
information it provides with respect to the NeuroGPS
neuron tracing.

CONCLUSION

Despite the numerous attempts addressed at 3D neuron
reconstruction, little attention has been paid to delivering
automatic and robust methods capable of dealing with the
large variability of datasets representing densely-packed
neurons, as well as for digitizing the morphology and
volumetric characteristics of the segmented structures. As
a result, the majority of algorithms are only able to handle
with sparsely labeled data, compelling neuroscientists to
manually segment images representing intricate neuronal
arborisations and to reducing 3D space-filling neurons to
skeletonized representations.

The SmRG, an open-source Matlab-based algorithm for the
segmentation of complex structures in 3D confocal or 2-photon
image stacks, overcome these setbacks. It provides an accurate
reconstruction of 3D neuronal morphology acquired using
confocal microscopy, which accounts for 80% of user needs in
imaging facilities. The SmRG can potentially be extended to other
imaging modalities (e.g., super-resolution microscopy) adopting
the same statistical framework for identifying the signal and noise
distribution from 3D images.

In addition, our tool allows the extraction of several
useful morphological features from the segmented neurons.
Preserving the volumetric information is an essential step for
deciphering the Connectome. Besides structural mapping, from
a biological perspective, digital 3D neuron reconstruction is
crucial for the quantitative characterization of cell type by
morphology and the correlation between morphometric features
and genes (e.g., between wild-type and model animals) or
patho-physiology (e.g., the detection of neuronal morphological
anomalies in diseased individuals compared to healthy ones)
(Acciai et al., 2016).

Future improvements could be obtained by coupling the
NeuroGPS method (Quan et al., 2016) which rely on human
strategies to separate individual neurons, with the SmRG’s one,
thus leveraging on both the geometric constraints of the former
and the statistical properties of the latter, taking the best from
both the approaches.

In conclusion, the SmRG can facilitate the identification
of the different neural types populating the brain, providing
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an unprecedented set of morphological information and new
impetus toward connectomic mapping.
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