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Abstract

We introduce in this paper a new chaotic map with dynamical properties controlled by two free parameters. The map

definition is based on the hyperbolic tangent function, so it is called the tanh map. We demonstrate that the

Lyapunov exponent of the tanh map is robust, remaining practically unaltered with the variation of its parameters. As

the main application, we consider a chaotic communication system based on symbolic dynamics with advantages

over current approaches that use piecewise linear maps. In this context, we propose a new measure, namely, the

spread rate, to study the local structure of the chaotic dynamics of a one-dimensional chaotic map.

Keywords: Chaotic maps, Chaos-based modulation, Discrete-time chaotic systems, Lyapunov exponent, Orbit

diagram, Nonlinear systems

1 Introduction
Chaotic signals are characterized by irregularity, aperi-

odicity, decorrelation, and broadband. They can be gen-

erated through simple deterministic dynamical systems

[1] and have promising applications in cryptography [2],

random number generation [3, 4], watermarking [5], com-

munication [6, 7], and systems modeling [8].

The well-known properties of decorrelation and broad-

band of chaotic signals make them good candidates to be

used in direct sequence spread spectrum systems [1, 9].

So, the chaos-based communication systems offer advan-

tages as resistance to jamming, robustness in multi-path

environments [7, 10], low probability of interception

[11]. In addition, the complex-like behavior of chaotic

signals propitiates secrecy in a physical level, and the

easy-to-generate property of these signals offers a poten-

tial solution to implement low-cost systems [2, 12, 13].

Several coherent and non-coherent chaotic modulation

schemes have been proposed in the literature. In the

case of coherent modulation, the system requires a per-

fect knowledge of the chaotic sequence to demodulate

the received signal. The detection is performed by using

correlator-type receivers and this implies in a more com-

plex communication system. Some well-known coherent
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modulations schemes are chaos shift keying (CSK) [11] and

chaos-based DS-CDMA [14], where chaotic sequences

are used to spread data signals. On the other hand, non-

coherent modulation mitigates synchronization problems

of chaotic oscillators at the receiver. This less complex

nature leads to intense study of this modulation scheme

such as differential chaos shift keying (DCSK) [11]. In

DCSK systems, each transmitted symbol is represented

by two consecutive chaotic samples. The first one is the

reference sample and the second one, which carries the

data, is exactly the reference sample or its inverse, accord-

ing to the information symbol to be transmitted. Other

non-coherent modulation schemes have been proposed to

overcome the decrease of the data rate and to improve

the system performance. In the quadratic chaos shift key-

ing (QCSK) [15], the system modulate digital information

using orthogonal chaotic basis functions. In high effi-

ciency DCSK (HE-DCSK) [16], the receiver recycles each

reference sample to carry two bits of data when one

data sample is modulated. The bandwidth efficiency is

increased and the system becomes more robust to inter-

ception. Multi-carrier DCSK (MC-DCSK) [17] is a gener-

alization of the DCSK tomultiuser systems. An alternative

solution, called OFDM-DCSK, was proposed in [18]. In

the improved DSCK (I-DCSK) [19], the reference signal is

added to the data carrier signal after time reversal in order

to decrease the duration of the transmitted symbol by

half of time and improve the spectral efficiency. Another
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recently proposed scheme is short reference DCSK (SR-

DCSK) [20], which uses reference samples of reduced

size when compared to DCSK to increase data rate and

enhance energy efficiency of the system.

In this paper, we focus on chaotic maps with suitable

properties for chaotic modulation schemes based on sym-

bolic dynamics [21]. There are two main schemes for

chaos-based communication. In the first one, the infor-

mation symbols are encoded into a chaotic sequence by a

forward iteration of a chaotic map [22, 23], while in the

second one, the information encoding uses backward iter-

ation together with the symbolic dynamics of the orbits

[21]. Two characteristics are worth mentioning about the

latter approach. Firstly, it is capable of avoiding problems

with error amplification and precision truncation found

in the former scheme, and if implemented with adequate

maps, it permits to trade performance and security. In

this context, a chaotic communication system based on a

piecewise linear chaotic map with a parameter that con-

trols the length of a guard region (never visited region)

was proposed in [24]. The same map has been considered

in other chaos-based communication scenarios [25–27].

The guard region restricts the chaotic system dynamics,

since the allowed orbits should never visit it. This limita-

tion is eliminated by the new chaotic map proposed in this

work.

The contribution of this paper is fourfold. First, we pro-

pose and analyze a one-dimensional chaotic map based

on the tangent hyperbolic function (called tanh map) with

suitable properties for chaotic modulation schemes based

on symbolic dynamics [21].

The tanh map is specified by two parameters that per-

mit to control the symmetry of the map (even or odd)

and its shape. The latter has strong implication on the

invariant distribution of the tanh map and may be used

to generate a seldom visited region that works as a guard

region on chaos-based communication schemes. Second,

we study the Lyapunov exponent of the tanh map in terms

of the control parameters and show that, in spite of the

great impact of these parameters on the dynamics, the

Lyapunov exponent is slightly affected by them. Third, we

also analyze the bit error rate of a chaotic-based com-

munication system using the tanh map over an additive

white Gaussian channel and show that, with an adequate

set of parameters, it outperforms the widely used chaotic

map based on a piecewise linear function. Finally, we pro-

pose a newmeasure inspired by the fractal structure of the

attractor. This captures the concentration of the system

outputs over the attractor and is called spread rate.

The rest of this paper is organized in six sections.

Section 2 contains background material on chaotic sys-

tems and chaotic modulation based on symbolic dynam-

ics. Section 3 introduces the tanh map. The bit error

rate analysis is conducted in Section 4. The Lyapunov

exponent of this map is studied in Section 5. Section 6

proposes a new measure for analyzing the chaotic behav-

ior of the proposed map, and Section 7 summarizes the

conclusions of this work.

2 Symbolic dynamics-based chaotic
communication system

2.1 Chaotic maps

Unidimensional chaotic maps generate a discrete-time

series {xi}
∞
i=0 obtained by the direct forward iteration of

a suitable nonlinear and noninvertible function f (x), such

that

xn = f (xn−1), n = 1, 2, . . . . (1)

Alternatively, the time series is obtained by the recur-

sive application of f (x) over the initial condition x0,

which produces the orbit of x0 under f (x), that is,

{x0, f (x0), f
2(x0), . . . }, where f k(x) denotes the kth func-

tional composition of f (x).

2.2 Chaotic modulation based on symbolic dynamics

The application of symbolic dynamics in digital chaotic

communications began with the works in [22, 28], where

the information is transmitted by a slight perturbation

of the orbit of an autonomous chaotic system. In order

to introduce this method, we consider the modified

Bernoulli map [24]

f (x) =

⎧

⎪

⎨

⎪

⎩

2x+(1+p)
1−p , −1 ≤ x ≤ −p (I0)

x
p , −p < x < p (I1)
2x−(1+p)

1−p , p ≤ x ≤ 1 (I2).

(2)

Observe that f (x) is defined over a bounded interval

H and that f (H) = H, which means that H is invari-

ant under f. This map is piecewise linear and determines

a partition of H into the subintervals I0, I1, and I2. The

chaotic modulation based on direct forward iteration of

the expanding map given in (2) presents two drawbacks:

error amplification and precision truncation [24].

These weakness can be overcome by generating the

samples of the chaotic sequence by backward iteration

[21]. Now, the map in (2) is exchanged by the inverse of

the modified Bernoulli map

f −1
s (x) =

⎧

⎨

⎩

(1−p)x−(1+p)
2 , s = 0 (I0)

px, s = 1 (I1)
(1−p)x+(1+p)

2 , s = 2 (I2)

(3)

that is a set of contraction maps over H indexed by the

symbol s. The chaotic modulation of a finite sequence of

symbols sn, sn+1, . . ., sM−1 occurs by iterating (3) from a

known final condition xN .
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The use of a contraction map mitigates the problems of

the forward iteration associated to the numerical insta-

bility and alleviates the issues of synchronization typically

found in chaotic communications [21, 23, 24].

The map (3) can be used to modulate information

sequences [24–26]. The idea is to map the information

bit 0 to s = 0 and the information bit 1 to s = 2,

then the inner region I1 for s = 1 is never visited and is

used as a guard region that ensures a minimum distance

between transmitted sequences. Observe that the length

of the guard region is increased with the increase of p,

making the system more robust against noise. However,

the system becomes more predictable, which decreases its

security for cryptography. Another drawback of this map

is the weakening of its chaotic properties, since the degree

of freedom of the system is reduced by forbidding the

occurrence of values in I1.

In the next section, we present a new chaotic map that

overcomes these drawbacks by maintaining a region that

is seldom visited without damaging the chaotic properties

of the original forward map.

3 The tanhmap
The proposed chaotic map, the tanh map, is based on

the hyperbolic tangent function and may have even or

odd symmetry. The analytical description of the map f :

[−1, 1]→[−1, 1] is defined as

f (x) =

{

e · tanh (r · (x + 1)) − 1, x < 0 (I0)

(−1)b · (e · tanh (−r · (x − 1)) − 1) , x ≥ 0 (I1)

(4)

where e = 2/ tanh(r) is a scaling factor dependent on r, for

r > 0. Consequently, the tanh map depends on two con-

trol parameters, b (determines the map symmetry) and r

(controls the shape of the map). When b = 0 (resp. b = 1),

the tanhmap has even (resp. odd) symmetry around x = 0

and is denoted by e-tanh (resp. o-tanh). Applying the first-

order Taylor series approximation tanh(y) ∼= y to (4)

for sufficiently small values of its argument, the following

map is derived for small values of r

f (x) =

{

2x + 1, x < 0 (I0)

(−1)b · (−2x + 1), x ≥ 0 (I1)
(5)

which is the tent map for b = 0 and the Bernoulli map for

b = 1. Figure 1 shows the e-tanh map for three values of

r, r = 0.1, 3, 8 as well as a finite sample of an orbit for each

value of r. Figure 2 illustrates the o-tanhmap and its orbits

for the same values of r.

The inverse of the tanh map is

f −1
s (x) =

{

1
r tanh

−1
(

x+1
e

)

− 1, s = 0 (I0)

− 1
r tanh

−1
(

(−1)b·x+1
e

)

+ 1, s = 1 (I1).

(6)

In the modulation process through a backward itera-

tion, the information bit 0 is mapped to s = 0 and the

information bit 1 is mapped to s = 1.

In Figs. 3 and 4, the asymptotic invariant distribution,

called μ(x), for the e-tanh and o-tanh maps, respectively,

is plotted for two values of r. A clear asymmetry of this

distribution around x = 0 for the e-tanh map is observed,

while this is symmetric around x = 0 for the o-tanh

map. A common feature of the tanh map is the steady

increase of points generated around its extreme values,

which results in a seldom occurrence of values around

x = 0. Points xk in this region are generated with low

probability and can then be interpreted as a guard region.

The parameter r controls the extension of this region.

The hyperbolic tangent function can be electronically

obtained as the collector current of an emitter-coupled

pair [29], and from it, the tanh map can be implemented

by using the current-mode approach. More specifically,

the collector current Ic2 of a differential pair with BJT

may be expressed as a hyperbolic tangent function of its

differential input voltage vid [29]

Ic2 =
IEE

2
·

[

1 − tanh

(

vid

2VT

)]

(7)

where VT is the thermal voltage and IEE is the polarization

current of the differential pair. The function f (x) is asso-

ciated with the output current Iout determined from the

relation Iout + Ic2 = I ′, where I ′ is a constant that depends

on the value of r. Thus, the output current is given by

Iout =
IEE

2
· tanh

(

vid

2VT

)

− β (8)

where β = I ′ − IEE/2. Thus, the parameter r can be

obtained from IEE and β .

4 Bit error rate analysis
The chaotic communication system proposed in [24] is

composed of a symbolic dynamics chaotic modulator

based on the backward iteration of the modified Bernoulli

map, a communication channel, and a decoder that imple-

ments the Viterbi algorithm over a two-state trellis to

estimate the transmitted sequence. This chaotic commu-

nication system is also considered in other communica-

tion scenarios [25–27]. These works analyze the impact of

the length of the guard region given by the parameter p on

the system performance using computer simulations. In

this subsection, we perform a similar analysis for the tanh

map over the AWGN channel, as illustrated in Fig. 5.

Let [ s0, s1, · · · , sN−1] be a binary information sequence,

sk ∈ {0, 1}. The chaotic sequence [ x0, x1, · · · , xN ] is gener-

ated from the backward iteration of the tanh map starting
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Fig. 1 The e-tanh map and its orbits for three values of r, r = 0.1, 3, 8

from a known final condition xN (obtained through (6)

with fixed parameters b and r), that is

xk = f −1
sk

(xk+1), k = N − 1, · · · , 0.

In this chaotic modulation scheme, if sk = 0, the first

equation of (6) is used in the iterative process. Otherwise,

if sk = 1, the second equation is used. The received signal

at the kth interval is given by

rk = xk + nk (9)

where nk in (9) is a zero-mean Gaussian random vari-

able with variance N0/2. The decoder implements the

Viterbi algorithm and is called in [24] by Viterbi decod-

ing algorithm for chaotic signals (VDAC). The decoder

uses a simplified trellis with two states and two outgoing

branches from each state corresponding to each informa-

tion symbol. The trellis structure at the kth interval is

shown in Fig. 6. At the kth interval, the ith state stores the

chaotic sample obtained by iterating the map backwards

starting from xN and following the surviving path until

this state, denoted by x̂ik , and the corresponding metric

associated to this state, Ci
k . The branch metric associated

to the jth branch starting from state i is

cij[ k]= |rk − f −1
j (x̂ik)|

2.

Then, the decoding algorithm finds the metric at the

(k − 1)-th interval (Ci
k−1) and the corresponding survivor

paths and processes the received sequence in a recur-

sive manner to find the path through the trellis with the

smallest metric.

Let Ēx be the average energy of the transmitted

sequence. The signal-to-noise ratio (SNR) is defined as

SNR =
Ēx

N0
.

Figure 7 shows the bit error rate (BER) versus SNR for

the e-tanh map for r = 8, 10, 12. The BPSK curve is also

shown for reference purposes. When r increases, the per-

formance is very close to that of the BPSK, indicating that

this map achieves its goal of providing a guard region (in

a statistical sense) specified by the parameter r without

suppressing orbits. The performance of the o-tanh is very

similar (curves not shown). The variation of the parameter
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Fig. 2 The o-tanh map and its orbits for three values of r, r = 0.1, 3, 8
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Fig. 3 Invariant distribution for the e-tanh map for r = 2 and r = 9

Fig. 4 Invariant distribution for the o-tanh map for r = 2 and r = 9

Fig. 5 Block diagram of a chaotic communication system based on

the tanh map

r has an important impact on the BER performance, and

we will show in the next section that this variation has no

significant impact on the Lyapunov exponent of this map.

In the next sections, we study the chaotic behavior of the

proposed tanh map given in (4).

5 Lyapunov exponent and orbit diagram for the
tanhmap

The Lyapunov exponent quantifies the degree of separa-

tion of neighboring orbits. A chaotic system has a positive

Lyapunov exponent, so infinitesimally close orbits on the

attractor separate exponentially fast, on average. For an

orbit {xi}
∞
i=0, the Lyapunov exponent of a one-dimensional

discrete map is defined as [1, 9]

λ = lim
N→∞

1

N

N−1
∑

i=0

ln |f ′(xi)| (10)

where f ′(x) is the derivative of f (x). The Lyapunov expo-

nent can be calculated exactly when the map is ergodic

and its invariant measure μ(x) is known. In this case,

the ergodicity property implies that temporal averages

equals spatial averages on the phase space with respect

to the invariant measure and the Lyapunov exponent is

expressed as [30]

λ =

∫

ln(|f ′(x)|)μ(x) dx. (11)

We show in the following that the Lyapunov exponent

of the tanh map does not depend on b.

Consider the definition given in (10). Let {xi}
∞
i=0 and

{yi}
∞
i=0 be two orbits generated by the e-tanh map and o-

tanh map, respectively. Suppose that x0 = y0 and |xℓ| 	=

Fig. 6 A trellis section used by the Viterbi algorithm to decode the

chaotic sequence
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Fig. 7 BER versus SNR for the backward iteration of the e-tanh chaotic

map with r = 8, 10, 12

|yℓ| for a positive integer ℓ. Thus, there exists a mini-

mum integer i, 0 < i < ℓ, such that |xi+1| 	= |yi+1|. We

can see from (4) that |xi+1| and |yi+1| are distinct only if

xi 	= yi, but since |xi| = |yi|, thus yi = −xi. Without

loss of generality, suppose xi ≥ 0, then |xi+1| = |f (xi)| =

|e · tanh (−r(xi − 1))−1 |=| e · tanh (r(−xi + 1))−1 |=| e ·

tanh (r(yi + 1)) − 1 | = |f (yi)| = |yi+1|. Consequently,

starting from the same initial conditions (x0 = y0), we

conclude that {|xi|}
ℓ
i=0 = {|yi|}

ℓ
i=0 for all ℓ > 0. Next,

we proof that the absolute value of the derivative of the

tanh map depends on only of the absolute value of the

argument. Suppose again that xi ≥ 0 and that f (x) is the

e-tanhmap, thus |f ′(xi)| = |e·(−r)·sech2 (−r(xi − 1)) | =

|e · r · sech2 (r(−xi + 1)) | = |f ′(−xi)|, which is also true

for the o-tanh map. Therefore, {|xi|}
ℓ
i=0 = {|yi|}

ℓ
i=0 implies

that {|f ′(xi)|}
ℓ
i=0 = {|f ′(yi)|}

ℓ
i=0.

We conclude from (10) that the Lyapunov exponent of

the tanh map is invariant with the parameter b.

We compute the Lyapunov exponent of the tanh map

using (10) from a finite orbit with N = 10, 000 points,

discarding the first 200 points to eliminate the transient

behavior. Figure 8 shows that the Lyapunov exponent of

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 8 Lyapunov exponent versus the parameter r for the tanh map

the tanhmap is positive for the range of values of r consid-

ered in this figure. It should be remarked that, if r tends to

zero, the value of the Lyapunov exponent is equal to that

of the tent map (0.693), and it slightly decreases with the

increase of r.

Otherwise, the Lyapunov exponent of the modified

Bernoulli map defined in (2) is strongly dependent on its

parameter p and is expressed as [31]

λ = (1 − p) ln

(

2

1 − p

)

+ p ln

(

1

p

)

.

For example, λ = 0.639 for p = 0.8 and λ = 0.394 for

p = 0.9. The Lyapunov exponent of this map with p = 0.8

is approximately the same of that of the tanh map with

r = 12. We fix p e r in each map and compare their BER in

Fig. 9 using the same communication scenario discussed

in the previous section.We also show in this figure that the

case p = 0.9 provides better BER performance than the

case p = 0.8 at the expense of a lower Lyapunov exponent.

The curves in this figure show that the tanh map with r =

12 outperforms the modified Bernoulli map for these two

values of p.

The orbit diagram of the e-tanh map is shown in Fig. 10,

as complementary information, and also illustrates the

chaotic behavior of this map. It should be noted that the

points concentrate around extremal values ±1 when r >

2.0. A similar behavior is observed for the o-tanh map

(figure not shown) with a symmetric distribution of points

around x = 0, as is indicated in Fig. 4.

6 Structural measures
A dynamical system may be analyzed from a variety of

perspectives, as is intended by the definitions of struc-

tural measures, e.g., phase space dimension, topologi-

cal dimension, fractal dimension, information dimension,

information entropy, and embedding dimension [32]. The

choice of an appropriate performance measure depends

Fig. 9 BER versus SNR for the backward iteration of the modified

Bernoulli map with p = 0.8, p = 0.9 and the e-tanh chaotic map with

r = 12
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Fig. 10 Orbit diagram versus the parameter r for the e-tanh map

on the intended application. In this section, we first review

three well-known generalized measures that capture the

local structure of the attractor [33, 34]. Next, we define

a new measure, called spread rate, motivated by the per-

formance gain observed in the chaotic communication

system considered in Section 4. This gain is achieved

by exploring the concentration of points observed in the

invariant distribution of the tanh map. So, the spread

rate measures the concentration of points on the attrac-

tor as a consequence of the dynamical process of a chaotic

map.

6.1 Measures on the attractor

Let {xi}
N
i=0 be an orbit of a chaotic map and consider the

coverage of its attractor by hypercubes of edge length ℓ.

The number of hypercubes that contain a piece of the

attractor is M(ℓ). A set of measures that address the local

structure of fractal attractors are based on these concepts.

As a first example, we consider de fractal (Hausdorff-

Besikovich) dimension D [35], a purely geometric mea-

sure, that characterizes the growth of theminimal number

of hypercubes of edge length ℓ needed for covering the

attractor as ℓ → 0. It can be shown that M(ℓ) ≃ ℓ−D.

This measure is independent of the frequency with which

a typical trajectory visits the various parts of the attractor.

Other aspect to consider is the computational hardness

for calculating D.

An alternative for D that captures the pattern of occu-

pation of the attractor is the information entropy, S(ℓ).

It may be understood as the information gained by an

observer by measuring the actual state xi of the system

with accuracy ℓ, assuming that he knows all properties

of the system except the initial state x0. The information

entropy can be written as [32, 36]

S(ℓ) = −

M(ℓ)
∑

i=1

pi ln pi ≃ S0 − σ ln ℓ (12)

where pi = lim
N→∞

μi
N , for a run length N with μi

occurrences in the ith hypercube, and σ is called the

information dimension. It is worth noting that S0 is a con-

stant related to the differential entropy and is obtained

as the limit (as ℓ → 0) of the relative entropy between

the distribution of occurrences of hypercubes over the

attractor and that of the uniform occupation of the hyper-

cubes [37, 38]. Moreover, in the context of lossless analog

compression, the information dimension is interpreted

as the entropy rate of a dyadic expansion of the system

[38], a relation that brings a intrinsic connection between

information systems and dynamical systems. For a uni-

form distribution, pi = 1/M(ℓ), the entropy is maximum

and the information dimension is equal to the fractal

dimension [33, 34]. The computational complexity for the

calculation of the information dimension is similar to that

of the fractal dimension [32].

Due to the exponential divergence of trajectories, most

pairs (xi, xj) with i 	= j are dynamically uncorrelated pairs.

However, the points lie on the attractor; thus, they are spa-

tially correlated. This spacial correlation can be measured

by the correlation integral C(ℓ) [39], defined according to

C(ℓ) = lim
N→∞

1

N2
×{number of pairs(i, j)such that|xi − xj| < ℓ}.

It is known that, for small hypercubes of edge length ℓ,

the growth C(ℓ) ∼ ℓν is observed [39], where ν is a con-

stant that can be taken as a measure of the local structure

of the strange attractor.

We revise in this subsection three classes of mea-

sures, defined on the attractor, that capture three dis-

tinct structural aspects of the attractor: geometric, spa-

cial distribution, spacial correlation. We propose in the

next subsection a new measure that captures the concen-

tration of points on the attractor of a one-dimensional

chaotic system defined by f (x), as is the case of Bernoulli

map, tanh map, tent map, logistic map, and others. It is

worth mentioning that the proposed measure only cap-

tures the dynamics aspects that generate concentration

of points, what is obtained by the suppression of the

effects of geometry (static aspects). Moreover, it is defined

on the graph of f (x) and not on the attractor of the

map.

6.2 Spread rate

The spread rate (SR) is a structural measure that captures

the concentration of points induced by the dynamics of

a one-dimension map f (x). Specifically, it quantifies the

concentration of points on the attractor with the compen-

sation of the stretching and squeezing generated by the

change of the derivative of f (x) along the curve, which is

the geometric mechanism responsible for the concentra-

tion of points on the attractor. To suppress the geometric

influence on the compression effect, the evolution of the

system is analyzed on the graph of f (x), and not on
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its domain, where the attractor is embedded. This per-

mits to compare the concentration induced by different

dynamics. For parameterized maps, it permits to identify

if the concentration property of the dynamics effectively

changes with the variation of the control parameter.

The spread rate is defined as the percentage of effec-

tively visited regions of the curve f (x). A region is called

effectively visited if its length is shorter than a thresh-

old sth, that is the arc length between two consecutive

points over the curve for a uniform distribution of points.

Therefore an orbit of length N of a map f (x) has thresh-

old sth � L/N , where L is the length of the curve and is

obtained from the well-known formula from calculus

L =

∫ 1

−1

√

1+[ f ′(x)]2dx. (13)

The ratio of the total length of effectively visited regions

to the length of f (x) specifies the SR. For an arbitrary

orbit {xi}
N−1
i=0 , not necessarily homogeneously distributed,

let {x̃i}
N−1
i=0 be its ordered version, such that x̃i < x̃i+1. The

partition induced on the curve of f (x) by {x̃i}
N−1
i=0 is given

by the sequence of arcs {si}
N−1
i=1 , such that the kth arc is

delimited by the pairs (x̃i, f (x̃i)) and (x̃i+1, f (x̃i+1)) and has

length

sk =

∫ x̃k

x̃k−1

√

1+[ f ′(x)]2dx. (14)

The length sk is counted as part of the effective occupied

length s if sk ≤ sth, thus

s =
∑

sk≤sth

1≤k≤N−1

sk . (15)

Finally, we define SR as

SR �
s

L
=

1

Nsth

∑

sk≤sth
1≤k≤N−1

sk =
1

N

∑

sk≤sth
1≤k≤N−1

sk

sth
.

(16)

We observe by simulations that, for the same initial con-

ditions, the tanh map generates distinct sets of arc lengths

for b = 0 and b = 1, but there is a statistical conver-

gence of the SR curves for these two values of b. Thus, the

ergodic properties of the tanh map measured by SR are

invariant on b.

The SR versus r for the tanh map is shown in Fig. 11.

For values of r from 0 to around 2, the SR curve is approx-

imately flat and shows that about 26% of the length of f (x)

amounts for the overall effectively visited regions, thus

about a quarter of the attractor is effectively occupied. The

flatness of the SR curve for this range of r indicates that

the concentration (around ±1) shown in the upper right

Fig. 11 SR for the tanh map as a function of the parameter r

plot of Figs. 3 and 4 for r = 2 is due to the geometry of

the curve and not to the dynamic. For r > 2, SR presents

an approximately linear decrease with angular coefficient

around −0.016 or 6.2% of the initial value of SR. Thus, SR

reduces by 6.2% per unit of r from r = 2 until r = 10. The

negative slope of the SR for this range of r corresponds to

an increase of the compression induced by the dynamics,

and so, beyond the compression associated to the geome-

try. We also compute the percentage of points within the

effectively visited region. It changes from 63% for r = 2 to

72% for r = 10. Thus, the increase of r results in a growing

number of points into a smaller region of the attractor.

The SR versus the parameter p for the modified

Bernoulli map defined in (2) is given in Fig. 12.We observe

the flatness of the curve for 0.2 < p < 0.8, with value

approximately equal to the maximum value of the SR for

the tanh map, that occurs for 0 < r < 2. Therefore, in this

flat region, the variation of p has no impact on the com-

pression of the map due to the dynamics. Otherwise, for

p ≤ 0.2 or p ≥ 0.8, the compression due to the dynamics

decreases.

Fig. 12 SR for the modified Bernoulli map as a function of the

parameter p
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7 Conclusions
The investigation of the chaotic properties of the tanh

map reveals that it is a generalization of the well stud-

ied tent and Bernoulli maps. The concentration of points

of an orbit around +1 and −1 can be controlled by r,

and for high enough r, the system rarely assumes values

around zero. The BER analysis allows us to design sym-

bolic dynamics-based chaotic modulators with a guard

region without degenerating the chaos by suppressing

orbits. Moreover, the variation of r has slight impact on

Lyapunov exponent of the tanh map. Thus, this map is a

promising candidate for chaos communication. We also

propose a new measure, called spread rate, to evaluate

the level of concentration of the dynamic on regions over

the attractor. We compare the performance of the tanh

map with that of the modified modified Bernoulli map.

An interesting future direction is to extend this compari-

son to modified versions of the tent map, such as the maps

defined in [40–42]. Another direction for future research

is the calculation of the invariantmeasure of the tanhmap.

The tanh map can be implemented by using an emitter-

coupled pair. Thus, a chaotic system with the tanh map is

a good candidate for low weight applications such as sen-

sor networks and in-building wireless devices for UWB

communication.
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