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Internet of	ings (IoT) resources cooperate with themselves for requesting and providing services. In heterogeneous and complex
environments, those resourcesmust trust each other. On-O
 attacks threaten the IoT trust security through nodes performing good
and bad behaviors randomly, to avoid being rated as a menace. Some countermeasures demand prior levels of trust knowledge and
time to classify a node behavior. In some cases, amalfunctioning node can bemismatched as an attacker. In this paper, we introduce
a smart trust management method, based on machine learning and an elastic slide window technique that automatically assesses
the IoT resource trust, evaluating service provider attributes. In simulated and real-world data, this method was able to identify
On-O
 attackers and fault nodes with a precision up to 96% and low time consumption.

1. Introduction

	e Internet of 	ings (IoT) connects people and things to
information systems via smart devices based on Internet-
oriented devices and knowledge paradigms. In the near
future, over 50 billion devices will be connected to the
Internet, supporting several applications like smart cities,
smart houses, supply chain, and precision agriculture [1].
Given this heterogeneous and complex environment, security
is a key concern in the IoT, and devices must be smart to
protect systems from threats [2].

	e swarm concept applied to the IoT leverages the
independent cooperation of devices to execute tasks and
demands special infrastructure to support heterogeneous
device interactions, such as those in smart cities environ-
ments (Figure 1). 	e components of a swarm system must
connect seamlessly and trust each other.

Security and privacy problems challenge the IoT vision.
Large amount of data will be produced from billions of
interactions between devices and people in new and existing
paradigms like cloud computing, machine to machine, Inter-
net of Vehicles, Internet of Energy, and Internet of Sensors
[3].

IoT resources interact with themselves by requesting and
providing services, sometimes opportunistically as they come
into contact with each other. In this context, misbehaving
devices may perform discriminatory attacks based on trust
abuse. To maximize system security, it is important to
evaluate the trustworthiness of service providers in IoT
environments [4].

An IoT device can act as a service provider or service
requester. A service requester wants to select the best service
provider and trust it. A malicious provider resource can
o
er bad services and information, thereby compromising
systems. Trust attacks and their countermeasures are an open
issue being addressed by researchers [5].

On-O
 attacks are considered a selective attack type.
Multiservice IoT architectures may su
er attacks from mali-
cious nodes that performactions based on type of service they
provide to other nodes in the network. Amalicious device can
provide good and bad services randomly to avoid being rated
as a low trust node. AnOn-O
 (OA) attacker can also behave
di
erently with di
erent neighbors to achieve inconsistent
trust opinions of the same node. 	is kind of attack is hard
to detect using traditional trust management schemes [6].
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Figure 1: 	e swarm concept applied to IoT enabled smart city.

In addition, not all misbehaving devices are attackers.
Some may be devices in malfunction status. Separating
attackers nodes from broken nodes is useful for systems
administrators to recover the IoT systems.

To mitigate threats like OA, arti�cial intelligence and
machine learning boost the performance of security solutions
in IoT architectures. Researches in security using arti�cial
intelligence range from simple modeling attack patterns to
sophisticated anomaly detection schemes, which can detect
unknown attacks. Machine learning applications are devel-
oping security solutions like antivirus, network intrusion
systems, and fraud-detection systems [7].

	e solution described in this study aims to provide
a real-time method to automatically assess OA resources,
evaluating service attributes such as data provision or quality-
of-service data. For this purpose, we developed an elastic
slide window and machine learning based trust management
method to aid systems and users to protect themselves against
OA.

	e main contributions of this study are the following:

(i) Introduction of a method to improve security in IoT
by identi�cation of On-O
 trust attacks, using less
data

(ii) An e�cient method to di
erentiate attackers nodes
from broken nodes

(iii) A �exible implementation, which combines machine
learning and elastic sliding window to correctly
understand variations in trusted devices outputs

(iv) Design and execution of a proof of concept using
simulated and real data from a smart city project,
demonstrating the e�ciency of the method.

	is article is structured as follows. Section 2 presents
related works on OA. Section 3 presents our smart trust
management method and methodologies to validate the
solution. Section 4 presents the results achieved in simulated
and real-world scenarios. Finally, Section 5 presents our �nal
conclusions and future works.

2. Related Works

Trust evaluation is an essential part of a trust management
scheme. 	ere are many di
erent methods to compute the
degree of trust in distributed networks. 	ey can be divided
into direct and indirect trust. Direct trust refers to methods
that infer a trust score owing to direct data observations.

Indirect trust uses reputation and recommendations by other
peers. Trust scores can persist in a known central node or
an authorized third party. In a decentralized model of trust
evaluation, a node computes a trust value for every node
interaction.

	e distributed management approach in [8] computes
the trust value locally by nodes. 	e trust value is based
on direct observations, through the service availability of
related node. 	is scheme is time and resource consuming.
It required 120min to �ll the local table with suspicious and
trusted nodes. Another drawback of this approach is that it
did not consider the initial trust level of a peer. A recent
study [6] found this introduced reward and punishment
scheme as only method to protect against OA menace in IoT
environments.

	e adaptive security model in [9] is based on a trust
evaluation method composed of three complementary com-
ponents: experiences, observations, and recommendations. It
focuses on reducing resource consumption in mobile ad hoc
network. 	e clustering architecture in [10] addresses trust
management in the IoT based on the similarity of interest in
each cluster. Its prediction mechanism uses the Kalman �lter
to estimate the trust value in advance.

	e trust-based o�oading method for mobile M2M
communications in [11] uses reinforcement learning and
builds a feedback system. 	e trust level of an initiator node
toward other nodes is updated a�er each communication
to enable the node to more precisely evaluate new inter-
actions. It focuses on trust which can improve the energy
consumption and computation speed of devices and improve
the availability of the system. However, this scheme does not
consider the di
erent services provided by a peer, and nor
does it consider the trustworthiness of the collected trust data
of each node.

RealAlert is a policy-based secure and trustworthy sens-
ing scheme proposed in [12]. In this scheme, the data
trustworthiness and IoT node attributes are assessed using
anomalous IoT data and contextual information that repre-
sents the environment from which anomalous IoT data were
obtained. Policy rules are de�ned to specify how to evaluate
the trustworthiness in di
erent situations. New devices or
new normal observations may be considered attacker by an
outdated policy.

	e quantitative model of trust value based on multi-
dimensional decision attributes in [13] uses the monitored
direct trust value measured from network communication.
Packet forwarding capacity, repetition rate, consistency of the
packet content, delay, and integrity are evaluated. It adopts the
D-S theory to computes the trust. Its drawback is related to a
large amount of data collected from various devices in the IoT
environment. 	e amount of data increases exponentially,
and continuously streaming data is di�cult to manage with
traditional network communication data analysis methods.

	e study [14] uses a trust relationship scheme based
on clustered wireless sensor networks (M2M). A cloud
model implements the conversion between qualitative and
quantitative data of sensor nodes (trust metrics). To calculate
the trustworthiness of sensor nodes, the proposed method
considers communication, message, and energy factors, a
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Figure 2: 	e smart trust management method data �ow on cloud.

Table 1: Related works comparison.

Study FDN NPTS DAM

[8] x

[9] x

[10] x x

[11] x x

[12]

[13] x

[14]

[15] x

Our method X X X

mathematical assignment of a dynamic weight for each trust
factor to detect attacks. Cloud solutions are threatened by
vendor related problems (proprietary protocols or end-to-
end designs), low end devices computer power, and service
discovery incompatible methods.

	e trust management and redemption scheme in
[15] discriminates between temporary errors and malicious
behaviors to detect and defend againstOA. It uses predictabil-
ity trust, computed as the ratio of good behavior to the total
behavior in the system, and a static sliding window that
records previous behavior history. 	is scheme needs time
to compute the entire system behavior. Maintaining a static
behavior record, it cannot accommodate new trusted acts.

All studies evaluated were also compared (Table 1) in
terms of information (metadata entries) needed to compute
the trust score (FDN), no need to know previous trust score
from a neighbor node (NPTS), or the di
erentiation between
attacker nodes and malfunctioning (broken) ones (DAM).

	e method presented in this work �lls the FDN, PTS,
and DAM gaps present in other works and aggregates
more e�ciency in terms of detection precision, recall, and
implementation �exibility.

3. Methodology

In this section we demonstrate our proposed method to
detect OA in IoT.	e two validation scenarios are described.
To �nd the best machine learning classi�er, we also conduct
a comparison between supervision methods.

3.1. A Smart Trust Management Method to Detect On-O�
Attacks in the Internet of �ings. 	e goal of the proposed
method is to collaborate with IoT systems to identify OA
attacks and broken nodes. Interactions among IoT devices
are evaluated using available metadata attributes. 	is smart
trustmanagementmethod is designed to be accessed through
a representational state transfer (REST) application program-
ming interface (API). Figure 2 illustrates themetadata �ow of
the cloud.

An IoT object metadata can be sent to the method to
be evaluated. In the preprocessing phase, data are submitted
to related feature type extraction process. Text data are pro-
cessed by the HashingVectorizer [16]. 	is process converts
text (�-grams only from text inside word boundaries) to a
matrix of token occurrences and �nds a token string name for
the feature integer indexmapping.	is approachwas selected
because it does not store a vocabulary dictionary in memory
and can also be used in streaming (partial �t).

Each kind of preprocessed data is submitted to a speci�c
machine learning classi�er to identify its class. Whenever the
data, such as the annual temperature range for a city, is on the
range of accepted values it is assumed to be trusted (Figure 3).
Otherwise, out-of-range values are assigned as outliers.

	e classi�er con�rms whether it identi�ed a class and
returns a decision function value. 	e decision function is
used by our method to determine the elastic slide window
size. It is calculated by observing the evaluated data sample
distance hyperplane of the model decision function. 	e
degree of separation achieved by the hyperplane has the
largest distance to the nearest training data points of any
class (the functional margin). A high (or positive) decision
function value corresponds to the prediction assurance.
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Figure 4: 	e elastic slide window.

Table 2: Output decisions for two analyses in the same elastic slide window.

Elastic slide window Output

Read 1 Read 2
	ing ESW size

Class High Low Class High Low

x x x x Trusted Decrease

x x x x Trusted Increase

x x x x Trusted Decrease

x x x x Trusted Increase

x x x Attacker Decrease

x x x Attacker Increase

x x x Attacker Decrease

x x x Attacker Increase

x x x Attacker Decrease

x x x Attacker Increase

x x x Attacker Decrease

x x x Attacker Increase

x x Broken Decrease

x x Broken Increase

x x Broken Decrease

x x Broken Increase

	e elastic slide window (ESW) presented in Figure 4 is
an important phase of the data �ow. It enhances the trust
using time frame analysis. An OA sends good and bad read
values in a discretionarymanner.Healthy systems expect only
good values over time.When the classi�er sends an identi�ed
class and low decision function value, our method assumes
there are doubts about trust, and the evaluated resource
needs to be tested again in a larger time frame. With each
interaction, the elastic slide window is aggregated by decision
function values. Low decision function values lead to higher

elastic slide windows and permit the method to analyze the
variance in signi�cant node behaviors (good or bad).

	e trust dispatcher is responsible for saving the elastic
slide window size value in a database or memory for future
reference. It also determines the trust resource type: Good,
On-O
 attacker, or Broken. 	e trust dispatcher implements
the decisions mapped in Table 2.

Some implementation details must be considered in
our smart trust management method (Algorithm 1). Two
variables need to be initialized to the elastic slide window:
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input: A metadata� (��, ���	)
output: A predicted type: (
���	, ��-���������, ������)

(1) ������ℎ� ← ���ℎ�;
(2) ������ ← ���;
(3) ������	����� ← ����������.���	��(�);
(4) ������������������ ← ����������.��c������������(�);
(5) if � in������� then
(6) �. ��	�!��	�� ←

(������ + ���()) − ������������������;
(7) �.���	����� ← ������	�����;
(8) if �. ��	�!��	�� ≥ 
���() then
(9) if ������	�c��� == −1 and�.���	����� == −1 and

������������������ ≤ ������ℎ� then
(10) �.���	����� ← 0;
(11) end

(12) if ������	����� !=�.���	����� and
������������������ ≥ ������ℎ� then

(13) �.���	����� ← −1;
(14) end
(15) if ������	����� !=�.���	����� and

������������������ ≤ ������ℎ� then

(16) �.���	����� ← �.���	�����;
(17) end
(18) end

(19) end
(20)�. ��	�!��	�� ← �. ��	�!��	�� − ������������������;

Algorithm 1: 	e smart trust management method algorithm.

������ℎ�(line 1) and �����(line 2). ������ℎ�(1) allows
system administrator to de�ne the value to be considered
as trusted in a decision function score (lines 11, 14, and 37).
It is also utilized to calculate the growth degree of an ESW
(line 30). 	e variable ����� records the initial ESW time
(in seconds) for a new resource.

	e veri�cation in line 9 checks if a ESW for a resource is
greater than the actual computer time andmust be considered
in this analysis. New ESW sizes are calculated using previous
ESW values minus the new decision function value. Negative
decision function values aggregate the ESW size (line 30).
	e output decisions for two analyses in the same elastic slide
window are implemented in lines 7, 11, 14, and 17.

	e smart trust management method returns results by
a REST/API query. Figure 5 shows an example of an output
analysis from our method. 	e smart trust management
server is consulted via the Constrained Application Protocol
(CoAP) about an object and returns the results in JSON
formatted data. For example, the object ID: 14with ametadata
payload 46 (degree Celsius) ismarked as an��-���������.
A trust score (the decision function value) is also presented.

Other possible results are$��	 for predictable devices or
������ for two or more fault values in the same elastic slide
window.

	e classi�er model used by the smart trust management
methodwas created by theOneClassSVM (RBF kernel, upper
and lower bound on fraction of training errors = 0.1, and
kernel coe�cient = 0.1) method, trained with 2000 samples,
implemented with Python 3.6 scikit-learn and LIBSVM

Figure 5: Example of an output result by the smart trust manage-
ment server.

library [16], version 0.18.0, on a desktop machine with a Core
i7 3.60GHz processor and running Windows 10.

To validate our solution, we prepared two experimental
setups: computer simulation and a real-world scenario. 	e
setups have annotated data for OA nodes and broken nodes.

3.2. Simulation Validation. Our simulation setup consists of
51 nodes’ set (Figure 6). A node is the destination object
representing the data consumer and uses our method to
identify trusted and misbehaved nodes. Forty nodes act as
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Figure 6: Simulation experiment scenario.

good nodes (orange) and only provide trusted values. Five
nodes (pink) are OA and they provide randomly trusted and
untrusted data. We also simulated �ve malfunction nodes
(yellow), which always send untrustable data.

Table 3 gives the simulation con�guration parameters.We
used the Cooja simulator for Contiki 3.0 OS. 	e simulation
ran for two hours on a desktop machine with a Core i7
3.60GHz processor running Windows 10. 	e simulation
generated 4844 samples of data. Cooja is popular within
the WSN and IoT research community and results can be
benchmarked with other studies.

3.3. Real Data Validation. To evaluate our method in a
real-world scenario, we used 4111 samples of temperature
data from February to March 2015 from the city of Aarhus,
located in Denmark [17]. 	is city has a regular temperature
range during this time of the year ranging from −3 to
16 degrees Celsius (Figure 7). A total of 500 misbehavior
attack samples were simulated using random out-of-range
temperature observations (from −23 to 36 degrees Celsius)
and injected in the test dataset.

3.4. Classi�ers Comparison. To verify the best classi�er
method to solve this problem we conducted tests with

Table 3: Summary of simulation parameters.

Parameter Value

Simulator Cooja under Contiki 3.0 OS

Radio environment
Unit disk graph medium (UDGM): dist.

loss

Deployment area 400m × 400m

Type & number of
nodes

Sky mote, 50 senders & 1 sink

Range of nodes Trans. range: 50m, interference range: 50m

Physical layer IEEE 802.15.4

MAC layer IPv6

Network layer RPL

Transport layer UDP

Simulation duration 2 h

Sending rate 1 packet in every 20–60 sec

two kinds of classi�ers: one-class and multiclass support
supervised classi�ers. One-class classi�ers studied were
OneClassSVM, robust covariance (EllipticEnvelope), and
isolation forest. Nearest Neighbors (KNeighborsClassi�er),
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Table 4: Classi�ers con�guration.

Classi�er Con�guration

OneClassSVM
OneClassSVM (cache size = 200, coef0 = 0.0, degree = 3, gamma = 0.01, kernel = “rbf”,, max iter = −1, nu =

0.01, random state = None, shrinking = True, tol = 0.001,, verbose = False)

Elliptic Envelope
EllipticEnvelope (assume centered = False, contamination = 0.1, random state = None,, store precision =

True, support fraction = None)

Isolation Forest
IsolationForest (bootstrap = False, contamination = 0.1, max features = 1.0,, max samples = “auto”,

n estimators = 100, n jobs = 1, random state = None,, verbose = 0)

Nearest Neighbors
KNeighborsClassi�er (algorithm = “auto”, leaf size = 30, metric = “minkowski”,, metric params = None,

n jobs = 1, n neighbors = 5, � = 2,, weights = “uniform”)

Linear SVM
(� = 0.025, cache size = 200, class weight = None, coef0 = 0.0,, decision function shape = None, degree = 3,
gamma = “auto”, kernel = “linear”,, max iter = −1, probability = False, random state = None, shrinking =

True,, tol = 0.001, verbose = False)

Neural Net

MLPClassi�er (activation = “relu”, alpha = 1, batch size = “auto”, beta 1 = 0.9,, beta 2 = 0.999, early stopping
= False, epsilon = 1� − 08,, hidden layer sizes = (100,), learning rate = “constant”,, learning rate init = 0.001,

max iter = 200, momentum = 0.9, nesterovs momentum = True, power t = 0.5, random state = None,,
shu�e = True, solver = “adam”, tol = 0.0001, validation fraction = 0.1,, verbose = False, warm start = False)

Naive Bayes GaussianNB (priors = None)
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Figure 7: Temperature range observed from the city of Aarhus
(extracted from https://en.climate-data.org/location/302/).

linear SVM, Naive Bayes (GaussianNB), and Neural Net
(multilayer perceptron) were tested as multiclass classi�ers.
Table 4 shows the con�guration used in each classi�er tested.

All classi�ers were trained with the same train simulated
dataset, with 2000 reads, and tested with a 4844-sample test
dataset. A zero-value array was used as a secondary class for
multiclass classi�ers.

4. Results

Our proposed security method was able to detect OA in the
IoT with 97% of precision in a real-world dataset and 96%
of precision in simulated environment. Compared to other
studies, our method was 95% faster and 5% more precise in
OAs identi�cation. In a novel way, the elastic window feature
helped di
erentiate broken or malfunctioning nodes among
misbehaving devices.

	e hyperplane related to the model created by the
OneClassSVM classi�er is shown in Figure 8. 	is visualiza-
tion was generated using the t-SNE technique. 	e trained
dataset (blue points) was grouped to create the decision
function boundaries. Meanwhile new normal observations
(green points) are likely close to the data used for training.OA

−5
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10

0 5−5−10 10

−10

Figure 8: Decision function hyperplane.

(black points) or broken devices are located far from decision
function boundaries.

	e OneClassSVM classi�er e�ciently grouped the test
data near to the trained dataset, without over�tting. Abnor-
mal samples were presented far from the decision function.

	e decision function returns a distance value of an
evaluated sample from the decision hyperplane. If a class is
identi�ed, normal (trusted) observations have values near 0,
while attacks (misbehaving and out-of-range reads) have high
distance values (up to −200). In Figure 9 we showed the trust
score (distance from decision function) for a set of observed
reads.

	e two experimental setups were trained with a set of
2000 reads related to the temperature range observed in the

https://en.climate-data.org/location/302/
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Figure 10: Time spent to identify OA and broken nodes.

city of Aarhus (−3 to 16 degrees Celsius). Test reads in this
range obtain decision function distance values near to zero,
while other values received low values.

4.1. Simulation Validation. Study [8] utilizing the number,
position, and tra�c volume of malicious nodes demands
approximately 120min to determine OA. Our method iden-
ti�ed OAs in 5min average time (95% faster) and 96%
precision. Figure 10 shows the time spent to identify OA.
Nodes 31∗ (good), 8∗, and 32∗ (attackers) are from compared
study [8] and Nodes 5, 9, 22 (goods), 41, 42, and 43 (OA)
are from our simulated scenario. Nodes 46, 47, and 48 are
broken nodes and also were identi�ed in 7min. Positive trust
scores are related to good nodes and negative trust scores to
attackers respectively.

In various situations, not all misbehaving devices are
attackers. Some of themmay be devices inmalfunction status.
We did not identify relevant researches in the di
erentiation
IoT OA from errors sent by broken nodes. In this paper,
we compare our solution to density-based spatial clustering
of applications with noise (DBSCAN) algorithm. DBSCAN
identi�ed only two classes. 	e results in Figure 11 show the
true positives (good, attackers, and broken nodes) predicted

Baseline Our method DBSCAN

Broken

Attackers

Good

Estimated number of clusters: 2
Homogeneity: 0.541
Completeness: 1.000
V-measure: 0.702
Adjusted rand index: 0.529
Adjusted mutual information: 0.541
Silhouette coe�cient: 0.743

0

10

20

30

40

50

60

Figure 11: Comparison with DBSCAN clustering algorithm.

Table 5: Comparison with supervised classi�ers.

Classi�er Precision Recall �1-score
Linear SVM 0.88 0.71 0.74

Naive Bayes 0.92 0.82 0.85

Neural Net 0.92 0.81 0.84

Nearest Neighbors 0.91 0.84 0.87

Our method 0.96 0.85 0.87

from the presented method and the DBSCAN, compared to
expected nodes (baseline).

	e annotated simulated dataset was useful to conduct
another validation. We train, test, and compare our method
to Nearest Neighbors (KNeighborsClassi�er), linear SVM,
Naive Bayes (GaussianNB), and Neural Net (multilayer per-
ceptron). 	e results in Table 5 show our method, with the
elastic slide window approach, reaches superior precision,
recall, and �1 scores.

Our method was able to �nd three good nodes, two
attackers, and two broken nodes more than the supervision
methods.

Figure 12 shows hownodes were identi�ed by ourmethod
in simulation experiment. 	e �lled points are the actual
nodes.	e yellow circles are the good nodes, the cyan squares
are the attackers, and the red diamonds are the malfunc-
tioning nodes. 	e mark around the nodes represents the
predicted class.

4.2. Real Data Validation. To develop and evaluate the
smart middleware, we used 4111 samples of temperature data
collected by 115 sensors from February to March 2015 from
the city of Aarhus, in Denmark [17]. 	is city has a regular
temperature range during this time of the year ranging from
−3 to 16 degrees Celsius. A total of 500 misbehavior sam-
ples were simulated using random out-of-range temperature
observations (from −10 to 30 degrees Celsius).
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Figure 12: Resources identi�ed by our method.

Similar to the simulation experiment, ourmethod reaches
97% of precision and 95% of recall in classi�er goods and
misbehaving nodes.

4.3. Classi�ers Comparison. 	e proposed method uses the
output results from one-class classi�er types. Classi�ers like
the OneClassSVM classi�er are proven to be e�cient in out-
liers detection [18]. We use one-class classi�ers because our
method only needs to di
erentiate good (expected) metadata
reads from abnormal ones. In real-world implementation, it
is hard to train a classi�er with each type of attack data. In
addition, the system analysis capacity can be enhanced with
new one-class classi�er for new evaluated metadata.

To identify the best one-class classi�er, we compare
OneClassSVM, robust covariance, and isolation forest clas-
si�ers with the same train and test data (Table 6). 	e
OneClassSVM reaches 99% of precision and 98% of recall in
trusted resource prediction.

5. Threats to Validity

	is method may have been a
ected by some validation
threats, such as related random simulation outputs, classi�ers
seeds utilized, and datasets.

Table 6: One-class classi�ers comparison for outlier detection in
our method.

Classi�er Precision Recall �1-score
OneClassSVM 0.99 0.98 0.99

Robust covariance 0.99 0.90 0.94

Isolation forest 0.99 0.90 0.94

Simulations outputs may vary from each run period. To
minimize this threat, we ran each simulation three times and
use the average results. 	e scikit-learn library documenta-
tion alerts users that it uses random seed values, parameter
initialization variable, in the training tasks of the models,
which slightly corroborates to di
erent precision results. As
in simulations, we annotate average values of three �tting
rounds. 	e real-world dataset used was sanitized removing
NaN values and nonrelated data.

	e related works session may have been threatened
by failing to consider any relevant study. To minimize this
risk, we consulted the main indexing databases to verify
references and citations to/from selected studies. However,
some studies may not have been considered owing to the
technical limitation of search engines, the possibility of
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electronic databases not representing the complete list of all
available studies, and the nonavailability from the Brazilian
academic network or access to the printed only version.

6. Conclusion

In this article, we introduced a smart trust management
method based on machine learning and an elastic slide win-
dow technique that automatically assesses the IoT resource
trust by evaluating service provider attributes. Our proposed
security method was able to detect OAs in the IoT with 97%
of precision in a real-world dataset and 96% of precision
in simulated environment. Compared to other studies, our
method was 95% faster in OA identi�cation.

	e smart trust management method presented here
contributes to IoT trust management, protecting systems
against OA using less data (starting from two entries of one
feature). In a novel way, the elastic slide window feature also
helps to di
erentiate broken or malfunctioning nodes among
misbehaving devices.

For future works, we plan to increase the overall precision
of ourmethod by using other datasets for training and adjust-
ing the classi�er con�guration. We also intend to use the
elastic slide window to identify other IoT trust related attacks,
like opportunistic service attacks, ballot-stu�ng attacks, self-
promotion attacks, and bad-mouthing attacks.
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