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Abstract— Although recent progress in 2D mobile robot
navigation has been significant, the great majority of existing
work focuses only on ensuring that the robot reaches its
goal. But to make autonomous navigation truly successful, the
‘quality’ of planned motion is important as well. Here, we
develop and analyze a pose-following kinematic control law
applicable to unicycle-type robots, such that the robot can
generate intuitive, fast, smooth, and comfortable trajectories.

The Lyapunov-based feedback control law is derived via
singular perturbation. It is made up of three components: (i)
egocentric polar coordinates with respect to an observer on the
vehicle, (ii) a slow subsystem which describes the position of
the vehicle, where the reference heading is obtained via state
feedback, and (iii) a fast subsystem which describes the steering
of the vehicle, where the vehicle heading is exponentially
stabilized to the obtained reference heading. The resulting
path is a smooth and intuitive curve, globally converging to
an arbitrary target pose without singularities, from any given
initial pose.

Furthermore, we present a simple path following strategy
based on the proposed control law to satisfy arbitrary velocity,
acceleration and jerk bounds imposed by the user. Such
requirements are important to any autonomous vehicle so as
to avoid actuator overload and to make the path physically
realizable, and they are critical for applications like autonomous
wheelchairs where passengers can be physically fragile.

I. INTRODUCTION
Planar motion control is a fundamental problem for any

autonomous mobile platform, and it has been a very active
area of research for the past few decades with a large body
of existing literature. Many existing approaches for planar
motion control involves target tracking, with targets being
positional waypoints or attached to a predefined pathway [3].

Waypoint-following control is common in the fields of
aerospace and naval sciences, where orientation of a vehicle
arriving at a desired target carry less importance as in the
case of missile guidance or control of surface vessels [9],
[10]. The method is simple and intuitive, and it can be robust
to disturbances since there is no associated deviation-from-
path error. But with this method, smooth transitions between
waypoints is an inherent problem; the orientation and ve-
locity at a given location significantly influence subsequent
motion and control effort, but positional waypoints do not
provide constraints on those quantities.
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Path-following control addresses this issue by first de-
signing the entire pathway and then making the system
converge to the path [16], [17], [18], [19]. With control
over the design of the pathway, tasks which can be difficult
to solve with waypoint-following such as static obstacle
avoidance can readily be solved. However, this approach does
require accurate and explicit path planning, and in general it
does not work well with dynamic obstacles like pedestrians.
Also, with current methods it is not clear how to make
motion along the path smooth and comfortable, i.e. with
bounded velocity, acceleration, and jerk. The situation can be
more problematic when the path is designed independently
of vehicle dynamics, which is typical of path design by
parametric curves such as B-splines.

In terms of comfortable motion, other popular classical
methods such as VFH [11] or DWA [12] are also not suitable.
Since these methods are completely reactive [1], in the
sense that the desired velocity is calculated based on the
information at a single time step, the resulting acceleration
and jerk can be arbitrarily large. Likewise, the great majority
of existing control methods assumes ideal actuators, i.e.
arbitrarily large velocity or torque can be generated instantly
[7]. Such an assumption fails to sufficiently account for
the robot dynamics, which in turn can lead to failure in
navigation [4].

The issue becomes even more critical in the case of an
autonomous wheelchair, which is the primary target appli-
cation of the control methods proposed in this paper. An
intelligent wheelchair which is capable of autonomous and
safe navigation between distinct points in an environment can
provide a necessary level of motor assistance to individuals
suffering from physical or mental disabilities. But control
methods which do not limit the velocity, acceleration and
jerk are clearly not suitable for wheelchairs since high
acceleration can harm passengers even without a collision, in
addition to being uncomfortable. Furthermore, we also stress
that the path should be intuitive (appear natural) enough to
be acceptable to human passengers.1

Thus we require the motion of the robot to be graceful.
We use the qualitative term graceful as introduced by [1] to
refer to a motion visibly safe, comfortable, fast and intuitive.
To be safe and comfortable, a motion needs to be smooth
with bounded velocity, acceleration and jerk.

Only limited attention has been paid to this subject. In [7],
a path following control law is modified to limit actuator

1These are general requirements to all autonomous vehicles intended
to carry human passengers, but the issues are more pronounced for
wheelchairs.



velocity. The approach in [1] also builds upon an existing
path following control law [17] and achieves bounds in
angular velocity and angular acceleration by adjusting linear
velocity according to path curvature. In [2], the trajectory
and associated control signal is fully generated via numerical
optimization with a cost function which provides graceful
motion, but without a closed-form control law.

In this paper, we take a different approach to achieve
graceful motion. We first show that with a natural choice
of a coordinate system, a simple and robust kinematic
control law can be found via singular perturbation [14],
which guides a wheelchair from a given pose (position and
orientation), guaranteeing convergence to an arbitrary motion
target (a prescribed position, orientation, and linear velocity),
following a smooth, intuitive curve. Then we show that this
closed-form control law makes it possible to design a set
of motion targets to guide the robot toward a specified goal
with bounded velocity, acceleration and jerk.

II. KINEMATIC EQUATIONS

It is well known that differential drive cart and simple cars
can be modeled as a simple unicycle [15]. Consider a vehicle
described by the unicycle model implemented with two
independently driven parallel wheels such that linear velocity
and angular velocity can be controlled independently. The
vehicle is underactuated in the sense that the linear velocity
of the vehicle is always aligned with the orientation of the
vehicle (i.e. the vehicle cannot move sideways).

We adopt a polar coordinate system to describe the vehicle
kinematics. One reason is that it is simply not possible to
find a smooth state feedback control law using Cartesian
representation of unicycles (Brockett’s result, [20]). But more
importantly, we try to identify and follow how human drivers
observe and describe a target, such that the derived control
law using the coordinate system can produce motion which
appears natural to human passengers.

Suppose an observer, or a sensor, is situated on a vehicle
and fixating at a target T at a distance r away from the
vehicle. Let θ ∈ (−π, π] be the orientation of T with respect
to the line of sight from the observer to the target. And let
δ ∈ (−π, π] be the orientation of the vehicle heading with
respect to the line of sight, as shown in Fig. 1.

ω

δ

θ

Fig. 1. Egocentric polar coordinate system with respect to the observer.
Here, both θ and δ have negative values.

Then, it is easy to show that the vehicle kinematics can
be written as ṙθ̇

δ̇

 =

 −v cos δ
v
r sin δ

v
r sin δ + ω

 (1)

where v and ω are linear and angular velocity of the vehicle,
respectively. A nearly identical set of state equations can be
found in [5], but wherein the coordinates are defined with
respect to the target rather than the observer.

III. KINEMATIC CONTROL LAW

From the previous section, we have (r, θ, δ)T as our
coordinates of error space where the control problem is
developed and solved. The control problem of moving a
vehicle from any given initial pose to a target pose T
becomes the problem of bringing (r, θ, δ)T to the origin. We
treat velocity commands v and ω as the control variables,
i.e. the controller is developed at kinematic control level.

To begin, let us assume v is some nonzero positive (not
necessarily constant) and ω is the only control signal. Then
from (1), it can be seen that the control signal ω only affects
the state δ, and (r, θ)T are determined via δ. Also observe
that r and θ completely describes the position of the vehicle,
and δ corresponds to steering the vehicle. Thus we can
decompose the system (1) into two parts as follows.(

ṙ

θ̇

)
=

(
−v cos δ
v
r sin δ

)
(2)

δ̇ =
v

r
sin δ + ω (3)

This decomposed structure of the system motivates a
control strategy via singular perturbation, or two-time scale
decomposition. The idea is to find (a) virtual control δ
(vehicle heading) which steers the subsystem (2) (vehicle
position) to the origin, and (b) real control ω which render
the dynamics of the subsystem (3) sufficiently faster than
the subsystem (2) and stabilizes δ quickly to a desired
virtual control, such that (2) becomes a slow subsystem
and (3) becomes a fast subsystem in a singularly perturbed
form. Note that this process is analogous to a human driver
controlling the steering wheel (fast subsystem) to drive the
vehicle (slow subsystem) to a desired pose in space.

A. Slow Subsystem and the Reference Heading

For the slow subsystem (2), consider a simple Lyapunov
function candidate

V =
1

2
(r2 + θ2) (4)

Let the virtual control δ for the slow subsystem be

δ = arctan (−k1θ) (5)

where k1 is a positive constant. Then trajectory of (2) along
(5) can be written as(

ṙ

θ̇

)
=

(
−v cos (arctan (−k1θ))
v
r sin (arctan (−k1θ))

)
(6)



Then the derivative of V along (6) becomes

V̇ = rṙ + θθ̇

= −rv cos (arctan (−k1θ)) +
v

r
θ sin (arctan (−k1θ))

which is strictly less than zero everywhere other than r = 0,
since

cos (arctan (−k1θ)) > 0, ∀θ ∈ (−π, π]

sgn(arctan (−k1θ)) = −sgn(θ)

and r ≥ 0 and v > 0 by definition. Thus the virtual control
(5) steers the system (2) from arbitrary initial position toward
the origin. Note that since arctan (·) is a smooth function
and arctan (0) = 0, we have δ → 0 as θ → 0 from (5),
which implies the overall states (r, θ, δ)T also approaches the
origin. Furthermore, by choosing v to remove the singularity
in r (e.g., by setting v = f(r) such that v = k3r in some
neighborhood around r = 0, where k3 is a positive constant),
we can guarantee that the origin is globally asymptotically
stable.

The virtual control (5) can be understood as the reference
heading of the vehicle obtained from current state θ. It
characterizes a slow manifold (Fig. 2) that the fast dynamics
of the vehicle heading will converge to. The simple equation
(5) enables us to design a set of reasonable and intuitive
global manifolds2 leading to a given target, in the sense that
the error coordinates r and θ always decrease smoothly.

Geometrically, the path given by the virtual control is the
well-known Archimedean spiral [13]. From (6), we have

θ̇

ṙ
= k1

θ

r

∴
θ̇

θ
= k1

ṙ

r
(7)

which implies that k1 is the ratio of the rate of change in θ
to the rate of change in r. The solution to (7) is

r = a θ
1
k1 (8)

with scaling factor a = r0/θ0
1
k1 , where r0 and θ0 are initial

conditions.

B. Fast Subsystem and Closed-Loop Steering
Now we develop a feedback control law for the steering.

Let z denote the difference between the actual state δ and
the desired property arctan (−k1θ), such that

z ≡ δ − arctan (−k1θ) (9)

Calculation of ż is straightforward. From (3) and (6),

ż = δ̇ − d

dt
arctan (−k1θ)

= θ̇ + ω − −k1
1 + (k1θ)2

θ̇

= (1 +
k1

1 + (k1θ)2
)
v

r
sin (z + arctan (−k1θ)) + ω

2Note that it is the manifold, not a path, that is being planned here. In
path-following, the controller will try to steer the vehicle back to a specified
path when it deviates. But here, a new vehicle heading is simply recalculated
with feedback, from manifold given by (5).
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Fig. 2. Design of slow manifold with k1, which is the ratio of the rate
of change in θ to the rate of change in r. Target (red) is shown as a larger
arrow at the center. Note k1 = 0 reduces the controller to pure waypoint-
following, while k1 � 0 offers extreme scenario of pose-following where
θ is reduced much faster than r.

Now, let ω be

ω = −v
r

[ k2 z + (1 +
k1

1 + (k1θ)2
) sin (z + arctan (−k1θ))]

(10)
with nonzero positive gain k2, so that

ż = −k2
v

r
z (11)

Furthermore, let τ ≡ r
v , which is the minimum time

needed for the vehicle to reach a goal, which is a relevant
time scale for slow dynamics of (2). Then, with k2 � 1, we
can treat ε ≡ τ

k2
as a small time scale which ensures the fast

dynamics to indeed be faster than the slow dynamics. That
is, we have

ε ż = −z (12)

which is globally exponentially stable, and ensures that
the fast subsystem quickly decays to the slow manifold.
Numerical evaluation of the decay is shown in Fig. 3.

In the original coordinates, the control law (10) can be
written as

ω = −v
r

[ k2(δ − arctan (−k1θ)) + (1 +
k1

1 + (k1θ)2
) sin δ ]

(13)
Thus, (13) is our control law for ω. Recall that we placed

no restriction on v, other than to be nonzero positive.3 That
is, we essentially have v as a free variable.

3To admit negative linear velocity, we can simply flip the orientation of
the vehicle and the target simultaneously when the sign of v changes.



Fig. 3. Exponential decay of the heading error z under the control law
(13) with k1 = 1 and k2 = 3. The vehicle starts with initial conditions of
some nonzero r0 > 0, θ ∈ (π,−π], and δ ∈ (−π, π], where max (z0) '
250 (deg). Plot shows the value of z at rf = 0.3 r0 against various values
of initial conditions of θ and δ. The maximum value of zf < 1.9 (deg).

Also, ω is a linear function of v. Specifically, we have
ω = κ(r, θ, δ) v, where κ is the curvature of the path result-
ing from the proposed control law. Curvature of a path of a
vehicle moving on a plane with linear velocity v and angular
velocity ω is simply ω/v. We can write

κ = −1

r
[ k2(δ − arctan (−k1θ)) + (1 +

k1
1 + (k1θ)2

) sin δ ]

(14)
which implies that the shape of the path is not influenced by
the choice of v.

Recall from the previous subsection that asymptotic con-
vergence to the target depends on the choice of v. Namely,
the origin is globally asymptotically stable if and only if
v → 0 as r → 0. With such a choice, the control law is
a solution to a so-called parking problem, stabilizing the
vehicle at a specific target pose.

The control law is also a solution to what can be called
the passing problem: as the control law also guarantees that
(r, θ, δ) approaches the origin with arbitrary nonzero positive
v, the vehicle can arrive and pass through specific pose
in space. It implies a straightforward implementation for a
scenario following a path or trajectory (given by series of
poses).

Fig. 4 shows some example trajectories of a unicycle under
the proposed control law. The vehicle can approach arbitrary
motion targets with a smooth and intuitive curve.

Fig. 4 shows example trajectories of a unicycle with the
proposed control law, with constants k1 = 1 and k2 = 3. The
vehicle can approach arbitrary motion targets with a smooth
and intuitive curve. Fig. 5 shows trajectories to the same
motion targets, but with constants k1 = 1 and k2 = 10.

IV. PATH FOLLOWING VIA STATIC MOTION
TARGETS

In the previous section, we have established the con-
vergence properties of the smooth control law (13). Now
we build upon the result and show how graceful motion
can be achieved, using a series of sparsely placed target
poses as a path instruction. That is, a user instructs a sparse
series of target poses, and the robot will generate full motor
commands which guarantees graceful navigation via the

Fig. 4. Example trajectories of a unicycle with the proposed control law,
with constants k1 = 1 and k2 = 3. Initial pose is marked black at the
center, and target poses are colored red. The coordinates of the poses are
given as (x, y, θP ) where θP is the orientation of the vehicle with respect
to reference frame.
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Fig. 5. Example trajectories of a unicycle with the proposed control law,
with constants k1 = 1 and k2 = 10. Note that the vehicle converge to the
slow manifold more quickly with higher value of k2.

targets4. When unacceptable target instructions (involving
collisions, etc.) are given, they can easily be detected and
rejected via model predictive simulation.

A. Simple Linear Velocity Selector

In a path following scenario, perhaps the simplest ap-
proach for smooth navigation would be to adjust linear
velocity of the vehicle as a function of path curvature. Note
that the task becomes particularly easy with the proposed
control law, since path curvature can be obtained directly
from feedback (14) and linear velocity v is a free variable.

Specifically, we require v → 0 as κ→∞, and v → vmax
as κ→ 0, where vmax is imposed maximum linear velocity.

4We avoid the term ‘waypoints’ since it implies the instructions are given
as positions. Here the instructions are given as target poses.



Fig. 6. Effect of design parameters β and λ on the curvature-based velocity
rule (15) which has bell-shaped profile. Higher value of λ results in more
sharply peaked curve, and higher value of β let the velocity drop more
quickly as κ increases.

A practical solution (not optimized) which satisfies the
requirements is

v(κ) = v(r, θ, δ) =
vmax

1 + β|κ(r, θ, δ)|λ
(15)

where constants β > 0 and λ > 1 are design parameters.
Effect of design parameters are illustrated in Fig. 6

For the experiment in section V parameter values β = 0.4
and λ = 2 were used, with which v(κ) ' 0.4 vmax at κ = 2,
i.e., when the radius of osculating circle is 0.5m.

Then the angular velocity simply follows (13), that is, ω =
κv with v given by (15). With given parameters analytic
maximum for angular velocity becomes ωmax = π

4 vmax.

B. Heterogenous Control and Human-like Driving Strategy

When presented with a single target, the control law
(13) augmented with (15) allows the vehicle to navigate
gracefully. But to navigate in more structured environment,
multiple intermediate targets become necessary to reach a
goal without collision. Then transitioning between targets
becomes an inherent problem, since target switching intro-
duces discontinuity in vehicle state (r, θ, δ)T , which may
render derivatives of command signals arbitrarily large if the
transition is instantaneous. Resulting high acceleration and
jerk can lead to actuator overload (thus failure to execute a
path) and discomfort to passengers.

Before we proceed further, let us briefly examine how
human drivers navigate in an environment. When a human
driver approaches a corner, the driver first examines how
sharp the turn is and then reduces linear speed accordingly.
At the corner, the driver would fix the linear velocity and
change angular velocity smoothly to acquire desired heading,
and then regain speed after passing the corner and the
heading is stabilized. Considering how well a human driver
can perform the task, it makes sense to adopt a similar
procedure.

Given two consecutive targets Pi = (ri, θi, δi)
T and

Pi+1 = (ri+1, θi+1, δi+1)T , we first slow down to a desired
speed vTi

before reaching Pi. The transition (analogous to
turning a corner) is initiated at some threshold distance
rt away from Pi and lasts for a nonzero time interval
τω , so that the size of the derivatives become manageable.
During the transition linear velocity is held constant and

Fig. 7. Change in the signal content under (17), between two heterogeneous
signals ui and ui+1 during the transition period τ .

angular velocity transitions from initial angular velocity ωr
to ω = κ(Pi+1) · vTi

. Finally, the vehicle will speed up again
from vTi to v(Pi+1), following (15).

For actual transition, we have developed a heterogeneous
control scheme which is a variant of a method proposed in
[8]. The idea is to gradually mix two heterogeneous control
signals over transition interval τ , using a modified sigmoid
function στ (t) which is truncated and rescaled to domain
[0, τ ] and range [0, 1]:

στ (t) =
1

0.98
(

1

1 + e−9.2(t/τ−0.5)
− 0.01) (16)

Then the mixed signal during the transition from ui to ui+1

is simply given by

u(t) = (1− στ (t))ui + στ (t) · ui+1 (17)

where t ∈ [0, τ ] is a variable indicating the progress of
transition. Fig. 7 shows the change in the signal content using
the heterogeneous control.

It can be shown higher derivatives of (17) linearly depends
on the magnitude of ∆u ≡ ui − ui+1. In the proposed
scenario, the magnitude of change in angular velocity com-
mand ∆ω during the transition linearly depends on vTi

since
ω = κ v. Thus vTi

is an effective handle for the magnitude
of the control signal ω and its higher derivatives. Desired
linear velocity vTi given user-specified bounds can easily be
obtained numerically via model predictive simulation.

The process can be formally described as forming a motion
target Ti ≡ (PTi , vTi)

T , which is a set of desired linear
velocity and target pose in space, by assigning desired linear
velocity vTi

to the target pose Pi based on the relationship
between Pi and Pi+1 under (13). Note that the process can
be automated and does not require additional input from the
user.

V. RESULTS

The proposed control law and the path following algorithm
was tested on a physical robot (Fig. 8). The testbed is a
differentially driven wheelchair robot equipped with a laser
range finder and an IMU, about 1.2m in length and 0.76m in
width. Path instructions were given manually by specifying
multiple target poses on a map generated via SLAM.

A trajectory of the robot from a typical test run is shown
in Fig. 8. The trajectory shown consists of a slow turn (lane
change), a 90 degree turn and a final stop, typical actions



Fig. 8. Left: Differentially driven wheelchair robot. Right: Robot trajectory,
traversing distance of 16.7m in 22.3 seconds. Motion targets are marked as
concentric circles with protruding line segment indicating target orientation.
Final position of the robot is shown as a purple rectangle.

required to navigate in office environment. Fig. 9 - 11 show
the state of the robot along the trajectory.

In the run shown the robot traversed distance of 16.7m
in 22.3 seconds. The robot was set to begin slowing down
when it reaches the lookahead distance rl = 1.5m from
a motion target and commence target transition when it
reaches the threshold distance rt = 1.0m (about the size
of the robot). The transition lasts over the interval τω = 1.3s
where the blending of angular velocity commands takes
place. Numerical values of imposed bounds are vmax = 1 m/s,
ωmax = π

4 rad/s, ω̇max = 2.8 rad/s2, and ω̈max = 7.7 rad/s3, all
of which are satisfied over the entire trajectory.

For the implementation, care should be taken to choose
appropriate values of threshold distance rt, since 1/r term
in the control law (13) can amplify the noise from the
localization if v is constant. The issue can be resolved by
either setting rt sufficiently large (for intermediate motion
targets) or by letting v ∼ r, such that v → 0 as r → 0 which
cancels each other out (for the final motion target). More
data and implementation details will be available in [21].

Data was gathered at 20Hz via SLAM, which give us
fairly accurate pose data over the trajectory. Velocity, accel-
eration and jerk were obtained from the pose data through
standard numerical differentiation. To get reliable values for
higher derivatives, however, some smoothing operations were
necessary, and here local linear regression over a sliding
time window of 0.5 second was applied. Since smoothing
operations can significantly effect the calculation of the
higher derivatives, we also show linear accelerations directly
measured at 50Hz from an independent IMU, MicroStrain’s
3DM-GX2 [22], for qualitative validation. The shape and the
level of the data corresponds well to the calculated value.

VI. DISCUSSION

It is clear that there exists a trade-off between
speed/maneuverability and comfort. Here, the curvature
based rule for linear velocity (15) and the sigmoid-based
heterogeneous control (17) addresses the trade-off by al-
lowing the robot to slow down according to the curva-
ture/discontinuity associated with presented path, by taking
advantage of the fact that the smooth control law (13) admits

Fig. 9. Linear velocity v and angular velocity ω. Angular velocity
measurements from an IMU is also shown. The robot slows down as needed
at t = 4.7, 12.2, 17.1s, where the target transition occurs. The velocities
changes smoothly within imposed bounds. Best viewed in color.

Fig. 10. Linear accleration a = v̇, angular acceleration α = ω̇, and
linear acceleration measurements from the IMU. Note that the differentiated
and smoothed values of a closely tracks the independently measured IMU
values. Best viewed in color.

Fig. 11. Linear jerk j = v̈ and angular jerk γ = ω̈, respectively. Both j
and γ stays well within the imposed bounds, as can be expected from the
smooth trajectory shown in Fig. 8

arbitrary linear velocity. The result demonstrates that the pre-
sented method can guide the robot quickly and comfortably
through multiple motion targets, satisfying the requirement
for graceful motion.

Also, we note that the performance of the kinematic
control law and the path-following algorithm does depend
on its smooth nature. In general, kinematic controller works
well only if underlying dynamic controller/actuator is suffi-
ciently fast in achieving reference velocities calculated by the
kinematic controller.5 That is, the derivative of the velocity
commands essentially amounts to required torque to satisfy
the command. Thus smoothness is necessary for success of
pure kinematic controllers.

The approach we are taking is distinct from trying to

5See [6] for experimental evaluation of some classical kinematic control
laws on a physical robot.



solve the full problem of graceful navigation in a single step
(e.g. via global optimization [2]). Here, we are essentially
factoring the global navigation problem into two parts: (1)
local pose following given the targets in an open space
(local navigation and control), and (2) target generation
and assignment in a structured and dynamic environment
(planning). This work presents a concise and computationally
very efficient solution to the local navigation problem of
traveling between arbitrary poses quickly and comfortably.
Static and dynamic obstacle avoidance will be addressed
more explicitly in a near future work for the planning.

VII. CONCLUSION

The contribution of this paper is the formulation of the
kinematic control law (13) and the pose-following algorithm
for smooth and comfortable motion of unicycle-type robots.

In section III, we have shown that a natural choice of
coordinates and singular decomposition of the system lead
to (13) which steers the vehicle to arbitrary motion target
in a smooth and intuitive curve. The intuitive nature of the
curve renders the trajectory readily acceptable to human
passengers, and the characteristic of the path (from pure
waypoint following to aggressive pose following) can be
easily manipulated via two parameters k1 and k2.

In section IV, we have introduced a path following strategy
utilizing the fact that the control law admits arbitrary linear
velocity. We have also introduced the heterogeneous control
scheme which is useful for managing higher derivatives of
control signals during target transition. Results show that the
vehicle moves gracefully satisfying user-imposed bounds in
higher derivatives of control signals, given sparsely placed
target poses as path instruction.

The proposed control law and the pose following strategy
is important since it provides safety and comfort to user
without sacrificing maneuverability, and also avoids actuator
overload and makes the path physically realizable.
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[7] G. Indiveri, A. Nücheter and K. Lingmann, High Speed Differential
Drive Mobile Robot Path Following Control with Bounded Wheel
Speed Commands, Proceedings of IEEE Conference on Robotics
and Automation, 2007, pp.2202-2207.

[8] B. J. Kuipers and K. Astrom, The Composition and Validation of
Heterogeneous Control Laws, Automatica, vol.30, no.2, 1994,
pp.233-249.

[9] V. Bakaric, Z. Vukic and R. Antonic, Improved Basic Planar Algorithm
of Vehicle Guidance through Waypoints by the Line of Sight, First
International Symposium on Control, Communications and Signal
Processing, 2004, pp.541-544.

[10] A. Aguiar and A. Pascoal, Dynamic Positioning and Way-Point
Tracking of Underactuated AUVs in the Presence of Ocean Currents,
International Journal of Control, vol.80, no.7, pp.1092-1108, 2007.

[11] J. Borenstein and Y. Koren The Vector Field Histogram - Fast Obstacle
Avoidance for Mobile Robots, IEEE Journal of Robotics and
Automation, vol.7, no.3, pp.278-288, 1991.

[12] D. Fox, W. Burgard and S. Thrun, The Dynamic Window Approach
to Collision Avoidance, IEEE Robotics and Automation Magazine,
vol.4, no.1, pp.23-33, 1997.

[13] E. W. Weisstein, Archimedean Spiral, From MathWorld–A Wolfram
Web Resource.
http://mathworld.wolfram.com/ArchimedeanSpiral.html.

[14] H. Khalil, Nonlinear Systems, 3rd ed., Prentice Hall, Upper Saddle
River, NJ, 2002.

[15] S. LaValle, Planning Algorithms, Cambridge University Press, New
York, 2006.

[16] A. Micaelli and C. Samson, Trajectory Tracking for Unicycle-Type
and Two-Steering Wheels Mobile Robots, INRIA, Sophia-Antipolis,
Tech. Rep. 2097, 1993.

[17] L. Lapierre, D. Soetanto, and A. Pascoal, Nonsingular Path Follow-
ing Control of a Unicycle in the Presence of Parametric Modeling
Uncertainties, International Journal of Robust Nonlinear Control,
pp.485-503, 2006.

[18] A. Piazzi and C. Bianco, Quintic G2-splines for Trajectory Planning
of Autonomous Vehicles, Proceedings of IEEE Intelligent Vehicle
Symposium, 2004, pp.620-625.

[19] E. Magid, D. Keren, E. Rivlin, and I. Yavneh, Spline-Based Mobile
Robot Navigation, Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2006, pp.2296-2301.

[20] R. W. Brockett, Asymptotic stability and feedback stabilization, In
Differential Geometric Control Theory, pp. 181-191, R. W. Brockett,
R. S. Millman, and H. J. Sussmann (Eds.), Boston, Birkhauser, 1983.

[21] J. Park, Technical Report: Control Algorithm for Graceful Motion and
its Implementation, http://www.eecs.umich.edu/ kuipers/research/

[22] MicroStrain, 3DM-GX2, http://www.microstrain.com/3dm-gx2.aspx


