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A SMOOTH LYAPUNOV FUNCTION FROM A CLASS-KL ESTIMATE
INVOLVING TWO POSITIVE SEMIDEFINITE FUNCTIONS ∗

Andrew R. Teel
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2

Abstract. We consider differential inclusions where a positive semidefinite function of the solutions
satisfies a class-KL estimate in terms of time and a second positive semidefinite function of the initial
condition. We show that a smooth converse Lyapunov function, i.e., one whose derivative along
solutions can be used to establish the class-KL estimate, exists if and only if the class-KL estimate is
robust, i.e., it holds for a larger, perturbed differential inclusion. It remains an open question whether
all class-KL estimates are robust. One sufficient condition for robustness is that the original differential
inclusion is locally Lipschitz. Another sufficient condition is that the two positive semidefinite functions
agree and a backward completability condition holds. These special cases unify and generalize many
results on converse Lyapunov theorems for differential equations and differential inclusions that have
appeared in the literature.
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Basic definitions

• Given a set A, A stands for the closure of A, Å stands for the interior set of A, coA stands for the closed
convex hull of A and ∂A stands for the boundary of A.
• The notation x → ∂A∞ indicates a sequence of points x belonging to A converging to a point on the

boundary of A or, if A is unbounded, having the property |x| → ∞.
• Given a closed set A ⊂ Rn and a point x ∈ Rn, |x|A denotes the distance from x to A.
• A function α : R≥0 → R≥0 is said to belong to class-K (α ∈ K) if it is continuous, zero at zero, and strictly

increasing. It is said to belong to class-K∞ if, in addition, it is unbounded.
• A function β : R≥0 × R≥0 → R≥0 is said to belong to class-KL if, for each t ≥ 0, β(·, t) is nondecreasing

and lims→0+ β(s, t) = 0, and, for each s ≥ 0, β(s, ·) is nonincreasing and limt→∞ β(s, t) = 0.

The requirements imposed for a function to be of class-KL are slightly weaker than usual. In particular, β(·, t)
is not required to be continuous or strictly increasing. See, also, Remark 3.
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1. Introduction

1.1. Background

In the same text [19] where Lyapunov introduced his famous sufficient conditions for asymptotic stability of
the origin of a differential equation

ξ̇ = f(ξ, t), (1)

we can find the first contribution ([19], Sect. 20, Th. II) to the converse question: what aspects of asymptotic
stability and the function f guarantee the existence of a (smooth) function satisfying Lyapunov’s sufficient
conditions for asymptotic stability? The answers have proved instrumental, over the years, in establishing
robustness of various stability notions and have served as the starting point for many nonlinear control systems
design concepts.

One of the early important milestones in the pursuit of smooth converse Lyapunov functions was Massera’s
1949 paper [21] which provided a semi-infinite integral construction for time-invariant, continuously differentiable
systems with an asymptotically stable equilibrium. Later, in 1954, Malkin observed that Massera’s construction
worked even for time-varying systems as long as the asymptotic stability and the differentiability of f with
respect to the state were uniform in time [20]. Regarding stability Malkin assumed, in effect, the existence of a
class-KL function β such that the solutions ξ(t, t◦, ξ◦) of the system (1), issued from ξ◦ at time t◦, satisfy

|ξ(t, t◦, ξ◦)| ≤ β(|ξ◦|, t− t◦) ∀t ≥ t◦ ≥ 0 (2)

at least for initial conditions ξ◦ sufficiently small. In [5], Barbashin and Krasovskii generalized Malkin’s result
to the case where (2) holds for all initial conditions. Both Massera [22] and Kurzweil [15], independently in the
mid-1950’s, weakened the assumptions made by Malkin, and Barbashin and Krasovskii about the function f .
Kurzweil’s contribution especially stands out because he was able to establish a converse theorem even when
f is only continuous so that uniqueness of solutions is not guaranteed. In his work he made precise a notion
of strong stability of the origin on an open neighborhood G of the origin which amounted to the existence of
a function β ∈ KL and a locally Lipschitz, positive definite function ω : G → R≥0, proper on G, such that all
solutions of the system (1) with ξ◦ ∈ G satisfy

ω(ξ(t, t◦, ξ◦)) ≤ β(ω(ξ◦), t− t◦) t ≥ t◦ ≥ 0. (3)

Kurzweil showed that this strong stability and continuity of f imply the existence of a smooth converse Lyapunov
function, i.e., a function whose derivative along solutions can be used to deduce (3).

Much of the research in the 1960’s focused on developing converse Lyapunov theorems for systems possessing
asymptotically stable closed, not necessarily compact, sets. Taking this approach, the time-varying case can be
subsumed into the time-invariant case by augmenting the state-space of (1) as:

ẋ =
d

dt

(
ξ
p

)
=
(
f(ξ, p)

1

)
=: F (x), x◦ =

[
ξ◦
t◦

]
. (4)

(One disadvantage in treating time-varying systems as time-invariant ones is that it usually leads to imposing
stronger than necessary conditions on the time-dependence of the right-hand side, e.g., continuity where only
measurability is needed. An example where a converse theorem is developed for systems with right-hand sides
measurable in time, and for Lyapunov and Lagrange stability, is [4].) A closed set A for (4) is said to be
uniformly asymptotically stable if there exists of a function β ∈ KL such that all solutions of (4) with |x◦|A
sufficiently small exist for all forward time and satisfy

|φ(t, x◦)|A ≤ β(|x◦|A, t) ∀t ≥ 0. (5)
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Some of the early results on converse Lyapunov functions for set stability are summarized in [41]. Particularly
noteworthy are the result of Hoppensteadt [14] who generated a C1 converse Lyapunov function for parame-
terized differential equations and the result of Wilson [40] who provided a smooth converse Lyapunov function
for uniform asymptotic stability of a set. Converse theorems for (compact) set stability for nonlinear difference
equations are also now standard (see, e.g. [34], Th. 1.7.6).

Noting that every solution φ(·, x◦) of (4) can be written as

φ(t, x◦) =
[
ξ(t+ t◦, t◦, ξ◦)

t+ t◦

]
(6)

where ξ(·, t◦, ξ◦) is a solution of (1), it follows that (2, 3) and (5) are all particular cases of the estimate

ω(φ(t, x◦)) ≤ β(ω(x◦), t) ∀t ≥ 0 (7)

where ω is a continuous, positive semidefinite function.
In the 1970’s, Lakshmikantham and coauthors [17] (see also [16], Sect. 3.4) provided a Lipschitz converse

Lyapunov function for Lipschitz ordinary differential equations of the form (4) under an assumption essentially
the same as: given two continuous, positive semidefinite functions ω1 and ω2, there exists a function β ∈ KL
such that, for all initial conditions x◦ with ω2(x◦) sufficiently small, all solutions exist for all forward time and
satisfy

ω1(φ(t, x◦)) ≤ β(ω2(x◦), t) ∀t ≥ 0. (8)

The stability concept described by (8), apparently first introduced in [27] and often called stability with respect
to two measures, generalizes (7) and thus includes the notions of local uniform asymptotic stability of a point,
of a prescribed motion and of a closed set. It also covers the notion of local uniform partial asymptotic stability
such as when, for x◦ sufficiently small,

|h(φ(t, x◦))| ≤ β(|x◦|, t) ∀t ≥ 0 (9)

where h is a continuous (output) function of the state. A smooth converse Lyapunov theorem for the global
version of (9) was recently derived in ([33], Th. 2) (see also [31,32]). (See [39] for a survey on the partial stability
problem.)

Extensions of the above results to differential inclusions started to appear in the late 1970’s with some of
the most general results appearing only recently. Some motivations for the study of differential inclusions
are: 1) they describe the solution set for ordinary differential equations with arbitrary, measurable bounded
disturbances (see Cor. 1 and Cor. 2) they describe important notions of solutions for control systems that use
discontinuous feedbacks (see [12], Sect. 8.3).

The results in [23] pertain to differential inclusions of the form

ẋ ∈ F (x) := co {v ∈ Rn : v = f(x, d), d ∈ D} (10)

where D is compact, f is continuous and continuously differentiable with respect to x, and asymptotic stability
in the first approximation is assumed, i.e., for the inclusion

ẋ ∈
{
v ∈ Rn : v =

∂f

∂x
(0, d)x, d ∈ D

}
, (11)

an estimate of the form

|x(t)| ≤ k|x(0)| exp(−λt) k > 0, λ > 0 (12)
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is assumed for all solutions starting from sufficiently small initial conditions. The result ([23], Th. 2) states that
this assumption implies the existence of a smooth converse Lyapunov function for local exponential stability and
asymptotic stability on the basin of attraction of the origin for the inclusion (10). Related results for inclusions
of the type (11) can also be found in [24–26].

In [18], Lin et al. considered the differential inclusion (10)1, relaxing the continuous differentiability assump-
tion of f with respect to x to a local Lipschitz assumption, and assumed the estimate (5), i.e., the estimate (8)
with ω1(x) = ω2(x) = |x|A, for all initial conditions. They showed, under the additional assumption that either
A is compact or all solutions exist for all backward time, that the estimate (5) for the differential inclusion
(10) implies the existence of a smooth converse Lyapunov function. In [1], the authors combined the ideas
of [18] with the idea of Kurzweil [15] establishing the existence of a smooth converse Lyapunov function for the
differential inclusion (10) in the case of the existence of a compact set A, a neighborhood G of A and function
ω : G → R≥0 that is locally Lipschitz, positive definite with respect to A and proper with respect to G and a
function β ∈ KL such that, for all x◦ ∈ G, the solutions of (10) satisfy

ω(φ(t, x◦)) ≤ β(ω(x◦), t) ∀t ≥ 0. (13)

The first results on smooth converse theorems for differential inclusions that are only upper semicontinuous (see
Def. 1 below) appeared in [6]. In that work, Clarke et al. studied

ẋ ∈ F (x) (14)

under the assumption that F (x) is nonempty, compact and convex for each x ∈ Rn and F is upper semicontin-
uous. They assumed the estimate (8) with ω1(x) = ω2(x) = |x|, and showed that this implies the existence of a
smooth converse Lyapunov function. A related result, for the case of uniform exponential stability for switching
systems, can be found in [9].

Other interesting results on the existence of nondifferentiable converse Lyapunov functions can be found
in [2], Chapter 6 and [36–38].

1.2. Contributions

In this paper, we consider differential inclusions

ẋ ∈ F (x) (15)

that satisfy the conditions assumed in [6]. In particular, F is a set-valued map from an open set G to subsets
of Rn that is upper semicontinuous on G (see Def. 1) and is such that F (x) is nonempty, compact and convex
for each x ∈ G. The stability property we will assume for (15) we will refer to as “KL-stability with respect
to (ω1, ω2) on G”. Namely, given two continuous functions ω1 : G → R≥0 and ω2 : G → R≥0, we assume the
existence of a class-KL function β such that all solutions of the differential inclusion (15) starting in G remain
in G for all forward time and satisfy

ω1(φ(t, x◦)) ≤ β(ω2(x◦), t) ∀t ≥ 0. (16)

(See also Def. 6.) This is like the stability property considered in [17].
Our main result is (see Th. 1):

A smooth converse Lyapunov function for KL-stability with respect to (ω1, ω2) (see Def. 7) exists if
and only if the KL-stability is robust, i.e., it holds for a larger, perturbed differential inclusion (see
Def. 8).

1For a clarification, see the proof of Corollary 1.
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This type of equivalence between robust stability and the existence of a Lyapunov function, reminiscent of the
classical “total stability” results for ordinary differential equations ([13], Th. 56.4), is already present in the
proofs of Kurzweil [15] and Clarke et al. [6].

It remains an open question whether KL-stability with respect to (ω1, ω2) is robust, in general. However, we
will show (see Th. 2):

If the set-valued map defining the differential inclusion (15) is locally Lipschitz on G (see Def. 3) then
KL-stability with respect to (ω1, ω2) on G is robust.

This is the case for the problems considered by Lakshmikantham et al. [16], Lin et al. [18], and Sontag and
Wang ([33], Th. 2).

We will also show (see Th. 3):

If the differential inclusion (15) is backward completable by ω-normalization (see Def. 9) then KL-stability
with respect to (ω, ω) on G is robust.

This condition holds for the problems considered by Kurzweil [15] (see Cor. 2) and Clarke et al. [6] (see Cor. 3).
It is also useful for generating smooth converse Lyapunov functions for compact, stable attractors. As an
illustration, we provide a smooth converse Lyapunov function for finite time convergence to a compact set from
a larger compact set (see Cor. 4). This result is useful for the problem of semiglobal practical asymptotic
stabilization of nonlinear control systems as studied in [35], for example.

Our converse Lyapunov function is constructed in the following steps:

1. We imbed the original differential equation or differential inclusion into a larger, locally Lipschitz differ-
ential inclusion that still exhibits KL-stability with respect to (ω1, ω2). This idea is due to Kurzweil [15]
for the case of ordinary differential equations with continuous right-hand side under strong stability of
the origin. It is due to Clarke et al. [6] for the case of nonempty, compact, convex, upper semicontinuous
differential inclusions and global asymptotic stability of the origin. In general, it is possible if and only if
the KL-stability with respect to (ω1, ω2) is robust.

2. We find class-K∞ functions α̃1 and α̃2 such that α̃1(β(s, t)) ≤ α̃2(s)e−2t, where β quantifies KL-stability
with respect to (ω1, ω2) for the locally Lipschitz differential inclusion constructed in Step 1. A recent
result by Sontag ([30], Prop. 7) shows that this is always possible.

3. We define a trial Lyapunov function V1(x) as the supremum, over time and solutions φ(·, x) of the locally
Lipschitz differential inclusion constructed in Step 1, of the quantity α̃1(ω1(φ(t, x)))et where α̃1 was
constructed in Step 2. This is a classical construction once the estimate in Step 2 is available, at least for
locally Lipschitz ordinary differential equations where the supremum over solutions is not needed. (See,
e.g. [41], Sect. 19.) We show, using many of the tools used in [6] and [18], that this trial Lyapunov function
has all of the desired properties except smoothness. However, it is locally Lipschitz. It would only be
upper semicontinuous, in general, if the supremum were taken over solutions of the original differential
inclusion.

4. We smooth the trial Lyapunov function using ideas that go back to Kurzweil [15] and that have been
clarified, generalized and used over the years by, for example, Wilson [40], Lin et al. [18] and Clarke
et al. [6].

The rest of the paper is organized as follows:

• In Section 2 we present some definitions related to set-valued maps and some properties of solutions to
differential inclusions. These definitions are needed for understanding the statement of our main results.
• In Section 3 we give precise definitions of KL-stability with respect to (ω1, ω2) (Def. 6) as well as the

robust version of this property (Def. 8), and of a smooth converse Lyapunov function for KL-stability
with respect to (ω1, ω2) (Def. 7). Then we present our main results on the existence of a smooth converse
Lyapunov function and relate these results to others that have appeared in the literature.
• Section 4 contains some technical prerequisites that are necessary for the proofs of our main results.
• We prove our main results in Section 5. Particularly noteworthy are Section 5.1.2, which contains the

construction of our smooth converse Lyapunov function under the assumption of robust KL-stability, and
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Section 5.3 where we establish robust KL-stability under the assumption of nominal KL-stability with
respect to (ω, ω) plus a backward completability assumption.
• Section 6 contains the proofs of some propositions that are used to make connections to other results that

have appeared in the literature.
• To help the reader with many technicalities arising in the paper, we include in an addendum (elements

of) the proofs of Lemmas 1, 8, 9, 16 and 17 and of Proposition 1. They can be found elsewhere in the
literature, maybe with some minor modifications.

In this paper, we have borrowed many ideas and technicalities from our predecessors. We try to make this point
clear in bibliographical notes.

2. Preliminaries

Throughout this paper F will be a set-valued map from G to subsets of Rn where G is an open subset of Rn.
Also B denotes the open unit ball in Rn and

F (x) + εB :=
{
z ∈ Rn : |z|F (x) < ε

}
· (17)

We review some definitions concerning set-valued maps (see also [12], Sects. 5.3, 7.2):

Definition 1. The set-valued map F is said to be upper semicontinuous on G if, given x ∈ G, for each ε > 0
there exists δ > 0 such that, for all ξ ∈ G satisfying |x− ξ| < δ we have F (ξ) ⊆ F (x) + εB.

Definition 2. The set-valued map F is said to satisfy the basic conditions on G if it is upper semicontinuous
on G and, for each x ∈ G, F (x) is nonempty, compact and convex.

We will need the following fact:

Lemma 1. If the set-valued map F satisfies the basic conditions on G and ρ : G → R≥0 is a continuous function
such that for all x ∈ G, we have

{x}+ ρ(x)B ⊂ G, (18)

then the set-valued map

x 7→ co

 ⋃
ξ∈{x}+ρ(x)B

F (ξ)

 + ρ(x)B,

which we denote by coF (·+ ρ(·)B) + ρ(·)B, satisfies the basic conditions on G.

Definition 3. Let O be an open subset of G. The set-valued map F is said to be locally Lipschitz on O if, for
each x ∈ O, there exists a neighborhood U ⊂ O of x and a positive real number L such that

x1, x2 ∈ U =⇒ F (x1) ⊆ F (x2) + L|x1 − x2|B. (19)

Given a set-valued map F , we can define a solution of the differential inclusion

ẋ ∈ F (x). (20)

Definition 4. A function x : [0, T ]→ G (T > 0) is said to be a solution of the differential inclusion (20) if it is
absolutely continuous and satisfies, for almost all t ∈ [0, T ],

˙︷ ︷
x(t) ∈ F (x(t)). (21)
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A function x : [0, T ) → G (0 < T ≤ ∞) is said to be a maximal solution of the differential inclusion (20) if
it does not have an extension which is a solution belonging to G, i.e., either T = ∞ or there does not exist a
solution y : [0, T+]→ G with T+ > T such that y(t) = x(t) for all t ∈ [0, T ).

The following basic fact about the existence of maximal solutions is a combination of ([12], Sect. 7, Th. 1
and [29], Props. 1 and 2).

Lemma 2. If F satisfies the basic conditions on G then for each x◦ ∈ G there exist solutions of (20) for
sufficiently small T > 0 satisfying x(0) = x◦. In addition, every solution can be extended into a maximal
solution. Moreover, if a maximal solution x(·) is defined on a bounded interval [0, T ) then x(t) → ∂G∞ as
t→ T .

Henceforth, we will use φ(·, x) to denote a solution of (20) starting at x and we will denote by S(x) or S(C)
(respectively, S[0, T ](x) or S[0, T ](C)) the set of maximal solutions (respectively, solutions defined on [0, T ])
of the differential inclusion (20) starting at x or in the compact set C. Note that with φ1 ∈ S[0, T1](x) and
φ2 ∈ S[0, T2](φ1(T1, x)) and defining

φ3(t, x) = φ1(t, x) if 0 ≤ t ≤ T1,

= φ2(t− T1, φ1(T1, x)) if T1 ≤ t ≤ T1 + T2

(22)

we have φ3 ∈ S[0, T1 + T2](x).

Definition 5. The differential inclusion (20) is said to be forward complete on G if, for all x ∈ G, all solutions
φ ∈ S(x) are defined (and remain in G) for all t ≥ 0. The differential inclusion (20) is said to be backward
complete on G if the differential inclusion ẋ ∈ −F (x) is forward complete on G.

3. Main results

3.1. General statements

The stability concept we work with in this paper is called KL-stability with respect to (ω1, ω2) where ω1 and
ω2 are continuous, positive semidefinite functions. This concept is defined as follows:

Definition 6. Let ωi : G → R≥0, i = 1, 2, be continuous. The differential inclusion ẋ ∈ F (x) is said to be
KL-stable with respect to (ω1, ω2) on G if it is forward complete on G and there exists β ∈ KL such that, for
each x ∈ G, all solutions φ ∈ S(x) satisfy

ω1(φ(t, x)) ≤ β(ω2(x), t) ∀t ≥ 0. (23)

As mentioned in the introduction, this stability concept was introduced in [27] and considered in [17] and [16].
It is often referred to as stability with respect to two measures. It covers standard stability notions like uniform
global asymptotic stability of a closed set and partial asymptotic stability.

In the case where A is a closed set, ω1(x) = ω2(x) = |x|A, and G = Rn, it has been shown in [18],
Proposition 2.5 that KL-stability is equivalent to the set A being uniformly globally stable and uniformly
globally attractive. The technique used to prove ([18], Prop. 2.5) is used to prove the following generalization
for KL-stability with respect to (ω1, ω2):

Proposition 1. Let ωi : G → R≥0, i = 1, 2, be continuous. The following are equivalent:

1. The differential inclusion ẋ ∈ F (x) is KL-stable with respect to (ω1, ω2) on G.
2. All of the following hold:

(a) The differential inclusion ẋ ∈ F (x) is forward complete on G.
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(b) (Uniform stability and global boundedness): There exists a class-K∞ function γ such that, for each
x ∈ G, all solutions φ ∈ S(x) satisfy

ω1(φ(t, x)) ≤ γ(ω2(x)) ∀t ≥ 0. (24)

(c) (Uniform global attractivity): For each r > 0 and ε > 0, there exists T (r, ε) > 0 such that, for each
x ∈ G, all solutions φ ∈ S(x) satisfy

ω2(x) ≤ r, t ≥ T =⇒ ω1(φ(t, x)) ≤ ε. (25)

KL-stability with respect to (ω1, ω2) can be characterized in infinitesimal (with respect to time) terms via the
existence of a smooth Lyapunov function:

Definition 7. Let ωi : G → R≥0, i = 1, 2, be continuous. A function V : G → R≥0 is said to be a smooth
converse Lyapunov function for KL-stability with respect to (ω1, ω2) on G for F if V is smooth on G and there
exist class-K∞ functions α1, α2 such that, for all x ∈ G,

α1(ω1(x)) ≤ V (x) ≤ α2(ω2(x)) (26)

and

max
w∈F (x)

〈∇V (x), w〉 ≤ −V (x). (27)

The motivation for this definition is that (27) guarantees the derivative of V along solutions, denoted V̇ (φ(·, x)),
satisfies

V̇ (φ(t, x)) ≤ −V (φ(t, x)) (28)

for almost all t in the interval where φ(t, x) exists and belongs to G. It follows that

V (φ(t, x)) ≤ V (x)e−t (29)

on this interval and then, using (26) and assuming forward completeness on G, we can deduce KL-stability with
respect to (ω1, ω2) on G. (By relying on a result like ([18], Lem. 4.4), it is possible to deduce KL-stability with
respect to (ω1, ω2) on G when V (x) on the right-hand side of (27) is replaced by any class-K∞ function of V (x).)

We are interested in whether KL-stability with respect to (ω1, ω2) implies the existence of a smooth converse
Lyapunov function for KL-stability with respect to (ω1, ω2). This is still an open question, in general. What we
will show here is that a smooth converse Lyapunov function exists if and only if the KL-stability with respect
to (ω1, ω2) is robust; that is KL-stability with respect to (ω1, ω2) still holds for a set of differential inclusions
given by supersets of F . This concept, which is present in the work of Kurzweil [15] and Clarke et al. [6], is
defined more precisely as follows:

Definition 8. Let ωi : G → R≥0, i = 1, 2, be continuous. The differential inclusion ẋ ∈ F (x) is said to be
robustly KL-stable with respect to (ω1, ω2) on G if there exists a continuous function δ : G → R≥0 such that:

1. {x}+ δ(x)B ⊂ G;
2. the differential inclusion

ẋ ∈ Fδ(x)(x) := coF (x+ δ(x)B) + δ(x)B (30)

is KL-stable with respect to (ω1, ω2) on G;
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3. δ(x) > 0 for all x ∈ G\Aδ where

Aδ :=

{
ξ ∈ G : sup

t≥0,φ∈Sδ(ξ)
ω1(φ(t, ξ)) = 0

}
(31)

and where Sδ(·) represents the set of maximal solutions to (30).

The main feature of the differential inclusion (30) is that its solution set includes the solution set of the differential
inclusion ẋ ∈ F (x) since F (x) ⊆ Fδ(x)(x). Note that even for ordinary differential equations, robust stability
will be expressed in terms of stability for a corresponding differential inclusion.

The following theorem emphasizes that robust KL-stability with respect to (ω1, ω2) is the key property for
getting a smooth converse Lyapunov function.

Theorem 1. Let ωi : G → R≥0, i = 1, 2, be continuous and let F satisfy the basic conditions on G. The
following statements are equivalent:

1. The differential inclusion ẋ ∈ F (x) is forward complete on G and there exists a smooth converse Lyapunov
function for KL-stability with respect to (ω1, ω2) on G for F .

2. The differential inclusion ẋ ∈ F (x) is robustly KL-stable with respect to (ω1, ω2) on G.

Proof. See Section 5.1.

We now specify cases where robust KL-stability is guaranteed. The first case is when the right-hand side of
the differential inclusion is locally Lipschitz, at least on a specific subset of G:

Theorem 2. Let ωi : G → R≥0, i = 1, 2, be continuous and let F satisfy the basic conditions on G. If the
differential inclusion ẋ ∈ F (x) is KL-stable with respect to (ω1, ω2) on G and F is locally Lipschitz on an open
set containing G\A where

A :=

{
ξ ∈ G : sup

t≥0,φ∈S(ξ)

ω1(φ(t, ξ)) = 0

}
(32)

then the differential inclusion ẋ ∈ F (x) is robustly KL-stable with respect to (ω1, ω2) on G.

Proof. See Section 5.2.

With the combination of Theorems 1 and 2 we obtain a smooth, global version of ([16], Th. 3.4.1) and we
recover the converse Lyapunov function results of [18] and ([33], Th. 2). For instance, we have the following
statement which includes ([18], Ths. 2.8, 2.9):

Corollary 1. Consider the system

ẋ = f(x, d(t)) (33)

where d(·) belongs to the set MD of measurable functions taking values in a compact set D and f is continuous
and locally Lipschitz in x uniformly in d ∈ D. Let A be a closed, bounded set and define ω(x) := |x|A. If there
exists β ∈ KL such that, for each d(·) ∈MD and each x ∈ Rn, the (unique) solution ψ(·, x, d) of (33) is defined
on [0,∞) and satisfies

ω(ψ(t, x, d)) ≤ β(ω(x), t) ∀t ≥ 0. (34)

Then there exists a smooth converse Lyapunov function for KL-stability with respect to (ω, ω) on Rn for

x 7→ F (x) := co {v ∈ Rn : v = f(x, d), d ∈ D} · (35)
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Remark 1. It follows that the backward completeness assumption in ([18], Th. 2.8) is not necessary.

Proof. Due to the assumptions on f and the compactness of D, the set

F ◦(x) := {v ∈ Rn : v = f(x, d), d ∈ D} (36)

is nonempty and compact for each x and F ◦ is locally Lipschitz. It follows from these properties for F ◦ and
Filippov’s Lemma (see [11] or [7], Prob. 3.7.20) that to any solution φ(·, x) of the differential inclusion

ẋ ∈ F ◦(x) (37)

we can associate a function d(·) ∈ MD such that, for almost all t,

˙︷ ︷
φ(t, x) = f(φ(t, x), d(t)). (38)

This says that φ(·, x) is a solution of (33) and so, from the assumption of the corollary, the differential inclusion
(37) is KL-stable with respect to (ω, ω) on Rn.

Also from the properties of F ◦ and [3] (Cor. 10.4.5), the closure of the solution set of ẋ ∈ F ◦(x) is exactly
the solution set of ẋ ∈ coF ◦(x) = F (x). With [18] (Prop. 5.1), the inclusion ẋ ∈ F (x) is forward complete on
Rn and thus, with the previous point, is KL-stable with respect to (ω, ω) on Rn.

By construction, F (x) is nonempty, compact and convex for each x. Since F is the closed convex hull of the
locally Lipschitz set-valued map F ◦, it follows from [2] (Sect. 1.1, Prop. 6). that F is also locally Lipschitz.

Theorem 2 now gives that the differential inclusion ẋ ∈ F (x) is robustly KL-stable with respect to (ω, ω)
on Rn. Then the corollary follows from Theorem 1.

Several important converse Lyapunov function results, like those due to Kurzweil [15] and Clarke et al. [6]
are not covered by Theorem 2. However, they will be covered (see, respectively, Cor. 2 of Sect. 3.2 and Cor. 3
of Sect. 3.3) by our next set of sufficient conditions for robust KL-stability. We will show that KL-stability
implies robust KL-stability in the case where ω1(x) = ω2(x) =: ω(x) and the differential inclusion is backward
completable by ω-normalization. The latter is defined as follows:

Definition 9. Let ω : G → R≥0 be continuous. The differential inclusion ẋ ∈ F (x) is said to be backward
completable by ω-normalization if there exists a continuous function κ : G → [1,∞), a class-K function γ and a
positive real number c such that

κ(x) ≤ γ(ω(x)) + c (39)

and the differential inclusion

ẋ ∈ 1
κ(x)

F (x) =: FN (x) (40)

is backward complete on G.

In this definition, the existence of κ(·) making (40) backward complete on G is always guaranteed. Indeed,
from [12] (Sect. 5, Lem. 15) or [3] (Th. 1.4.16), supv∈F (x) |v| can be upper bounded by a function κ◦ : G →
[1,∞) that is continuous on G. So, for instance, in the case where G = Rn, by picking κ(x) = κ◦(x) we get
supv∈FN (x) |v| ≤ 1 which implies that the differential inclusion (40) is backward complete on Rn. The difficulty
comes from requiring that κ simultaneously satisfies (39). However this difficulty disappears when either ω is
proper on G or ẋ ∈ F (x) is already backward complete, perhaps because the set-valued map F satisfies a linear
growth condition: there exist positive real numbers ` and b such that

v ∈ F (x) =⇒ |v| ≤ `|x|+ b. (41)
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More generally, when G is the Cartesian product G := G1 ×Rn2 , with G1 an open subset of Rn1 and by writing

ẋ =
[
ẋ1

ẋ2

]
∈ F (x), (42)

we have:

Proposition 2. If
1. F satisfies the basic conditions on G;
2. we have

lim
x1→∂G∞1

inf
x2∈Rn2

ω(x1, x2) =∞; (43)

3. there exist positive real numbers ` and b such that

v =
[
v1

v2

]
∈ F (x) =⇒ |v2| ≤ `|x2|+ b (44)

then the differential inclusion (42) is backward completable by ω-normalization.

Proof. See Section 6.1.

With backward completability, KL-stability with respect to (ω, ω) implies robust KL-stability with respect
to (ω, ω):

Theorem 3. Let ω : G → R≥0 be continuous and let F satisfy the basic conditions on G. If the differential
inclusion ẋ ∈ F (x) is backward completable by ω-normalization and KL-stable with respect to (ω, ω) on G then
it is robustly KL-stable with respect to (ω, ω) on G.

Proof. See Section 5.3.

3.2. Results specialized to ordinary differential equations

To illustrate our results, we specialize them to ordinary differential equations

ẋ = F (x) (45)

where F : G → Rn is continuous. As noted in the introduction, this covers the case of time-varying systems

ξ̇ = f(ξ, t) (46)

where f is continuous in both variables (compare with [4]) by taking

x =
(
ξ
p

)
, F (x) =

(
f(ξ, p)

1

)
. (47)

A direct consequence of Theorem 2 or 3 and Theorem 1 is the following:

Corollary 2. If either
I. the function F is locally Lipschitz on G,

or
II. i.) F is continuous on G,

ii.) ω1 = ω2 = ω, and
iii.) the differential equation ẋ = F (x) is backward completable by ω-normalization
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then the following two statements are equivalent:
1. ẋ = F (x) is KL-stable with respect to (ω1, ω2) on G.
2. ẋ = F (x) is forward complete on G and there exists a smooth converse Lyapunov function for KL-stability

with respect to (ω1, ω2) on G for F .

With condition (II) of this corollary, we recover Kurzweil’s main result ([15], Th. 7) which applies to the case
described by (47) and Proposition 2, with

ω1(x) = ω2(x) = |ξ| (48)

when G1 = Rn−1 and, otherwise,

ω1(x) = ω2(x) = max
{
|ξ|, 1
|ξ|Rn−1\G1

− 2
|0|Rn−1\G1

}
· (49)

3.3. Results for compact attractors

The main result of this section is that KL-stability with respect to (ω, ω), where ω is a type of indicator for
a compact set A, is equivalent to (local) stability of A plus attractivity. Uniform boundedness and uniform
attractivity are guaranteed by the fact that the attractor is compact. Various applications of this observation
are made including a corollary that recovers [6] (Th. 1.2).

Definition 10. Given a compact subset A of an open set G, a function ω : G → R≥0 is said to be a proper
indicator for A on G if ω is continuous, ω(x) = 0 if and only if x ∈ A, and lim

x→∂G∞
ω(x) =∞.

Remark 2. For each open set G and each compact set A ⊂ G, there exists a proper indicator function. When
G = Rn we can take ω(x) = |x|A. Otherwise, we can take, for example,

ω(x) = max
{
|x|A,

1
|x|Rn\G

− 2
dist(A,Rn \ G)

}
· (50)

Note that the right-hand side of (49) is a function that is a proper indicator for the origin (in Rn−1) on G1.

The properties of a proper indicator ω for A on G enforce that KL-stability with respect to (ω, ω) on G implies
that the set A is stable and all trajectories starting in G converge to A. The first result of this subsection,
which is similar to [15] (Th. 12), shows that the opposite is also true. Namely, for differential inclusions with
right-hand side satisfying the basic conditions, the basin of attraction G for a stable, compact attractor A is
open and, for each function ω that is a proper indicator for A on G, the differential inclusion is KL-stable with
respect to (ω, ω) on G.

Proposition 3. Let F satisfy the basic conditions on an open set O and let A ⊂ O be compact. If the set A is
stable and the set of points G from which A is strongly attractive contains a neighborhood of A, i.e.,

1. Stability: for each ε > 0 there exists δ > 0 such that, for each x ∈ O
⋂(
A+ δB

)
, each solution φ ∈ S(x)

is defined and belongs to O for all t ≥ 0 and satisfies

|φ(t, x)|A ≤ ε ∀t ≥ 0. (51)

2. Attractivity: the set G of points x ∈ O such that each solution φ ∈ S(x) is defined and belongs to O for
all t ≥ 0 and satisfies limt→∞ |φ(t, ξ)|A = 0 contains a neighborhood of A,

then the set G is open and, for each function ω that is a proper indicator for A on G, the differential inclusion
ẋ ∈ F (x) is KL-stable with respect to (ω, ω) on G.
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Proof. See Section 6.2.

By combining Theorems 1, 3 and Proposition 2 with Proposition 3, we recover [6] (Th. 1.2):

Corollary 3. Suppose F satisfies the basic conditions on Rn and the origin of the differential inclusion ẋ ∈ F (x)
is globally asymptotically stable, i.e.,

• for each ε > 0 there exists δ > 0 such that

|x| ≤ δ, φ ∈ S(x) =⇒ |φ(t, x)| ≤ ε ∀t ≥ 0; (52)

• for each x ∈ Rn, all solutions φ ∈ S(x) are defined for all t ≥ 0 and satisfy

lim
t→∞

|φ(t, x)| = 0.

Then, taking ω(x) = |x|, there exists a smooth converse Lyapunov function for KL-stability with respect to
(ω, ω) on Rn for F .

Nontrivial compact attractors arise in various ways. One situation, which is commonly encountered in the
semiglobal practical asymptotic stabilization of nonlinear control systems (see, for example [35]), is when:

Assumption 1. There exist two compact sets C1, C2, two strictly positive real numbers ρ, T and an open set
O such that

• C1 + ρB ⊂ C2 ⊂ O,
• F satisfies the basic conditions on O and is Lipschitz on C1 + ρB,
• for all x ∈ C2, all solutions φ ∈ S(x) are defined and belong to O for all t ≥ 0 and belong to C1 for t ≥ T .

It can be shown that:

Proposition 4. Under Assumption 1 the set

A := {ξ ∈ C1 : φ(t, ξ) ∈ C1, ∀φ ∈ S(ξ), ∀t ≥ 0} (53)

is a nonempty, compact stable attractor with basin of attraction containing C2.

Proof. See Section 6.3.

As a consequence, Proposition 3 applies for this set A. Also, for each function ω that is a proper indicator
for A on its strong domain of attraction, Proposition 2 allows us to apply Theorem 3 and then Theorem 1. So
we can state the following converse Lyapunov function theorem, for finite-time convergence to a compact set
from a larger compact set:

Corollary 4. Under Assumption 1, there exist a compact set A ⊆ C1 and an open set G ⊃ C2 such that, for
each function ω : G → R≥0 that is a proper indicator for A on G, there exists a smooth converse Lyapunov
function for KL-stability with respect to (ω, ω) on G for F .

3.4. Bibliographical Notes

• Our main result, Theorem 1, is inspired by the observations of Kurzweil [15] and Clarke et al. [6] who
recognized that robust stability, in the context of their specific problems, allowed them to construct a
smooth converse Lyapunov function.
• The results of Section 3.3 for compact attractors are based on similar results in the special cases considered

by Kurzweil [15] and Clarke et al. [6].
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4. Technical prerequisites

The proofs of our main results will be based on several technical lemmas. They concern:
1. Sontag’s lemma on KL-estimates.
2. Solutions to differential inclusions satisfying the basic conditions.
3. Solutions to locally Lipschitz differential inclusions.
4. Derivatives of locally Lipschitz functions.
5. Smoothing continuous and locally Lipschitz functions.

4.1. Sontag’s lemma on KL-estimates

We recall a recent result of Sontag ([30], Prop. 7) that is one of the keys in our converse Lyapunov function
construction. The lemma is a global version of a particular aspect of the well-known Massera lemma ([21],
Sect. 12) (cf. [16], Lem. 3.4.1). We provide an alternative proof.

Lemma 3. For each class-KL function β and each number λ > 0, there exist functions α̃1 ∈ K∞ and α̃2 ∈ K∞
such that α̃1 is locally Lipschitz and

α̃1(β(s, t)) ≤ α̃2(s)e−λt ∀(s, t) ∈ R≥0 × R≥0. (54)

Proof. First we pick ρ ∈ K∞ and a function θ : R≥0 → R>0 continuous and strictly decreasing with limt→∞ θ(t)
= 0 such that, for all t ≥ 0, we have

β(ρ(t), t) ≤ θ(t). (55)

To see that such functions exist, let {εk}∞k=1 be a sequence of strictly positive real numbers decreasing to zero.
Since β ∈ KL, there exists a sequence {tk}∞k=1 of strictly positive real numbers strictly increasing to infinity
such that β(k + 1, tk) ≤ εk. Define t0 = 0 and ε0 = max {β(1, 0), 2ε1}. Then, choosing ρ to be any K∞
function upper bounded by the piecewise constant curve p1(t) = j + 1 for t ∈ [tj , tj+1) and choosing θ to
be any continuous, strictly decreasing to zero function that is lower bounded by the piecewise constant curve
p2(t) = εj for j ∈ [tj , tj+1) and using that β ∈ KL, we have, for each integer j ≥ 0 and each t ∈ [tj , tj+1),
β(ρ(t), t) ≤ β(j + 1, tj) ≤ εj = p2(t) ≤ θ(t).

Next, let θ−1 be the inverse of θ, which is defined and continuous on (0, θ(0)]. It is also strictly decreasing
with lims→0 θ

−1(s) = +∞. It follows that the function e−2λθ−1(·) is well-defined, continuous, positive, and
strictly increasing on (0, θ(0)]. Then we can find α̃1 ∈ K∞, locally Lipschitz and such that, for all s ∈ (0, θ(0)],

α̃1(s) ≤ e−2λθ−1(s). (56)

With (55), it follows, for all t ≥ 0,

α̃1(β(ρ(t), t))e2λt ≤ α̃1(θ(t))e2λt ≤ 1. (57)

Now, using (57) and the fact that β ∈ KL,

0 < s ≤ ρ(t) ⇒ α̃1(β(s, t))eλt =
√
α̃1(β(s, 0))

√
α̃1(β(s, t))
α̃1(β(s, 0))

√
α̃1(β(s, t))e2λt, (58)

≤
√
α̃1(β(s, 0))

√
α̃1(β(ρ(t), t))e2λt, (59)

≤
√
α̃1(β(s, 0)). (60)

ρ(t) ≤ s ⇒ α̃1(β(s, t))eλt ≤ α̃1(β(s, 0))eλρ
−1(s). (61)
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So (54) holds by taking α̃2 ∈ K∞ such that

α̃2(s) ≥ max
{√

α̃1(β(s, 0)), α̃1(β(s, 0))eλρ
−1(s)

}
· (62)

Remark 3. Even though we are assuming minimal continuity properties for class-KL functions, the preceding
result shows that any class-KL function can always be upper bounded by a continuous class-KL function. In
particular (54) can be rewritten as

β(s, t) ≤ α−1
1

(
α2(s)e−λt

)
. (63)

Note that the right-hand side of (63) is of class-KL and is also continuous in (s, t).

4.2. Solutions to inclusions satisfying the basic conditions

For the differential inclusion ẋ ∈ F (x) we denote the set of points reachable from a compact set C ⊂ G in
time T > 0 as

R≤T (C) := {ξ ∈ Rn : ξ = φ(t, x), t ∈ [0, T ], x ∈ C, φ ∈ S(x)} · (64)

The following comes from [12] (Sect. 7, Th. 3) or [10] (Th. 7.1):

Lemma 4. Let F satisfy the basic conditions on G and suppose the compact set C ⊂ G and the strictly positive
real number T > 0 are such that all solutions φ ∈ S(x) are defined and belong to G for all t ∈ [0, T ]. Then the set
R≤T (C) is a compact subset of G and the set S[0, T ](C) is a compact set in the metric of uniform convergence.

A consequence of Lemma 4 is the following:

Lemma 5. Let F satisfy the basic conditions on G and suppose x ∈ G is such that all solutions φ ∈ S(x) are
defined and belong to G for all t ≥ 0. Then each sequence {φn}∞n=1 of solutions in S(x) has a subsequence
converging to a function φ ∈ S(x) and the convergence is uniform on each compact time interval.

Proof. From Lemma 4, we know that for each integer k, the set S[0, k](x) is a compact set in the metric of
uniform convergence. Since for all n and k, φn is in S[0, k](x), it follows that {φn}∞n=1 has a subsequence
{φ1m}∞m=1 converging uniformly on [0, 1] to a function φ1 ∈ S(x). Similarly {φ1m}∞m=1 has a subsequence
{φ2m}∞m=1 converging uniformly on [0, 2] to a function φ2 ∈ S(x). And so on. The result follows by taking the
subsequence given by the diagonal elements φmm.

The next result is on “continuity” of solutions with respect to initial conditions and perturbations of the
right-hand side. See [12] (Sect. 8, Cor. 2).

Lemma 6. Suppose ẋ ∈ F (x) is forward complete on G, F satisfies the basic conditions on G, and ω : G → R≥0

is continuous on G. For each triple (T, ε, C) where T > 0, ε > 0 and C ⊂ G compact there exists δ > 0 such that
every maximal solution φδ(·, xδ) of

ẋ ∈ Fδ(x) := coF (x+ δB) + δB, (65)

with xδ ∈ C + δB, remains in G for all t ∈ [0, T ] and there exists a solution φ(·, x) of ẋ ∈ F (x) with x ∈ C and
|x− xδ| ≤ ε such that, for all t ∈ [0, T ],

|ω(φδ(t, xδ))− ω(φ(t, x))| ≤ ε. (66)
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Remark 4. A useful remark is that if Lemma 6 holds for δ > 0 then it holds for all δ̄ ∈ (0, δ] since, in this
case, C + δ̄ B ⊆ C + δB and Fδ̄(x) ⊆ Fδ(x).

Lemmas 4 and 6 can be used to show:

Lemma 7. Suppose F satisfies the basic conditions on G and the differential inclusion

ẋ ∈ F (x) (67)

is forward complete on G. Then there exists a continuous function δ : G → (0,∞) such that

{x}+ δ(x)B ⊂ G, (68)

the differential inclusion

ẋ ∈ Fδ(x)(x) := coF (x+ δ(x)B) + δ(x)B (69)

is forward complete on G, and Fδ(·)(·) satisfies the basic conditions on G.

Proof. In the following, let R≤1(C), respectively Rδ(·)≤1 (C), denote the reachable set in time t = 1 from the
compact set C ⊂ G for the differential inclusion (67), respectively the differential inclusion (69).

According to Lemma 4, the forward completeness assumption on (67) implies that the reachable set in each
finite time from each compact subset of G for the system (67) is a compact subset of G. So, we can find a
compact, countable covering Ci, i = 1, 2, . . . , of G such that, for each i, there exists εi > 0 satisfying

Ci ⊂ R≤1(Ci) + εiB ⊂ Ci+1 ⊂ G. (70)

By applying Lemma 6 with the triple (1, εi, Ci) and ω(x) = x we get, for each i, the existence of

δi ∈ (0, εi] (71)

such that

Rδi≤1(Ci) ⊂ Ci+1. (72)

Without loss of generality, from Remark 4, we can assume that the sequence {δi}∞i=1 is nonincreasing. Define

i(x) := inf
i
{x ∈ Ci}

∆(x) := δi(x)

δ(x) := inf
ξ∈G

[∆(ξ) + |x− ξ|] .

(73)

As in the proof of [7] (Th. 1.5.1), one can check that the function δ is well-defined and is Lipschitz on G with
Lipschitz constant 1. We have also, for all x ∈ G,

δ(x) ≤ δi(x), δ(x) > 0 (74)

and, from (70) and (71),

{x}+ δ(x)B ⊂ G. (75)
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We will show that

Rδ(·)≤1 (Ci) ⊂ Ci+1 ∀i. (76)

From the definition of i(x) and the fact that the sequence {δi}∞i=1 is nonincreasing, it follows that

x ∈ ∂Ci
⋃

(G\Ci) =⇒ δ(x) ≤ δi. (77)

To establish a contradiction, suppose the existence of an integer j and ξ ∈ Rδ(·)≤1 (Cj) such that ξ /∈ Cj+1, i.e.,
there exists a solution φ of the differential inclusion (69) starting from a point x ∈ Cj that reaches, at time
t̄ ≤ 1, the point ξ /∈ Cj+1. Then, exploiting time-invariance, continuity of this solution with respect to time and
compactness of Cj , there exists t◦ ∈ [0, t̄) such that φ(t◦, x) ∈ ∂Cj , and φ(t, x) ∈ ∂Cj

⋃
(G\Cj) for all t ∈ [t◦, t̄].

It follows from (77) that δ(φ(t, x)) ≤ δj for all t ∈ [t◦, t̄]. Therefore, on the interval [t◦, t̄], φ(·, x) is a solution of
the differential inclusion (69) with δ(x) = δj . But then, using (72) and the fact that t̄− t◦ ≤ 1 and φ(t◦, x) ∈ Cj ,
it is impossible to have φ(t̄, x) /∈ Cj+1. This contradiction establishes that (76) holds.

Now, suppose that (69) is not forward complete. Then there exist an integer j, a point x ∈ Cj , a solution φ
of (69) starting at x and t∗ <∞ such that for each integer m > j there exists tm < t∗ such that φ(tm, x) /∈ Cm.
On the other hand, (76) implies

Rδ(·)≤m−j(Cj) ⊂ Cm (78)

which implies that m− j < tm < t∗ for all m > j. This is impossible.

The final result of this subsection provides a link to the next subsection where solutions of locally Lipschitz
differential inclusions are considered. The result is slight modification of [6] (Prop. 3.5).

Lemma 8. Let A be such that G\A is open and ∆ : G → R≥0 be bounded away from zero on compact subsets
of G\A and such that {x}+ ∆(x)B ⊂ G.

If F satisfies the basic conditions on G then there exists a set-valued map FL satisfying the basic conditions
on G, locally Lipschitz on G\A, and such that

F (x) ⊆ FL(x) ⊆ F∆(x)(x) := coF (x+ ∆(x)B) + ∆(x)B. (79)

4.3. Solutions to locally Lipschitz differential inclusions

We start with the following fact (see [7], Ex. 4.3.3.a):

Lemma 9. Let O be an open subset of G. If the set-valued map F is locally Lipschitz on O, then for any
compact set K ⊂ O there exists a positive real number LK such that for any x1 and x2 in K, we have

F (x1) ⊆ F (x2) + LK |x1 − x2|B. (80)

The next result, on solutions to locally Lipschitz differential inclusions, is similar to [10] (Lem. 8.3 [7], Lem. 4.3.11)
and [3] (Th. 10.4.1). (See also [6], proof of Lem. 4.9.) We provide a proof for completeness.

Lemma 10. Let F satisfy the basic conditions on G and be locally Lipschitz on the open set O ⊆ G. For each
T > 0 and each compact set C ⊂ O, there exist L and δ > 0 such that, for each x ∈ C, each φ ∈ S(x) and each
ξ satisfying |x− ξ| ≤ δ, there exists ψ ∈ S(ξ) with the property

|φ(t, x) − ψ(t, ξ)| ≤ L|x− ξ| ∀t ∈ [0, Tx], (81)

where Tx ∈ [0, T ] is such that φ(t, x) ∈ C for all t ∈ [0, Tx].
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Proof. Preparation step: For each pair (z, v) ∈ G ×Rn, define g(z, v) to be the unique (since F (z) is closed and
convex; see [12], Sect. 5, Lem. 2) closest point in F (z) to v. Since F is locally Lipschitz, closed and convex it
follows from [12] (Sect. 6, Lem. 8) that g(·, v) is continuous for each fixed v. Since F (z) is closed and convex,
g(z, ·) is continuous for each fixed z. From [12] (Sect. 5, Lem. 15), for each compact subset X of G there exists
a constant m such that |g(z, v)| ≤ m for all (z, v) ∈ X × Rn.

Below, we will pick x ∈ G and φ ∈ S(x) defined on [0, Tx∞) and will define w(t) :=
˙︷ ︷

φ(t, x) ∈ F (φ(t, x)) for

almost all t ∈ [0, Tx∞). (The function w(·) can be defined arbitrarily for those t ∈ [0, Tx∞) where
˙︷ ︷

φ(t, x) is not
defined.) Since φ(·, x) is absolutely continuous, w(·) is measurable. Then we will define gx(z, t) := g(z, w(t)).
Since w(·) is measurable and g has the properties given above, gx : G× [0, Tx∞)→ Rn satisfies the Carathéodory
conditions for existence of solutions to the ordinary differential equation ż = gx(z, t).

Core of the proof: Let C ⊂ O and T > 0 be given. Since C is a compact subset of O which is open, there exists
ε > 0 so that C + εB is a compact subset of O. Using Lemma 9, let K be a Lipschitz constant for F on C + εB.
We choose

L = exp(KT ), δ =
ε

2L
· (82)

Let x, φ ∈ S(x), Tx and Tx∞ be such that Tx ∈ (0, T ], φ(t, x) ∈ C for all t ∈ [0, Tx] and φ(·, x) is right maximally
defined on [0, Tx∞). Necessarily Tx∞ > Tx.

(If Tx = 0 then, since L ≥ 1, there is nothing to prove.) Let gx be as above, defined on G × [0, Tx∞). Pick ξ
satisfying |x− ξ| ≤ δ. Then ξ is an interior point of C + εB. Let ψ(·, ξ) be a solution with values in G of

˙︷ ︷
ψ(t, ξ) = gx(ψ(t, ξ), t), ψ(0, ξ) = ξ (83)

right maximally defined on [0, Tξ). We have Tξ ≤ Tx∞ and from the definition of gx, ψ(·, ξ) is a solution on
[0, Tξ) of the differential inclusion ẋ ∈ F (x). Now, either Tξ = Tx∞ or there exists t̄◦ ∈ [0, Tξ) such that
ψ(t̄◦, ξ) /∈ C + εB. We define

t̄ := sup
{
t ∈ [0, Tx] : ψ(s, ξ) ∈ C + εB, ∀s ∈ [0, t]

}
· (84)

We must have that t̄ < Tξ since in the case where Tξ = Tx∞ we have t̄ ≤ Tx < Tx∞ = Tξ and in the case where
Tξ < Tx∞ we have t̄ ≤ t̄◦ < Tξ. Thus ψ(t, ξ) is well-defined for all t ∈ [0, t̄] and, by the continuity of ψ(·, ξ) and
since ξ is an interior point of C + εB and Tx > 0, we have t̄ > 0 and

t̄ < Tx =⇒ ψ(t̄, ξ) ∈ ∂(C + εB). (85)

Then, from the definition of gx we have, for almost all t ∈ [0, t̄],

d

dt
|φ(t, x) − ψ(t, ξ)| ≤ |w(t) − gx(ψ(t, ξ), t)| (86)

= |w(t) − g(ψ(t, ξ), w(t))| (87)
= inf

v∈F (ψ(t,ξ))
|w(t) − v|. (88)

Then, since we have, from the Lipschitz property:

w(t) ∈ F (φ(t, x)) ⊂ F (ψ(t, ξ)) + K |φ(t, x) − ψ(t, ξ)| B, (89)
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we conclude that, for almost all t ∈ [0, t̄],

d

dt
|φ(t, x) − ψ(t, ξ)| ≤ K|φ(t, x)− ψ(t, ξ)|. (90)

Invoking a comparison theorem, we get, for all t ∈ [0, t̄],

|φ(t, x) − ψ(t, ξ)| ≤ exp(KT )|x− ξ| = L|x− ξ| ≤ Lδ =
ε

2
· (91)

Now if t̄ = Tx we are done. Suppose t̄ < Tx. Since we have that φ(t, x) ∈ C for all t ∈ [0, Tx], (91) implies that
ψ(t, ξ) is in the interior of C+ εB, for all t ∈ [0, t̄]. But the latter contradicts (85). So we must have t̄ = Tx.

Lemma 11. Let F satisfy the basic conditions on G and let F be locally Lipschitz on a neighborhood of x ∈ G.
Then for each v ∈ F (x) there exists a solution φ ∈ S(x) satisfying

φ(t, x) = x+ t(v + r(t)) ∀t ∈ [0, T ) (92)

for some T > 0 and for some function r(·) that is continuous on [0, T ) and satisfies lim
t→0+

r(t) = 0.

Proof. (See also [6], proof of Lem. 4.8.) As in the previous proof, for each ξ in a neighborhood of x, let
g(ξ) ∈ F (ξ) be the unique closest point in the compact convex set F (ξ) to the vector v. Again, the function g
is well-defined and continuous on a neighborhood of x since F is locally Lipschitz on a neighborhood of x. Let
φ(·, x) be a solution to the differential equation

ξ̇ = g(ξ) (93)

starting at x defined on [0, T ). Since g(ξ) ∈ F (ξ), φ is also a solution of ẋ ∈ F (x). Since g(x) = v, the result
follows.

4.4. Derivatives of locally Lipschitz functions

First we recall the definition of the Dini subderivate of a function V : O → R (O open), at a point x ∈ O in
the direction v ∈ Rn:

DV (x; v) := lim inf
w→v,ε→0+

V (x+ εw)− V (x)
ε

· (94)

From [7] (Ex. 3.4.1), we have:

Lemma 12. If V is a locally Lipschitz function on an open set O of Rn then, for all x ∈ O such that the
gradient of V (denoted ∇V ) exists we have

DV (x; v) = 〈∇V (x), v〉 · (95)

The set of points where the gradient exists is characterized by Rademacher’s Theorem (see [28], Def. VIII.3.2,
Cor. VIII.3.1 and [7], p. 147):

Lemma 13. If V is a locally Lipschitz function on an open set O of Rn, it has a gradient ∇V at almost all
points x ∈ O.

Finally, like in [6], to establish the Lipschitz property we use the following result from [8] (Cor. 3.7):

Lemma 14. Let the function V : O → (−∞,∞] be lower semicontinuous. Let U ⊂ O be open and convex. The
function V is Lipschitz with Lipschitz constant M on U if and only if

DV (x; v) ≤M |v| ∀x ∈ U , ∀v ∈ Rn. (96)
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4.5. Smoothing continuous and locally Lipschitz functions

A standard approximation result is the following:

Lemma 15. Let O ⊂ Rn be open and let µ : O → (0,∞) be continuous. Suppose V : O → R is continuous.
Then there exists a smooth function Vs : O → R such that, for all x ∈ O,

|V (x) − Vs(x)| ≤ µ(x). (97)

The next result is similar to [6] (Lem. 5.1) which is based on similar results in [15,40] and [18] (Th. B.1).

Lemma 16. Let O ⊂ Rn be open and let the three functions α : O → R and µ, ν : O → (0,∞) be continuous.
Suppose V : O → R is locally Lipschitz on O, and the set-valued map F satisfies the basic conditions on O and
is locally Lipschitz on O, and for almost all x ∈ O,

max
w∈F (x)

〈∇V (x), w〉 ≤ α(x). (98)

Then there exists a smooth function Vs : O → R such that, for all x ∈ O,

|V (x)− Vs(x)| ≤ µ(x) (99)

and

max
w∈F (x)

〈∇Vs(x), w〉 ≤ α(x) + ν(x). (100)

The last result is similar to [18] (Lem. 4.3).

Lemma 17. Let G and G\A be open sets. Assume that V : G → R≥0 is continuous, the restriction of V to
the set G\A is smooth, V (x) = 0 for all x ∈ A, and V (x) > 0 for all x ∈ G\A. Then there exists a function
ρ ∈ K∞, smooth on (0,∞) and having derivative that is a class-K∞ function satisfying ρ(s) ≤ sρ

′
(s) for all

s ≥ 0, such that Vs := ρ ◦ V is smooth on G.

5. Proofs of main results

5.1. Proof of Theorem 1

5.1.1. Forward completeness, smooth converse function =⇒ robust KL-stability

We start with the following observation:

Lemma 18. Let F satisfy the basic conditions on G and suppose V is a smooth converse Lyapunov function
for KL-stability for (ω1, ω2) on G for F . There exists a continuous function δ : G → R≥0, positive on the set
where V (x) > 0, such that:

1. x 7→ Fδ(x)(x) := coF (x+ δ(x)B) + δ(x)B satisfies the basic conditions on G;
2. V (·)4 is a smooth converse Lyapunov function for KL-stability for (ω1, ω2) on G for Fδ(·)(·).

Proof. We introduce two functions δ1 and δ2 as follows:
• Define

δ1(x) :=
V (x)

4 max{1, |∇V (x)|} · (101)

This function is well-defined and continuous on G since V is smooth. Moreover, it is positive when V (x)
is positive.
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• We define δ2(x) as follows:
– For x ∈ G such that V (x) = 0, define δ2(x) = 0.
– For x ∈ G such that V (x) > 0, define δ2(x) to be the supremum over all δ ≤ 1 such that {x}+ 2δB ⊂ G

and

max
w∈coF (x+2δB)

〈∇V (x), w〉 ≤ −1
2
V (x). (102)

To see that this function is well-defined, first note that, from the upper semicontinuity of F , for each x ∈ G
such that V (x) > 0 there exists δ̄(x) > 0 such that

F (x+ 2δ̄(x)B) ⊆ F (x) + 2δ1(x)B. (103)

Then, using the convexity of F (x) and [12] (Sect. 5, Lem. 9),

coF (x+ 2δ̄(x)B) ⊆ co
[
F (x) + 2δ1(x)B

]
= F (x) + 2δ1(x)B. (104)

It follows from the definition of δ1(x) that (102) is satisfied with δ = min{1, δ̄(x)}.
We claim that for each compact subset C of G such that V (x) > 0 for all x ∈ C, we have infx∈C δ2(x) > 0.

Suppose not. Then there exists a sequence {xn}∞n=1, with xn ∈ C for each n, converging to x∗ ∈ C such
that

max
w∈coF (xn+ 1

nB)
〈∇V (xn), w〉 > −1

2
V (xn). (105)

Using the upper semicontinuity of F and the convexity of F (x∗), as in (104), we have, for n sufficiently
large,

coF (xn +
1
n
B) ⊆ F (x∗) + δ1(x∗)B (106)

and thus

−1
2
V (xn) < max

w∈coF (xn+ 1
nB)
〈∇V (xn), w〉 ≤ max

w∈F (x∗)+δ1(x∗)B
〈∇V (xn), w〉 · (107)

Since (101) gives

max
w∈F (x∗)+δ1(x∗)B

〈∇V (x∗), w〉 ≤ −3
4
V (x∗), (108)

the continuity of V (107) and (108) provide a contradiction to (105).
We define

∆(x) := min {δ1(x), δ2(x)} (109)

which, from (101) and (102), gives

max
w∈coF (x+∆(x)B)+∆(x)B

〈∇V (x), w〉 ≤ −1
4
V (x), (110)
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i.e.,

max
w∈coF (x+∆(x)B)+∆(x)B

〈∇(V (x)4), w〉 ≤ −V (x)4. (111)

Now, we are ready to define the function δ of Lemma 18 as

δ(x) = inf
ξ∈G

[∆(ξ) + |x− ξ|] . (112)

It is Lipschitz continuous and satisfies

δ(x) ≤ ∆(x), (113)
∆(x) > 0 ⇒ δ(x) > 0. (114)

With such a function, Lemma 1 states that Fδ(·)(·) satisfies the basic conditions on G. So, δ(·) satisfies the
conditions of Lemma 18.

We assume that ẋ ∈ F (x) is forward complete on G and we let V be a smooth converse Lyapunov function for
KL-stability with respect to (ω1, ω2) on G for F . Let δ1 be given by Lemma 18 and let δ2 be given by Lemma
7. Define

δ(x) = min {δ1(x), δ2(x)} · (115)

The function δ : G → R≥0 is continuous, positive on the set where V is positive and {x} + δ(x)B ⊂ G. Using
Lemma 7, the differential inclusion

ẋ ∈ Fδ(x)(x) := coF (x+ δ(x)B) + δ(x)B (116)

is forward complete on G and Fδ(·)(·) satisfies the basic conditions on G. Using Lemma 18, there exist class-K∞
functions α1 and α2 such that for all maximal solutions φ(·, x) of (116) and all t ≥ 0, we have

α1(ω1(φ(t, x))) ≤ V (φ(t, x))4 ≤ α2(ω2(φ(t, x))) (117)

and

˙︷ ︷
V (φ(t, x))4 ≤ −V (φ(t, x))4. (118)

From a comparison theorem, (118) implies that

V (φ(t, x))4 ≤ V (x)4e−t ∀t ≥ 0. (119)

Then (117) gives

ω1(φ(t, x)) ≤ α−1
1 (α2(ω2(x))e−t) ∀t ≥ 0, (120)

i.e., the differential inclusion (116) is KL-stable with respect to (ω1, ω2) on G. Finally (119) and (117) give the
following implications:

V (x) = 0 =⇒ V (φ(t, x)) ≡ 0 ∀t ≥ 0, (121)
=⇒ ω1(φ(t, x)) ≡ 0 ∀t ≥ 0. (122)
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So the set V◦ := {ξ : V (ξ) = 0} is a subset of the set Aδ defined by (31). Then since δ(x) > 0 whenever
V (x) > 0, we have

δ(x) > 0 ∀x ∈ G\V◦ ⊇ G\Aδ. (123)

We conclude that the differential inclusion ẋ ∈ F (x) is robustly KL-stable with respect to (ω1, ω2) on G. �

5.1.2. Robust KL-stability =⇒ forward completeness, smooth converse function

Step 1: Preliminaries. If ω1(x) = 0 for all x ∈ G then the result is established by taking V (x) = 0 for all x ∈ G.
So, without loss of generality, we can assume that the set G\ {ω1(x) = 0} is a nonempty, open set.

Also without loss of generality, we can assume that ω1 is locally Lipschitz on G. Indeed, if ω1 is only
continuous on G then ω1 can be smoothed on G using Lemma 15 and Lemma 17. In particular, we first get a
function ω̄1, continuous on G and smooth on G \ {x : ω1(x) = 0} and satisfying |ω̄1(x) − ω1(x)| ≤ 1

2ω1(x) for
all x ∈ G. Then we get a function ρ ∈ K∞ so that the function ω̃1 := ρ ◦ ω̄1 is smooth on G. In this way, the
function ω̃1 satisfies

ρ
(

3
2ω1(x)

)
≥ ω̃1(x) ≥ ρ

(
1
2ω1(x)

)
. (124)

These inequalities guarantee that the differential inclusion ẋ ∈ F (x) is robustly KL-stable with respect to
(ω̃1, ω2) on G. The second inequality guarantees that if V is a smooth converse Lyapunov function for KL-
stability with respect to (ω̃1, ω2) then it is also a smooth converse Lyapunov function for KL-stability with
respect to (ω1, ω2).

Let δ : G → R≥0 be the continuous function given by the robust KL-stability assumption. From this δ let
FL, coming from Lemma 8, be a set-valued map satisfying the basic conditions on G, locally Lipschitz on the
open set

O := G\ {ξ ∈ G : δ(ξ) = 0} (125)

and such that

F (x) ⊆ FL(x) ⊆ Fδ(x)(x). (126)

From the property of ẋ ∈ Fδ(x)(x), we deduce that the differential inclusion ẋ ∈ FL(x) is KL-stable with respect
to (ω1, ω2) on G. We also have G\AL ⊆ O where

AL :=

{
ξ ∈ G : sup

t≥0,φ∈SL(ξ)

ω1(φ(t, ξ)) = 0

}
(127)

where SL(·) represents the set of maximal solutions to ẋ ∈ FL(x). To see that this is the case, first note that,
with Aδ defined in (31), the set G\Aδ is a subset of O. Then, since FL(x) ⊆ Fδ(x)(x), we have Aδ ⊆ AL.
Combining, we have

G\AL ⊆ G\Aδ ⊆ O. (128)

Step 2: Construction of V1 and its basic properties. Let β ∈ KL be such that, for each x ∈ G, all solutions
φ ∈ SL(x) satisfy

ω1(φ(t, x)) ≤ β(ω2(x), t) ∀t ≥ 0. (129)
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Let α̃1 and α̃2 be given by Lemma 3 for this β and λ = 2, i.e., for all x ∈ G, φ ∈ SL(x) and t ≥ 0,

α̃1

(
ω1(φ(t, x))

)
≤ α̃2(ω2(x))e−2t. (130)

Define, for each x ∈ G,

V1(x) := sup
t≥0,φ∈SL(x)

α̃1

(
ω1(φ(t, x))

)
et. (131)

The function V1 has the following properties:

Proposition 5. The function V1 : G → Rn defined in (131) is continuous on G, locally Lipschitz on
{ξ ∈ G : V1(ξ) 6= 0} and satisfies

V1(x) = 0 ⇐⇒ x ∈ AL (132)
α̃1(ω1(x)) ≤ V1(x) ≤ α̃2(ω2(x)) (133)

and, for almost all x ∈ {ξ ∈ G : V1(ξ) 6= 0},

max
w∈FL(x)

〈∇V1(x), w〉 ≤ −V1(x). (134)

Proof. We prove this proposition in three steps.

1. Property (132) and inequalities (133): (132) is a consequence of the definition (131) of V1 and (127)
of AL. The lower bound in (133) comes from

V1(x) ≥ sup
φ∈SL(x)

α̃1

(
ω1(φ(t, x))

)
et
∣∣∣∣
t=0

= α̃1(ω1(x)) (135)

while the upper bound in (133) comes from using (130) to get

V1(x) ≤ sup
t≥0

α̃2(ω2(x))e−t = α̃2(ω2(x)). (136)

2. Inequality (134): To establish (134) we will use the following claim:

Claim 1. For all x ∈ G, φ ∈ SL(x) and t ≥ 0, we have

V1(φ(t, x)) ≤ V1(x)e−t. (137)

Proof. The claim follows from

V1(φ(t, x)) = sup
τ≥0,ψ∈SL(φ(t,x))

α̃1

(
ω1(ψ(τ, φ(t, x)))

)
eτ

≤ sup
τ≥t,ψ∈SL(x)

α̃1

(
ω1(ψ(τ, x))

)
eτ−t

≤ sup
τ≥0,ψ∈SL(x)

α̃1

(
ω1(ψ(τ, x))

)
eτe−t

= V1(x)e−t.

(138)
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Since FL is locally Lipschitz on O, from Lemma 11, for each x ∈ O and each w ∈ FL(x) there exists φ ∈ SL(x)
such that

φ(t, x) = x+ t(w + r(t)) ∀t ∈ [0, T ), (139)

for some T > 0 and some continuous function r satisfying limt→0+ r(t) = 0. Then from (137) we have, for t
sufficiently small,

V1(x+ t(w + r(t))) − V1(x)
t

≤ V1(x)
e−t − 1

t
· (140)

With the definition (94), we have when this makes sense

DV1(x;w) ≤ lim inf
t→0+

V1(x+ t(w + r(t))) − V1(x)
t

≤ −V1(x). (141)

Since w ∈ FL(x) was arbitrary, for each x ∈ O, we have when this makes sense

sup
w∈FL(x)

DV1(x;w) ≤ −V1(x). (142)

So with (132), if we can establish that V1 is continuous on G and locally Lipschitz on G\AL ⊆ O then (134) will
follow from Lemmas 12 and 13.

3. Local Lipschitz continuity: To establish the local Lipschitz continuity we will use the following result
which states that the sup in the solutions used in the definition of V1 is reached at a particular solution and
that the sup in time is reached in a compact set:

Claim 2. Let x ∈ G be such that V1(x) > 0. Define

T (x) := − ln
(

V1(x)
α̃2(ω2(x))

)
+ 1. (143)

Then there exists φ̂x ∈ SL(x) such that

V1(x) = max
t∈[0,T (x)]

α̃1

(
ω1(φ̂x(t, x))

)
et. (144)

Proof. We have

sup
t∈[0,T (x)], φ∈SL(x)

α̃1

(
ω1(φ(t, x))

)
et ≤ V1(x) (145)

and, with (130),

V1(x) = max

{
sup

t∈[0,T (x)],φ∈SL(x)

α̃1

(
ω1(φ(t, x))

)
et, sup

t≥T (x),φ∈SL(x)

α̃1

(
ω1(φ(t, x))

)
et

}

≤ max

{
sup

t∈[0,T (x)],φ∈SL(x)

α̃1

(
ω1(φ(t, x))

)
et, α̃2(ω2(x))e−T (x)

}

≤ max

{
sup

t∈[0,T (x)],φ∈SL(x)

α̃1

(
ω1(φ(t, x))

)
et, V1(x)

1
e

} (146)
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from which it follows that

V1(x) = sup
t∈[0,T (x)],φ∈SL(x)

α̃1

(
ω1(φ(t, x))

)
et = sup

φ∈SL(x)

max
t∈[0,T (x)]

α̃1

(
ω1(φ(t, x))

)
et, (147)

where we have used the continuity of ω1(φ(·, x)) to pass to the ‘max’. Now let {φk}∞k=1 be a maximizing sequence
of solutions in SL(x) in (147), i.e.,

V1(x) = lim
k→∞

max
t∈[0,T (x)]

α̃1 (ω1(φk(t, x))) et. (148)

From Lemma 4, a subsequence of {φk(·, x)}∞k=1 converges uniformly on [0, T (x)] to some solution φ̂x ∈ SL(x).
From the continuity of ω1 and α̃1, we have

V1(x) = max
t∈[0,T (x)]

α̃1

(
ω1(φ̂x(t, x))

)
et. (149)

3.1 Upper semicontinuity of V1:
Now we show that V1 is upper semicontinuous on G. For the sake of getting a contradiction, suppose the
existence of x ∈ G and a sequence {xk}∞k=1 of points in G converging to x ∈ G such that

lim sup
k→∞

V1(xk) > V1(x) ≥ 0. (150)

Without loss of generality, we can assume that, for all k and some η > 0,

V1(xk) ≥ η. (151)

We define τ := supk T (xk). The condition (151), the continuity of α̃2 ◦ ω2, and the definition of T (·) in (143)
imply τ <∞. From Claim 2, let φ̂xk ∈ SL(xk) be such that

V1(xk) = max
t∈[0,T (xk)]

α̃1

(
ω1(φ̂xk(t, xk))

)
et = max

t∈[0,τ ]
α̃1

(
ω1(φ̂xk(t, xk))

)
et. (152)

For each ε > 0, Lemma 6 with the triple (τ, ε, {x}) and the continuity of ω1 and α̃1 give the existence of kε so
that for all k ≥ kε, we can find ψk ∈ SL(x) so that

V1(xk) = max
t∈[0,τ ]

α̃1

(
ω1(φ̂xk(t, xk))

)
et ≤ ε + max

t∈[0,τ ]
α̃1 (ω1(ψk(t, x))) et (153)

≤ ε + V1(x). (154)

This implies

lim sup
k→∞

V1(xk) ≤ V1(x). (155)

This contradiction establishes the upper semicontinuity of V1. Moreover, it also establishes continuity of V1 at
each point x ∈ {ξ ∈ G : V1(ξ) = 0} since, for each such x, we have

0 ≤ lim sup
z→x

V1(z) ≤ V1(x) = 0. (156)
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3.2 Local Lipschitz continuity of V1:
To conclude the proof of Proposition 5, it is now sufficient to establish that V1 is locally Lipschitz on

G\AL = {ξ ∈ G : V1(ξ) 6= 0} · (157)

We will do this by applying Lemma 14 to the lower semicontinuous function −V1. Namely, we will show that
for each x ∈ {ξ ∈ G : V1(ξ) 6= 0} there is a neighborhood U of x and a constant M > 0 such that

D(−V1)(ξ; v) ≤M |v| ∀ξ ∈ U , v ∈ Rn. (158)

To do this we will use the following claim:

Claim 3. Let V1(x) > 0 and let T (x) and φ̂x(t, x) come from Claim 2. There exists T̂ (x) ∈ [0, T (x)] such that

V1(φ̂x(t, x)) ≥ V1(x)e−T (x) ∀t ∈ [0, T̂ (x)], (159)

V1(x) = max
t∈[0,bT(x)]

α̃1(ω1(φ̂x(t, x)))et. (160)

Proof. First recall from (137) that

V1(φ̂x(T (x), x)) ≤ V1(x) e−T (x). (161)

So the set

T =
{
t ∈ [0, T (x)] : V1(φ̂x(t, x)) ≤ V1(x)e−T (x)

}
(162)

is nonempty and we can define

T̂ (x) := inf{t ∈ T } · (163)

Either T̂ (x) = 0 and (159) holds from

V1(φ̂x(0, x)) = V1(x) > V1(x) e−T (x), (164)

or T̂ (x) > 0 and (159) holds for all t ∈ [0, T̂ (x)). Also, with the upper semi-continuity of V1 at φ̂x(T̂ (x), x), we
have

V1(φ̂x(T̂ (x), x)) ≥ lim sup
z→φ̂x(bT (x),x)

V1(z), (165)

≥ lim sup
t→bT (x), t<bT (x)

V1(φ̂x(t, x)) ≥ V1(x)e−T (x). (166)

So (159) holds also for t = T̂ (x).
Now we prove (160). If T̂ (x) = T (x) then there is nothing new to prove. If not, let {tn}∞n=1 be a nonincreasing

sequence of times in [0, T (x)) ∩ T converging to T̂ (x). We have

V1(x) = max
{

max
t∈[0,tn]

α̃1

(
ω1(φ̂x(t, x))

)
et, max

t∈[tn,T (x)]
α̃1

(
ω1(φ̂x(t, x))

)
et
}
,

≤ max

{
max
t∈[0,tn]

α̃1

(
ω1(φ̂x(t, x))

)
et, sup

t≥0, ψ∈SL(φ̂x(tn,x))

α̃1

(
ω1(ψ(t, φ̂x(tn, x)))

)
etetn

}
,

≤ max
{

max
t∈[0,tn]

α̃1

(
ω1(φ̂x(t, x))

)
et, V1(φ̂x(tn, x))etn

} (167)
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and also, since tn ∈ T and tn < T (x),

V1(φ̂x(tn, x))etn ≤ V1(x)e−T (x)+tn < V1(x). (168)

Hence (167) and the continuity of α̃1, ω1 and φ̂x(·, x) and the fact that tn converges to T̂ (x) establishes (160).

To end our proof, we pick x arbitrarily in {ξ ∈ G : V1(ξ) 6= 0}. Let T̂ (x) and φ̂x(t, x) come from the previous
claims. Remember that FL is locally Lipschitz on O and that we have

{ξ ∈ G : V1(ξ) 6= 0} = G\AL ⊆ O. (169)

From (159) we have that V1(φ̂x(t, x)) 6= 0 for all t ∈ [0, T̂ (x)] and so φ̂x(t, x) ∈ O for all t ∈ [0, T̂ (x)]. Then, by
letting

T = T̂ (x), C =
{
z : ∃t ∈ [0, T̂ (x)] : z = φ̂x(t, x)

}
(170)

and by invoking the local Lipschitz property of α̃1 ◦ω1(·), we can apply Lemma 10 to get the existence of δx > 0
and Lx such that for any v with |v| ≤ δx, there exists a solution ψ ∈ SL(x+ v) such that

max
t∈[0,bT(x)]

∣∣∣α̃1(ω1(φ̂x(t, x))) − α̃1(ω1(ψ(t, x+ v)))
∣∣∣ ≤ Lx|v|. (171)

This yields

V1(x) = max
t∈[0,bT(x)]

α̃1(ω1(φ̂x(t, x)))et

≤ sup
t≥0

α̃1(ω1(ψ(t, x+ v)))et + max
t∈[0,bT (x)]

|α̃1(ω1(φ̂x(t, x))) − α̃1(ω1(ψ(t, x+ v)))|et

≤ V1(x+ v) + eT (x)Lx|v|.

(172)

Since v is arbitrary (but small enough in norm), this establishes that V1 is lower semicontinuous on
{ξ ∈ G : V1(ξ) 6= 0}. This, combined with the upper semicontinuity of V1 on G and the continuity of V1 on
{ξ ∈ G : V1(ξ) = 0} that we have already established, shows that V1 is continuous on G.

We are left with proving (158). Since we now know that V1(·) and T (·) are continuous functions on
{ξ ∈ G : V1(ξ) 6= 0}, there exists a compact subset C0 of {ξ ∈ G : V1(ξ) 6= 0} which contains a neighborhood
of x and is such that for all z ∈ C0, we have

T (z) ≤ 2T (x), V1(z)e−T (z) ≥ 1
2
V1(x)e−T (x). (173)

This and (159) imply that for all z ∈ C0, we have for all t ∈ [0, T̂ (z)],

V1(φ̂z(t, z)) ≥ V1(z)e−T (z) ≥ 1
2
V1(x)e−T (x). (174)

On the other hand, we know, from Lemma 4, that R≤2T (x)(C0) is a compact subset of G. Also, since V1 is
continuous on G, the following is a compact subset of G:

C := R≤2T (x)(C0)
⋂{

z ∈ G : V1(z) ≥ 1
2
V1(x)e−T (x)

}
· (175)
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From (173) and (174), we have that for all z ∈ C0, and all t ∈ [0, T̂ (z)],

φ̂z(t, z) ∈ C. (176)

Since α̃1 ◦ ω1(·) is locally Lipschitz, we invoke Lemma 10 with T = 2T (x) and C defined in (175), to get the
existence of δ > 0 and L such that for all v̄ ∈ Rn with |v̄| ≤ δ, and all z ∈ C0, we have (following the same lines
as for establishing (172)),

V1(z) ≤ V1(z + v̄) + e2T (x)L|v̄|. (177)

It follows that for all v ∈ Rn and all z ∈ C0, we have

D(−V1)(z; v) = lim inf
w→v,ε→0+

V1(z)− V1(z + εw)
ε

≤ lim inf
w→v

e2T (x)L|w| = e2T (x)L|v|. (178)

This establishes (158) and concludes the proof of Proposition 5.

Step 3: Smoothing V1(x). The final step in the proof of Theorem 1 is to turn V1, which is continuous on G and
locally Lipschitz on the open set {ξ ∈ G : V1(ξ) 6= 0}, into a function that is smooth on G, without losing the
desirable properties of V1. The first step in this task is to apply Lemma 16 with the open set {ξ ∈ G : V1(ξ) 6= 0}
and with α(x) = −V1(x), µ(x) = 1

2V1(x) and ν(x) = 1
4V1(x). Let V2 : G → R≥0 be given by Lemma 16 for

x ∈ {ξ ∈ G : V1(ξ) 6= 0} and let V2(x) = 0 for x ∈ {ξ ∈ G : V1(ξ) = 0}. With the help of (99) and (100), we can
see that this function V2 is continuous on G, smooth on {ξ ∈ G : V2(ξ) 6= 0}, and satisfies, for all x ∈ G,

1
2
α̃1(ω1(x)) ≤ 1

2
V1(x) ≤ V2(x) ≤ 3

2
V1(x) ≤ 3

2
α̃2(ω2(x)) (179)

and, for all x ∈ {ξ ∈ G : V1(ξ) 6= 0},

max
w∈FL(x)

〈∇V2(x), w〉 ≤ −3
4
V1(x) ≤ −1

2
V2(x). (180)

Finally, to get a function that is smooth on G we apply Lemma 17 to the function V2 which satisfies all of
the assumptions of Lemma 17. Using the resulting function ρ, we take V := (ρ ◦ V2)2 which is smooth by
construction. From (179) it follows that (26) holds with

α1(s) := ρ

(
1
2
α̃1(s)

)2

, α2(s) := ρ

(
3
2
α̃2(s)

)2

. (181)

Also, from (180) and the relation ρ(s) ≤ sρ′(s), it follows that

max
w∈F (x)

〈∇V (x), w〉 ≤ −2ρ(V2(x))ρ
′
(V2(x))

1
2
V2(x) ≤ −ρ(V2(x))2 = −V (x), (182)

i.e. (27) holds. Thus V is a smooth converse Lyapunov function for KL-stability with respect to (ω1, ω2) on G.

5.1.3. Bibliographical Notes

• The idea of imbedding the original differential equation or differential inclusion into a larger, locally
Lipschitz differential inclusion that still exhibits KL-stability with respect to (ω1, ω2) comes from Kurzweil
[15], who did this for the case of ordinary differential equations with continuous right-hand side and the
notion of strong stability of the origin, and from Clarke et al. [6], who did this for the case of nonempty,
compact, convex, upper semicontinuous differential inclusions and global asymptotic stability of the origin.
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• The particular construction of the trial Lyapunov function V1 as the supremum, over time and solutions
φ(·, x) of the perturbed (locally Lipschitz) differential inclusion, of the quantity α̃1(ω1(φ(t, x)))et where α̃1

has a particular form is a combination of a classical construction, for locally Lipschitz ordinary differential
equations with an exponentially stable equilibrium (see, e.g. [41], Sect. 19), and the construction in [18].
A suitable choice for α̃1 is made possible by the recent result of Sontag ([30], Prop. 7).
• Claim 2 is a combination of [18] (Fact 2) and [6] (Lem. 4.5).
• The proof scheme for establishing that the trial Lyapunov function V1 is locally Lipschitz with, in partic-

ular, the help of Lemma 14 is due to Clarke et al. [6].
• The smoothing technique used in the final step of the proof is borrowed from Kurzweil [15], Wilson [40],

Lin et al. [18] and Clarke et al. [6].

5.2. Proof of Theorem 2

The assumption of Theorem 2 says that the differential inclusion ẋ ∈ F (x) is KL-stable with respect to
(ω1, ω2) on G and that F is locally Lipschitz on G \ A. So, from Sections 5.1.2 and 5.1.2 in the proof of the
implication 2 ⇒ 1 in the proof of Theorem 1, we know the existence of a smooth converse Lyapunov function
for KL-stability with respect to (ω1, ω2) on G for F . Then, since the differential inclusion ẋ ∈ F (x) is assumed
to be forward complete on G, the implication 1 ⇒ 2 of Theorem 1 allows us to conclude. �

5.3. Proof of Theorem 3

The basic idea of this proof is the same as the one in the proof of Theorem 2. Namely, we will establish
robust stability by first establishing the existence of a smooth converse Lyapunov function and then, since we
are assuming forward completeness on G, appealing to the implication 1 ⇒ 2 of Theorem 1, i.e. “forward
completeness plus smooth converse function implies robust stability”.

Assume, temporarily, that we have established robust KL-stability with respect to (ω, ω) on G for

ẋ ∈ 1
κ(x)

F (x) =: FN (x) (183)

where κ is given by the backward completability by ω-normalization assumption and, thus, satisfies κ(x) ≥ 1.
Then, from the implication 2 ⇒ 1 of Theorem 1, i.e. “robust stability implies smooth converse Lyapunov
function”, there exists a smooth converse Lyapunov function V for KL-stability with respect to (ω, ω) on G for
FN . In particular we have

max
w∈FN (x)

〈∇V (x), w〉 ≤ −V (x). (184)

It follows directly that

max
w∈F (x)

〈∇V (x), w〉 = κ(x) · max
w∈FN (x)

〈∇V (x), w〉 ≤ −κ(x) · V (x) ≤ −V (x) (185)

which establishes that V is also a smooth converse Lyapunov function for KL-stability with respect to (ω, ω)
on G for F . From the implication 1 ⇒ 2 of Theorem 1, we get the robust KL-stability with respect to (ω, ω) on
G for ẋ ∈ F (x). So, to establish Theorem 3 it is sufficient to prove robust KL-stability with respect to (ω, ω)
on G for ẋ ∈ FN (x). Hence, our task in the following is to exhibit a continuous function δ : G → R≥0 such that

1. {x}+ δ(x)B ⊂ G;
2. the differential inclusion

ẋ ∈ FNδ(x)(x) := coFN (x+ δ(x)B) + δ(x)B (186)

is KL-stable with respect to (ω, ω) on G;
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3. δ(x) > 0 for all x in an open set containing G\Aδ where

Aδ :=

{
ξ ∈ G : sup

t≥0,φ∈SNδ(ξ)
ω(φ(t, ξ)) = 0

}
(187)

where SNδ(·) represents the set of maximal solutions to (186).

With regard to the third point, we observe that if the second point holds then

Aδ = Ω := {ξ ∈ G : ω(ξ) = 0} · (188)

Indeed, clearly Aδ ⊂ Ω. On the other hand, KL-stability with respect to (ω, ω) on G for the differential inclusion
(186) implies that, for all x ∈ G, all φNδ ∈ SNδ(x), and all t ≥ 0, we have

ω(φNδ(t, x)) ≤ β(ω(x), t). (189)

So, for all x ∈ Ω, we obtain

ω(φNδ(t, x)) = 0 ∀t ≥ 0, (190)

i.e., x ∈ Aδ.
To accomplish our task, we will first establish KL-stability with respect to (ω, ω) on G for ẋ ∈ FN (x). Then

we will construct a function δ and finally establish that it has the needed properties.

5.3.1. KL-stability for FN
Lemma 19. Let ω : G → R≥0 be continuous and let F satisfy the basic conditions on G. If the differential
inclusion ẋ ∈ F (x) is backward completable by ω-normalization and KL-stable with respect to (ω, ω) on G then,
with κ the function given by the backward completability assumption, the differential inclusion

ẋ ∈ 1
κ(x)

F (x) =: FN (x) (191)

is backward complete on G and KL-stable with respect to (ω, ω) on G and FN satisfies the basic conditions
on G.

Proof. Since 1/κ(·) is continuous, FN satisfies the basic conditions on G. Backward completeness follows by
assumption. To establish forward completeness, we pick x arbitrarily in G. Let φN (·, x) be an arbitrary maximal
solution of ẋ ∈ FN (x), right maximally defined on [0, tN). In this way, we have defined a continuous function
κ(φN (·, x)) on [0, tN ). Let τ(·) be a solution belonging to [0, tN ) of

τ̇ = κ(φN (τ, x)) τ(0) = 0, (192)

right maximally defined on [0, tτ ). Since κ(x) ≥ 1 for all x ∈ G, τ(·) is strictly increasing and we have, with the
right maximality of [0, tτ ),

t ≤ τ(t), (193)
tτ ≤ lim

t→tτ
τ(t) = tN . (194)
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Since φN (·, x) is absolutely continuous and τ(·) is C1 and strictly increasing, the function φN (τ(·), x) is absolutely
continuous (see [28], Th. 3, p. 245) and we have, for almost all t ∈ [0, tτ ),

˙︷ ︷
φN (τ(t), x) ∈ 1

κ(φN (τ(t), x))
F (φN (τ(t), x)) τ̇ (t)

∈ F (φN (τ(t), x)).
(195)

Therefore, with the forward completeness of ẋ ∈ F (x), φN (τ(·), x) is a solution of ẋ ∈ F (x) on [0, tτ ).
Then, assume for the time being that tN < +∞. From (194) this implies tτ < +∞. From the forward

completeness of ẋ ∈ F (x), there exists φ(·, x), a solution of ẋ ∈ F (x), defined and continuous on [0,+∞), such
that

φ(t, x) = φN (τ(t), x) ∀t ∈ [0, tτ ). (196)

Also the reachable set R≤tτ (x) for ẋ ∈ F (x) is a compact subset of G. With (196) and continuity of φ, this
implies that, by letting φN (tN , x) := φ(tτ , x), with (194), φN , as a solution of ẋ ∈ FN (x), can be extended to
[0, tN ] and therefore, with Lemma 2, beyond tN . This contradicts the definition of tN and implies

tN = +∞. (197)

So the differential inclusion ẋ ∈ FN (x) is forward complete on G.
To complete our proof of KL-stability with respect to (ω, ω) on G for ẋ ∈ FN (x), we observe that, since this

property holds for ẋ ∈ F (x), we have

ω(φN (τ(t), x)) ≤ β(ω(x), t) ∀t ∈ [0, tτ ). (198)

On the other hand, from the backward completability assumption, we know the existence of a class-K function
γ and a constant c such that

κ(φN (τ(t), x)) ≤ γ(ω(φN (τ(t), x))) + c ∀t ∈ [0, tτ). (199)

Together with (198), this yields

κ(φN (τ(t), x)) ≤ γ(β(ω(x), t)) + c ≤ γ(β(ω(x), 0)) + c ∀t ∈ [0, tτ ). (200)

It follows by integration that

τ(t) ≤ [γ(β(ω(x), 0)) + c] t (201)

for all t ∈ [0, tτ ). With (194) and (197), this implies

tτ = +∞. (202)

It follows that τ is a class-K∞ function and its inverse τ−1 satisfies

τ−1(s) ≥ s

γ(β(ω(x), 0)) + c
· (203)

We then have, from (198), for all s ∈ [0,+∞),

ω(φN (s, x)) ≤ β(ω(x), τ−1(s)) (204)
≤ βN (ω(x), s), (205)
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where the function

βN(r, s) := β

(
r,

s

γ(β(r, 0)) + c

)
(206)

is of class-KL. This establishes KL-stability with respect to (ω, ω) on G for ẋ ∈ FN (x).

5.3.2. Construction of δ(·)
Applying Lemma 7 successively to the differential inclusions ẋ ∈ FN (x) and ẋ ∈ −FN (x), we get a strictly

positive continuous function ∆0 such that the differential inclusion

ẋ ∈ F0(x) := coFN (x+ ∆0(x)B) + ∆0(x)B (207)

is backward and forward complete on G and F0 satisfies the basic conditions on G.
Let βN be the class-KL given by the KL-stability of ẋ ∈ FN (x). According to Remark 3 we can, without

loss of generality, assume that βN is continuous. We define, recursively, a set of strictly positive real numbers
ωi, εi and Ti, for i = 0,±1,±2, . . . as follows:
• First we define ωi to satisfy

ω0 = 1, ωi+1 = 2 βN(ωi, 0). (208)

Since the definition of KL-stability with respect to (ω, ω) implies

βN (s, 0) ≥ s, (209)

the ωi’s are well-defined, strictly increasing and satisfy

ωi ≥ 2i ∀i ≥ 0, (210)

≤ 2i ∀i ≤ 0. (211)

So the intervals [ωi, ωi+1) cover R>0.
• Next we define εi to satisfy

βN (ωi−1 + εi, 0) + εi < ωi (212)

and

εi <
ωi−2

2
· (213)

• Finally, we choose Ti to satisfy

βN (ωi+1 + εi+2, Ti) + εi+2 < ωi. (214)

The fact that βN is a class-KL function implies that Ti is well-defined.
With these numbers, we define now the sets

Ωi := {x ∈ G : ωi ≤ ω(x) < ωi+1} · (215)

With the set Ω, defined in (188), for each ξ ∈ G\Ω, there is a unique i, denoted i(ξ) such that ξ ∈ Ωi(ξ). Now
we define, for each ξ ∈ G\Ω,

ε(ξ) := min
j∈{−2,−1,... ,2}

εi(ξ)+j+2, T (ξ) := max
j∈{−2,−1,... ,2}

Ti(ξ)+j . (216)
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Since for any point ξ and integer k related by

ξ ∈
k+2⋃
j=k−2

Ωj (217)

there exists j ∈ {−2,−1, . . . , 2} such that

k = i(ξ) + j, (218)

it follows from (216) that

X ⊂
k+2⋃
j=k−2

Ωj =⇒


inf
ξ∈X

T (ξ) ≥ Tk

sup
ξ∈X

ε(ξ) ≤ εk+2.
(219)

This fact will be used later.
We denote by C(ξ) the reachable set in time T (ξ) from ξ ∈ G \ Ω for the differential inclusion ẋ ∈ −F0(x).

From Lemma 4 and the forward completeness of ẋ ∈ −F0(x), C(ξ) is a compact2 subset of G. Since a solution
of ẋ ∈ F◦(x) in backward time is also a solution of ẋ ∈ −F◦(x) in forward time, C(ξ) is also the set of points
from which ξ can be reached in time T (ξ) for the differential inclusion (207).

With the above, to each ξ ∈ G\Ω, we have associated a triple (T (ξ), ε(ξ), C(ξ)). Then, from Lemma 6, there
exists a strictly positive real number ∆1(ξ) satisfying P(∆1(ξ), ξ) where P (·, ·) is the property:
P(∆, ξ): every maximal solution φ1 of

ẋ ∈ F1(x) =: coFN (x+ ∆B) + ∆B, (220)

with initial condition x1 ∈ C(ξ), remains in G for all t ∈ [0, T (ξ)] and there exists a solution φN of
ẋ ∈ FN (x), with initial condition xN ∈ G such that, for all t ∈ [0, T (ξ)], we have

|ω(φ1(t, x1))− ω(φN (t, xN ))| ≤ ε(ξ). (221)

Then we choose

∆1(ξ) = min
{

1, 1
2 sup {∆ : P(∆, ξ) holds}

}
· (222)

To complete the definition of the function ∆1 on G, we let ∆1(ξ) = 0 when ξ ∈ Ω. We claim that the function ∆1

defined this way is bounded away from 0 on compact subsets of G\Ω. Indeed, consider a compact set K ⊂ G\Ω.
Since ω is continuous, the definitions of Ω, ε(ξ) and T (ξ) imply the existence of η > 0 and τ > 0 such that
ε(ξ) ≥ η and T (ξ) ≤ τ for all ξ ∈ K. Also, from backward completeness, the set of points from which the set
K can be reached in time τ is a compact set CK and we have C(ξ) ⊂ CK for all ξ ∈ K. Applying Lemma 6 with
the triple (τ, η, CK) gives the existence of ∆K > 0 such that P(∆K , ξ) holds for all ξ ∈ K. From the definition
of ∆1(ξ), we have ∆1(ξ) ≥ min

{
1, ∆K

2

}
> 0 for all ξ ∈ K.

With all these preliminaries, we can now give our definition of δ. We let

δ(x) = inf
ξ∈G

∆(ξ) + |ξ − x| (223)

2This is the only point where backward completeness is used and, hence, normalization is needed. Actually, in the following,
we do not need the set C(ξ) to be compact but only a subset of C(ξ) given by the closure of

C(ξ)
\�

x ∈ G : ωi(ξ)−2 ≤ ω(x) ≤ ωi(ξ)+2

	
·

So, for example, if ω is proper in G, the proof of Theorem 3 can be carried out without first normalizing F . This is the approach
taken in [6].
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where

∆(x) = min {∆0(x),∆1(x)} · (224)

This function δ is continuous on G, such that

δ(x) ≤ ∆(x), (225)

and bounded away from 0 on compact subsets of G\Ω. The latter follows from the fact that δ(x) = 0 implies
∆(x) = 0. Let us collect the main properties obtained with this function δ.

Proposition 6. We have the following properties:
1. The differential inclusion

ẋ ∈ FNδ(x) := coFN (x+ δ(x)B) + δ(x)B (226)

is forward and backward complete on G and FNδ satisfies the basic conditions on G.
2. Any solution of (226) is a solution of (207).
3. If X is a compact subset of G\Ω such that

⋂
ξ∈X C(ξ) is nonempty and we let

Ts := inf
ξ∈X

T (ξ) > 0 (227)

εs := sup
ξ∈X

ε(ξ) < ∞ (228)

δs := sup
ξ∈X

δ(ξ) < ∞ (229)

then if xs ∈
⋂
ξ∈X C(ξ) and φs is any maximal solution of

ẋ ∈ Fs(x) =: coFN (x+ δsB) + δsB, (230)

starting from xs, then φs is defined on [0, Ts] and there exists a solution φN of ẋ ∈ FN (x), with initial
condition xN ∈ G such that, for all t ∈ [0, Ts],

|ω(φs(t, xs))− ω(φN (t, xN ))| ≤ εs. (231)
Proof.

• Point 1 is a consequence of δ ≤ ∆0 and Lemma 1.
• Point 2 is a consequence of δ ≤ ∆0.
• Point 3 is established as follows. First we observe from the definitions of T (ξ) and ε(ξ) that, since X is
a compact subset of G\Ω, we do have Ts > 0 and εs <∞. Also since δ is continuous, there exists ξ∗ ∈ X
such that:

δs = δ(ξ∗). (232)

Note that we have trivially ⋂
ξ∈X
C(ξ) ⊂ C(ξ∗). (233)

Also, since we have

δ(ξ∗) ≤ ∆1(ξ∗), (234)
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a solution φs of (230) is a solution of (220) with ∆ = ∆1(ξ∗). These facts together with the property
P(∆1(ξ∗), ξ∗) imply that if xs ∈

⋂
ξ∈X C(ξ) then every maximal solution φs(·, xs) of (230) is defined on

[0, T (ξ∗)] and there exists a solution φN of ẋ ∈ FN (x), with initial condition xN ∈ G, such that, for all
t ∈ [0, T (ξ∗)], we have

|ω(φs(t, xs))− ω(φN (t, xN ))| ≤ ε(ξ∗). (235)

Since, from the definitions of εs and Ts, we have

ε(ξ∗) ≤ εs, T (ξ∗) ≥ Ts, (236)

the result follows.

5.3.3. Robust KL-stability for FN
Lemma 20. Given an integer k, for each xNδ ∈ Ωk and each maximal solution φNδ of (226) starting from
xNδ, there exists tNδ ∈ [0, Tk] such that:

ω(φNδ(t, xNδ)) ≤ ωk+2 ∀t ∈ [0, tNδ] (237)

and

ω(φNδ(tNδ, xNδ)) < ωk. (238)

Proof. Define

τ := sup {t ∈ [0, Tk] : ω(φNδ(s, xNδ)) ∈ [ωk−2, ωk+2] , ∀s ∈ [0, t]} · (239)

Since the right-hand side of (226) satisfies the basic conditions on G and is forward complete on G, τ is well-
defined. From the continuity of φNδ, if τ < Tk, then either ω(φNδ(τ, xNδ)) = ωk−2 or ω(φNδ(τ, xNδ)) = ωk+2.
Also the set

X = {ξ : ∃t ∈ [0, τ ] : ξ = φNδ(t, xNδ)} (240)

is a compact subset of
k+2⋃
j=k−2

Ωi and we have, using (219),

Ts := inf
ξ∈X

T (ξ) ≥ Tk (241)

εs := sup
ξ∈X

ε(ξ) ≤ εk+2 (242)

δs := sup
ξ∈X

δ(ξ) ≥ δ(φNδ(t, xNδ)) ∀ t ∈ [0, τ ]. (243)

Now, from point 2 in Proposition 6, φNδ is a solution of (207). Since, for all t ∈ [0, τ ], we have

T (φNδ(t, xNδ)) ≥ Tk ≥ τ, (244)

it follows that, for all t ∈ [0, τ ], xNδ belongs to the set of points from which φNδ(t, xNδ) can be reached in
time T (φNδ(t, xNδ)) for the differential inclusion (207), i.e., for each t ∈ [0, τ ], we have xNδ ∈ C(φNδ(t, xNδ)).
Consequently, with (243), φNδ, restricted to the interval [0, τ ], is a solution of (230). It follows from point 3 in
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Proposition 6 together with (241) and (244) that there exists a solution φN of ẋ ∈ FN (x), with initial condition
xN ∈ G satisfying

ω(xN ) ≤ ω(xNδ) + εs ≤ ωk+1 + εs, (245)

such that, with the KL-stability of ẋ ∈ FN (x), for all t ∈ [0, τ ],

ω(φNδ(t, xNδ)) ≤ ω(φN (t, xN )) + εs (246)
≤ βN (ω(xN ), t) + εs. (247)

With (247, 245, 242), and (212), it follows that, for all t ∈ [0, τ ],

ω(φNδ(t, xNδ)) ≤ βN (ω(xN ), t) + εk+2, (248)
≤ βN (ωk+1 + εk+2, t) + εk+2, (249)
≤ βN (ωk+1 + εk+2, 0) + εk+2, (250)
< ωk+2. (251)

This implies that:

– either τ < Tk and then

ω(φNδ(τ, xNδ)) = ωk−2 < ωk. (252)

So the lemma holds with tNδ = τ ;
– or τ = Tk and (with (214) and (249))

ω(φNδ(Tk, xNδ)) ≤ βN (ωk+1 + εk+2, Tk) + εk+2, (253)
< ωk. (254)

So the lemma holds with tNδ = Tk.

With this lemma available, we can show that the conditions given in Proposition 1 that imply KL-stability with
respect to (ω, ω) on G for ẋ ∈ FNδ(x), i.e., the inclusion (226), are satisfied. We let SNδ(·) denote the set of
maximal solutions of the inclusion (226).

Condition 2a of the proposition, i.e., forward completeness on G, has already been established. To establish
conditions 2b and 2c, we observe the following:
• For any x ∈ Ω = {ξ ∈ G : ω(ξ) = 0} and any solution φNδ in SNδ(x), we have

ω(φNδ(t, x)) = 0 ∀t ≥ 0. (255)

Indeed, assume this is not the case, i.e., there exist x ∈ Ω, a solution φNδ and a time τ0 > 0 such that

ω(φNδ(τ0, x)) > 0. (256)

Then there exists i such that φNδ(τ0, x) ∈ Ωi. Let

τ1 = sup {t ≤ τ0 : ω(φNδ(t, x)) ≤ ωi−3} · (257)
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Since φNδ(·, x) is continuous, τ1 is well-defined and we have φNδ(τ1, x) ∈ Ωi−3. So from Lemma 20, there
exists tNδ such that

ω(φNδ(t, x)) ≤ ωi−1 ∀t ∈ [τ1, τ1 + tNδ] (258)

and

ω(φNδ(τ1 + tNδ, x)) < ωi−3. (259)

Hence either τ1 + tNδ ≥ τ0 and (258) contradicts the fact that φNδ(τ0, x) ∈ Ωi, or τ1 + tNδ < τ0 and, with
the continuity of φNδ(·, x) (259) contradicts the definition of τ1. So (255) is established.
• For any x ∈ G\Ω, x is in Ωi(x) and, from Lemma 20, for any solution φNδ ∈ SNδ(x), there exists t◦ ≤ Ti(x)

such that

ω(φNδ(t, x)) ≤ ωi(x)+2 ∀t ∈ [0, t◦] (260)

and

ω(φNδ(t◦, x)) < ωi(x). (261)

So, again from Lemma 20, there exists t1 ≤ Ti(x)−1 such that

ω(φNδ(t◦ + t, x)) ≤ ωi(x)+1 ∀t ∈ [0, t1] (262)

and

ω(φNδ(t◦ + t1, x)) < ωi(x)−1. (263)

And so on . . .
So, regarding condition 2b of Proposition 1, let γ ∈ K∞ upper bound the piecewise constant function p(s)

defined by p(s) = ωk+2 for all s ∈ [ωk, ωk+1). Since ωk → 0 as k → −∞, such a function γ can be found. Then
for any x ∈ G and any solution φNδ ∈ SNδ(x), we have, if x is in Ω

ω(φNδ(t, x)) = 0 = γ(ω(x)) ∀t ≥ 0 (264)

and, if not, we have ω(x) ∈ [ωi(x), ωi(x)+1) and

ω(φ(t, x)) ≤ ωi(x)+2 = p(ω(x)) ≤ γ(ω(x)) ∀t ≥ 0. (265)

This establishes condition 2b.
Finally, regarding condition 2c, for any r > 0 and ε > 0, we define T (r, ε) as follows: let the integer i be such

that max {r, ε} ∈ [ωi, ωi+1), let the integer j be such that min {r, ε} ∈ [ωj , ωj+1) (note that i ≥ j), and define

T (r, ε) :=
i∑

m=j−3

Tm. (266)

From the previous observation, we see that, for any x ∈ G such that ω(x) ≤ r and any solution φNδ ∈ SNδ(x),
we have

ω(φ(t, x)) ≤ ε ∀t ≥ T (r, ε). (267)

This establishes condition 2c. �
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5.3.4. Bibliographical Notes

• The proof of Lemma 20 incorporates calculations modeled after those in the proof of [6] (Lem. 7.2).

6. Proofs of Propositions 2–4

6.1. Proof of Proposition 2

The proof has the following steps:

1. Using the second assumption of the proposition, we will find a smooth function ρ that is positive and
proper on G1, a class-K∞ function γ◦ and a constant c◦ ≥ 0 such that

ρ(x1) ≤ γ◦(ω(x)) + c◦. (268)

2. We will find class-K∞ functions γ1 and γ2 and a constant c1 ≥ 0 such that

max
w∈F (x)

〈∇ρ(x1), w1〉 ≤ max {γ1(ρ(x1)), γ2(|x2|), c1} · (269)

3. Using the first and third assumption of the proposition, we will show that normalizing with

κ(x) := max {1, γ1(ρ(x1))} ≤ 1 + γ1(2c◦) + γ1(2γ◦(ω(x))), (270)

which gives

max
w∈FN (x)

〈∇ρ(x1), w1〉 ≤ max {1, c1, γ2(|x2|)} , (271)

guarantees backward completeness.

6.1.1. Construction of ρ and its upper bound

Let x∗1 be a point in G1. If G1 = Rn1 then, for all x1 ∈ G1, we define

ρ0(x1) := 1 + |x1 − x∗1|. (272)

Otherwise, for all x1 ∈ G1, we define:

ρ0(x1) := 1 + max
{
|x1 − x∗1| ,

1
|x1|Rn1\G1

− 2
|x∗1|Rn1\G1

}
· (273)

In each case the function ρ0 is continuous, positive and proper on G1. Let ρ be given by Lemma 15 with O = G1,
V (x1) = ρ◦(x1) and µ(x1) = 1

2ρ0(x1). This function is smooth, positive and proper on G1 since we have

ρ(x1) ≥ 1
2
ρ0(x1) ∀x1 ∈ G1. (274)

Moreover, note that ρ(x∗1) ≤ 3
2
ρ0(x∗1) =

3
2

.

Let us show that, for each r ≥ 0, there exists R(r) ≥ 0 such that, ∀(x1, x2) ∈ G1 × Rn2 :

ω(x1, x2) ≤ r =⇒ ρ(x1) ≤ R. (275)
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If this were not the case, there would be some r ≥ 0 and a sequence {(x1n, x2n)}∞n=1 of points in G1 ×Rn2 such
that

inf
x2∈Rn2

ω(x1n, x2) ≤ ω(x1n, x2n) ≤ r (276)

and

ρ(x1n) > n. (277)

The latter implies that x1n goes either to the boundary of G1 or to infinity. With (43), this contradicts (276).
So (275) is established.

Without loss of generality, we can assume that the function R(·) is nondecreasing. Then we pick γ◦ ∈ K∞
and c◦ ≥ 0 such that, for all s ≥ 0,

R(s) ≤ γ◦(s) + c◦. (278)

Then, from (275) and (278), it follows that

ρ(x1) ≤ R(ω(x1, x2)) ≤ γ◦(ω(x1, x2)) + c◦. (279)

6.1.2. Bounding the derivative of ρ along solutions

Let

γ̄1(s) := sup
ρ(x1)≤s+2

|∇ρ(x1)| . (280)

Since ρ is smooth and proper, and ρ(x∗1) ≤ 3
2 , γ̄1 is well-defined on R≥0. It is nondecreasing and satisfies

|∇ρ(x1)| ≤ γ̄1(ρ(x1)). (281)

Next, from [12] (Sect. 5, Lem. 15), the functions

γ̄2(s) := sup
{(x1,x2): |x2|≤ρ(x1)≤s+2}

sup
w∈F (x1,x2)

|w1| (282)

γ̄3(s) := sup
{(x1,x2): ρ(x1)≤|x2|≤s+2}

sup
w∈F (x1,x2)

|w1| (283)

are well-defined, nondecreasing functions on R≥0 and we have, for all (x1, x2) ∈ G1 × Rn2 ,

w ∈ F (x) =⇒ |w1| ≤ max {γ̄2(ρ(x1)), γ̄3(|x2|)} · (284)

With (281) and (284), we have (using ab ≤ max{|a|2, |b|2})

max
w∈F (x)

〈∇ρ(x1), w1〉 ≤ γ̄1(ρ(x1)) max {γ̄2(ρ(x1)), γ̄3(|x2|)} (285)

≤ max
{
γ̄1(ρ(x1))γ̄2(ρ(x1)), γ̄1(ρ(x1))2, γ̄3(|x2|)2

}
· (286)

Then, picking a constant c1 ≥ 0 and class-K∞ functions γ1 and γ2 such that, for all s ≥ 0,

max
{
γ̄1(s)γ̄2(s), γ̄2

1 (s)
}
≤ max {γ1(s), c1} (287)
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and

γ̄2
3(s) ≤ max {γ2(s), c1} , (288)

we have

max
w∈F (x)

〈∇ρ(x1), w1〉 ≤ max {γ1(ρ(x1)), γ2(|x2|), c1} · (289)

6.1.3. Construction of κ and backward completeness

We define

κ(x) := max {1, γ1(ρ(x1))} (290)

which, from (279), satisfies (using γ1(a+ b) ≤ γ1(2a) + γ1(2b))

κ(x) ≤ 1 + γ1(2c◦) + γ1(2γ◦(ω(x))). (291)

We need to show that the differential inclusion ẋ ∈ −FN (x) is forward complete on G where

FN (x) :=
1

κ(x)
F (x). (292)

Suppose this is not the case. Since ρ is proper on G1 and FN satisfies the basic conditions on G1×Rn2 , it follows
from Lemma 2 that there exists a maximal solution φ(·, x) of ẋ ∈ −FN (x) and a time t̄ <∞ such that

lim
t→t̄

max {ρ(φ1(t, x)), |φ2(t, x)|} = ∞. (293)

Since κ(x) ≥ 1 and (44) holds, it follows from the Gronwall Lemma that φ2(·, x) is bounded on [0, t̄). Thus we
must have that ρ(φ1(·, x)) is unbounded on [0, t̄). But we have that, for almost all t ∈ [0, t̄)

˙︷ ︷
ρ(φ1(t, x)) ≤ max

w∈−FN (φ(t,x))
〈∇ρ(φ1(t, x)), w1〉 (294)

and, from (289, 290) and (292) we obtain, for all x ∈ G,

max
w∈−FN (x)

〈∇ρ(x1), w1〉 ≤ max {1, c1, γ2(|x2|)} · (295)

This implies that
˙︷ ︷

ρ(φ1(·, x)) is bounded on [0, t̄). Thus, so is ρ(φ1(·, x)). This contradiction establishes that the
differential inclusion ẋ ∈ −FN (x) is forward complete on G. �

6.2. Proof of Proposition 3

To prove Proposition 3, we will use the following claim:

Claim 4. Under the assumptions of Proposition 3, for each x ∈ G and each ε > 0 there exists Tx(ε) > 0 such
that

φ ∈ S(x), t ≥ Tx(ε) =⇒ |φ(t, x)|A ≤ ε. (296)
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Proof. Since x ∈ G, all solutions φ ∈ S(x) are defined and belong to O for all t ≥ 0. Hence Lemma 5 applies.
To establish the claim by contradiction, suppose the existence of ε and x ∈ G such that, for each integer n ≥ 0
there exists tn ≥ n and φn ∈ S(x) satisfying |φn(tn, x)|A > ε, i.e. (51) does not hold. So, from the stability
assumption, there exists δ > 0 such that we have, for each n,

|φn(t, x)|A > δ ∀t ∈ [0, n]. (297)

Now, using Lemma 5 {φn}∞n=1 has a subsequence, still denoted {φn}∞n=1, that converges uniformly on compact
time intervals to some solution φ ∈ S(x). Then, from the definition of G, since x ∈ G there exists τ > 0 such
that

|φ(t, x)|A ≤ δ/2 ∀t ≥ τ. (298)

But there exists also an integer n ≥ τ such that

|φn(τ, x)− φ(τ, x)| ≤ δ/2. (299)

This contradicts (297, 298).

We are now ready to prove Proposition 3.

6.2.1. The set G is open

Let {xi}∞i=1 be a sequence of points in Rn\G converging to a point x∗ ∈ Rn. We will show that x∗ /∈ G so
that Rn\G is closed, i.e., G is open. To prove this claim by contradiction, suppose x∗ ∈ G. Since G contains a
neighborhood of A, there exists a strictly positive real number ρ1 such that A+ ρ1B is a compact subset of G.
Then, from Claim 4, we get T := Tx∗(ρ1/2) such that

φ ∈ S(x∗), t ≥ T =⇒ |φ(t, x∗)|A ≤
ρ1

2
· (300)

According to Lemma 4, the set R≤T (x∗) is a compact subset of O. So the set Cx∗ defined as

Cx∗ := R≤T (x∗)
⋃(
A+ ρ1B

)
(301)

is also a compact subset of O. Also, we have established that, for any solution φ ∈ S(x∗), φ(t, x∗) is in R≤T (x∗),
for t ≤ T and in

(
A+ ρ1B

)
for t ≥ T , i.e.,

φ ∈ S(x∗), t ≥ 0 =⇒ φ(t, x∗) ∈ Cx∗ . (302)

Now, since O is open, there exist a strictly positive real number ν and a continuous function ` : O → [0, 1]
such that Cx∗ + 2νB is a compact subset of O and ` ≡ 1 on Cx∗ + νB and ` ≡ 0 on O \

(
Cx∗ + 2νB

)
. It follows

that the set-valued map x 7→ F`(x) := `(x)F (x) satisfies the basic conditions on O, the differential inclusion
ẋ ∈ F`(x) is forward complete on O and F`(x) = F (x) for all x ∈ Cx∗ + νB. Moreover, we claim that (300) and
(302) hold for the inclusion ẋ ∈ F`(x), i.e.,

φ` ∈ S`(x∗), t ≥ T =⇒ |φ`(t, x∗)|A ≤
ρ1

2
(303)

and

φ` ∈ S`(x∗), t ≥ 0 =⇒ φ`(t, x∗) ∈ Cx∗ . (304)
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The relations (303) and (304) follow from the fact that

φ` ∈ S`(x∗) =⇒ φ` ∈ S(x∗) (305)

together with (300) and (302). The relation (305) holds because if not, from the definition of `, there would
exists a time t̄ such that

φ`(t̄, x∗) /∈ Cx∗ (306)

and, from the continuity of φ`(·, x∗),

φ`(t, x∗) ∈ Cx∗ + νB ∀t ∈ [0, t̄]. (307)

It follows from (307) and the definition of ` that the restriction of φ`(·, x∗) to the interval [0, t̄] is a solution of
ẋ ∈ F (x). Thus (306) contradicts (302).

For each i sufficiently large xi is in Cx∗ + ν
2B, but also xi /∈ G. So there exist a time ti and a solution

φi ∈ S(xi) such that
1. φi(t, xi) ∈ Cx∗ + νB for all t ∈ [0, ti] and
2. either

(a) ti ≤ T and φi(ti, xi) ∈ ∂
(
Cx∗ + νB

)
or

(b) ti = T and |φi(t, xi)|A > ρ1 for all t ∈ [0, ti].
It follows from point 1 and the definition of ` that the restriction of φi(·, xi) to the interval [0, ti] ⊂ [0, T ] is a
solution of ẋ ∈ F`(x), e.g., point 2 holds for a solution φi,` ∈ S`(xi). On the other hand, from (303, 304) and
Lemma 4 applied to ẋ ∈ F`(x) with the triple (T, min{ρ1,ν}

2 , {x∗}), we have also, for each i sufficiently large,
φi,`(t, xi) ∈ Cx∗ + ν

2B for all t ∈ [0, T ] and |φi,`(T, xi)|A ≤ ρ1. This contradiction of point 2 above (with φi,` in
place of φi) establishes that x∗ /∈ G, i.e. G is open.

6.2.2. KL-stability with respect to (ω, ω)

We will show that the conditions of Proposition 1 hold. For this, we observe that, since ω is a proper indicator
for A on G we have that:
• the set

C(r) := {x ∈ G : ω(x) ≤ r} (308)

is a compact subset of G for each r ≥ 0;
• Let ρ > 0 be such that A+ ρB ⊂ G. Define the functions

ᾱ1(s) := inf
x∈G: s≤|x|A

ω(x)

ᾱ2(s) := sup
x∈G: |x|A≤min{ρ,s}

ω(x).
(309)

There exists class-K∞ functions α1 and α2 such that

α1(s) ≤ ᾱ1(s), ᾱ2(s) ≤ α2(s). (310)

So, for all x ∈ G, we have

α1(|x|A) ≤ ω(x) (311)
|x|A ≤ ρ =⇒ ω(x) ≤ α2(|x|A). (312)
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Forward completeness:
That the differential inclusion ẋ ∈ F (x) is forward complete on G follows from the definition of G and the fact
that this set is forward invariant. Indeed, for all x ∈ G, all φ ∈ S(x) and all s ≥ 0, we have by concatenation of
solutions that all ψ ∈ S(φ(s, x)) are defined and belong to O for all t ≥ 0 and satisfy limt→∞ |ψ(t, φ(s, x))|A = 0,
i.e., φ(s, x) ∈ G.

Uniform global attractivity:
To establish this property by contradiction, suppose the existence of r > 0 and ε > 0 such that, for each integer
i ≥ 0, we can find a point xi ∈ C(r), a solution φi ∈ S(xi) and a time ti ≥ i such that ω(φi(ti, xi)) > ε. So,
from (312), we have either |φi(ti, xi)|A > ρ or |φi(ti, xi)|A > α−1

2 (ε). From the stability assumption and (311),
we get δ > 0 such that, for each i,

ω(φi(t, xi)) > α1(δ) ∀t ∈ [0, i]. (313)

Without loss of generality we can assume that δ is such that α−1
2

(
α1(δ)

2

)
≤ ρ. Since the set C(r) is compact,

there exists a subsequence of {xi}∞i=1 converging to a point x∗ ∈ G. Let T := Tx∗
(
α−1

2 (α1(δ)
2 )

)
come from

Claim 4. With (312), we have

φ ∈ S(x∗), t ≥ T =⇒ ω(φ(t, x∗)) ≤ α1(δ)
2
· (314)

With Lemma 4 with the triple (T, α1(δ)
2 , {x∗}), this implies that, for i sufficiently large, ω(φi(T, xi))) ≤ α1(δ).

This contradicts (313), and thus establishes that for each r > 0 and ε > 0 there exists T (r, ε) > 0 such that

x ∈ C(r), φ ∈ S(x), t ≥ T =⇒ ω(φ(t, x)) ≤ ε. (315)

Uniform stability and global boundedness:
Let ρ1 > 0 be as above such that A+ ρ1B ⊂ G. We have just seen in (315) that, for each r > 0, there exists T
such that

x ∈ C(r), φ ∈ S(x), t ≥ T =⇒ |φ(t, x)|A ≤ ρ1. (316)

So, as in the proof of the fact that G is open, we have

x ∈ C(r), φ ∈ S(x), t ≥ 0 =⇒ φ(t, x) ∈
(
R≤T (C(r))

⋃(
A+ ρ1B

))
⊂ G. (317)

This can be rewritten

R<∞(C(r)) ⊂ R≤T (C(r))
⋃(
A+ ρ1B

)
⊂ G. (318)

But, since R≤T (C(r)) is compact, this establishes that the set R<∞(C(r)) is a compact subset of G.
Define the function

R(r) := max
ξ∈R<∞(C(r))

ω(ξ). (319)

We have

ω(φ(t, x)) ≤ R(ω(x)) (320)
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for all x ∈ G and all φ ∈ S(x). Also this function is nondecreasing and limr→0R(r) = 0. The latter follows
from (312) and the stability assumption. Indeed for each ε > 0, there exists r > 0 such that

x ∈ C(r), t ≥ 0 =⇒ ω(φ(t, x)) ≤ ε (321)

and therefore R(r) ≤ ε. The function γ of Point 2b of Proposition 1 is obtained by choosing γ ∈ K∞ to satisfy
R(s) ≤ γ(s) for all s ≥ 0. �
6.2.3. Bibliographical Notes

Our proof of Proposition 3 combines the ideas of [15] (pp. 71-72) and the proof of [6] (Prop. 2.2).

6.3. Proof of Proposition 4

6.3.1. A is nonempty

To establish by contradiction that the set A is nonempty, assume the contrary, i.e., for each x ∈ C1, there
exists φ ∈ S(x) and t > 0 such that

φ(t, x) /∈ C1. (322)

Note that, from Assumption 1, we must have t < T . Pick x0 arbitrarily in C1 and φ0 arbitrarily in S(x0). From
Assumption 1, we have

x1 := φ0(T, x0) ∈ C1 (323)

and from (322), there exists φ1 ∈ S(x1) and 0 < t1 < T such that

φ1(t1, x1) 6∈ C1. (324)

But the function φ(·, x0) defined as

φ(t, x0) := φ0(t, x0) ∀t ∈ [0, T ),

:= φ1(t− T, x1) ∀t ∈ [T,+∞)
(325)

is a solution which does not satisfy Assumption 1. So A must be nonempty.
Note also that, from its definition, A has also the following two properties:
1. x ∈ A, φ ∈ S(x) imply φ(t, x) ∈ A for all t ≥ 0, i.e., A is forward invariant;
2. for all x ∈ C2 and all φ ∈ S(x), we have

|φ(t, x)|A = 0 ∀t ≥ T. (326)

6.3.2. A is compact

A is bounded since it is a subset of C1 which is compact. Suppose it is not closed. Then there exists a
sequence {xi}∞i=1 of points in A converging to a point x /∈ A. Since C1 is compact, we must have x ∈ C1. Since
x /∈ A there exists φ ∈ S(x) and Tx ∈ (0, T ) such that

φ(Tx, x) /∈ C1 (327)

and, from the continuity of φ(·, x), we can impose

φ(t, x) ∈ C1 + ρB ∀t ∈ [0, Tx], (328)
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where ρ is given by Assumption 1. Since F is assumed to be Lipschitz on C1 +ρB, with (328) and Lemma 10, we
know the existence of a sequence of solutions {φi(t, xi)}∞i=1 converging to φ(t, x) on [0, Tx]. But this, together
with (327), contradicts xi ∈ A for large i. This implies that x must be in A.

6.3.3. A is stable

We want to show that point 1 in Proposition 3 holds. Let ρ > 0 be given by Assumption 1 and let ` : O → [0, 1]
be a continuous function such that `(x) = 1 on C1 +

ρ

2
B and `(x) = 0 on O\

(
C1 + ρB

)
. The set-valued map

x 7→ F`(x) := `(x)F (x) satisfies the basic conditions on O and the differential inclusion ẋ ∈ F`(x) is forward
complete on O. Moreover, for the inclusion ẋ ∈ F`(x), the set A is forward invariant. If not there would exist
x ∈ A, a solution φ` ∈ S`(x) and a time t̄ > 0 such that

φ`(t̄, x) /∈ A (329)

and

φ`(t, x) ∈ C1 +
ρ

2
B ∀t ∈ [0, t̄]. (330)

It follows from (330) and the definition of `(x) that the restriction of φ`(·, x) to the interval [0, t̄] is a solution
of ẋ ∈ F (x). But then (329) contradicts the fact that the set A is forward invariant for the inclusion ẋ ∈ F (x).

Let ε > 0. Without loss of generality, assume ε <
ρ

2
. With Lemma 6 applied to the differential inclusion

ẋ ∈ F`(x) with the triple (T, ε,A) we get the existence of δ > 0 such that, with the forward invariance of A,

|x|A ≤ δ, φ` ∈ S`(x) =⇒ |φ`(t, x)|A ≤ ε ∀t ∈ [0, T ]. (331)

We claim, for the differential inclusion ẋ ∈ F (x), that

|x|A ≤ δ, φ ∈ S(x) =⇒ |φ(t, x)|A ≤ ε ∀t ≥ 0. (332)

If this is not the case then, with (326) and using that ε < ρ
2 , there exist x ∈ G with |x|A ≤ δ, φ ∈ S(x) and

τ ∈ [0, T ] such that

|φ(τ, x)|A > ε (333)

and

|φ(t, x)|A ≤
ρ

2
∀t ∈ [0, τ ]. (334)

It follows from (334), A ⊂ C1 and the definition of `(x) that the restriction of φ(·, x) to the interval [0, τ ] ⊂ [0, T ]
is a solution of the inclusion ẋ ∈ F`(x). Thus (333) contradicts (331). �

A. Addendum

A.1. Proof of Lemma 1

Let

F(x) =
⋃

ξ∈{x}+ρ(x)B

F (ξ). (335)
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• Let us show by contradiction that F is upper semicontinuous on G, i.e., for all x ∈ G and ε > 0, there exists
δ > 0 such that, for all x′ satisfying |x−x′| ≤ δ and all y′ satisfying |y′| ≤ ρ(x′) we have F (x′+y′) ⊂ F(x)+εB.
So assume the existence of x ∈ G, ε > 0, a sequence {xn}∞n=1 converging to x, a sequence {yn}∞n=1 satisfying
|yn| ≤ ρ(xn), a sequence {vn}∞n=1 of vectors in F (xn + yn) such that vn 6∈ F(x) + εB. Since ρ is continuous
and xn converges to x, yn has a cluster point y∗ satisfying |y∗| ≤ ρ(x). From (18), x+ y∗ is in G and, from
the upper semicontinuity of F , there exists δ > 0 such that, for all ξ ∈ G satisfying |(x + y∗) − ξ| ≤ δ, we
have F (ξ) ⊂ F (x + y∗) + εB ⊂ F(x) + εB. But from the convergence properties, we can find n such that
|(x + y∗) − (xn + yn)| ≤ δ. This implies F (xn + yn) ⊂ F (x + y∗) + εB ⊂ F(x) + εB and contradicts the
property of vn. So the upper semicontinuity property of F is established and actually the same holds for the
closure F .
• Secondly, we observe that [12] (Sect. 5, Lem. 15) implies that the set F(x) is bounded. So F(x) is compact

and nonempty.
• The proof is concluded invoking [12] (Sect. 5, Lem. 16).

�

A.2. Proof of Proposition 1

The implication 1⇒ 2 follows from the properties of KL functions.
To establish the implication 2⇒ 1, we remark from (25) that, without loss of generality, we can assume that:
- for each r > 0, the function T (r, ·) is nonincreasing on R>0 and, with (24), we have limε→+∞ T (r, ε) = 0;
- for each ε > 0, the function T (·, ε) is nondecreasing on R>0.

Let ψr : R>0 → R>0 be a function which is strictly decreasing and onto R>0 (hence invertible on R>0) and
satisfies

ψr(s) ≥ T (r, s) ∀s > 0. (336)

Claim 5. For each r > 0, each x ∈ G and each φ ∈ S(x), we have

ω2(x) ≤ r =⇒ ω1(φ(t, x)) ≤ ψ−1
r (t) ∀t > 0. (337)

Proof. From condition 2a, the differential inclusion is forward complete so that φ(·, x) is defined for all t ≥
0. Then, for each t > 0, we let ε := ψ−1

r (t). From (336) we have ψr(ε) = t ≥ T (r, ε). Therefore, from
condition 2c, we have ω1(φ(t, x)) ≤ ε = ψ−1

r (t).

For each r > 0, we let ψ−1
r (0) := +∞. Then we define

β(s, t) := min
{
γ(s), inf

r∈(s,∞)
ψ−1
r (t)

}
(338)

where γ ∈ K∞ comes from condition 2b. We have β ∈ KL since γ ∈ K∞ and for each r the function ψ−1
r (·) is

strictly decreasing to zero. Also, from the claim and condition 2b it follows that, for all x ∈ G and all φ ∈ S(x),

ω1(φ(t, x)) ≤ β(ω2(x), t). (339)

�

A.3. Proof of Lemma 8

Define the function δ : G → R≥0 as

δ(x) := inf
ξ∈G

[∆(ξ) + |ξ − x|] . (340)
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As in the proof of [7] (Th. 1.5.1), one can check that this function is Lipschitz on G with Lipschitz constant 1
and is positive on G\A. It also satisfies

δ(x) ≤ ∆(x). (341)

For every x ∈ G\A define

Wx =
{
ξ ∈ G : |ξ − x| < 1

3
δ(x)

}
· (342)

These sets form an open covering of G\A. Let {Ui} be a locally finite refinement of this cover and let {ψi} be a
smooth partition of unity on G\A subordinate3 to {Ui}. For each i, choose xi such that Ui ⊆ Wxi . Then define

FL(x) :=
∑
i ψi(x)coF (xi + 1

3δ(xi)B) ∀x ∈ G\A,

:= F (x) ∀x ∈ A.
(343)

It can be verified that FL satisfies the basic conditions on G and FL is locally Lipschitz on G\A.
For x ∈ G\A consider i such that

ψi(x) > 0 (344)

which means that x ∈ Ui ⊆ Wxi so that |x − xi| < 1
3δ(xi). This implies F (x) ⊆ F (xi + 1

3δ(xi)B) for every i
such that (344) holds. This implies F (x) ⊆ FL(x). Since δ is Lipschitz with Lipschitz constant 1 we have

δ(xi)− δ(x) ≤ |xi − x| <
1
3
δ(xi) (345)

or

2
3
δ(xi) < δ(x) (346)

which implies

{xi}+
1
3
δ(xi)B ⊆ {x}+

2
3
δ(xi)B ⊆ {x}+ δ(x)B. (347)

We conclude that

coF (xi +
1
3
δ(xi)B) ⊆ coF (x+ δ(x)B) (348)

for every i satisfying (344). Thus, with (341), we get finally

FL(x) ⊆ coF (x+ δ(x)B) ⊂ F∆(x)(x). (349)

3 We remind the reader that this means:
• for each x ∈ G\A, there is a neighborhood of x that intersects only a finite number of the sets Ui,
• each ψi is smooth on G\A, takes values in [0, 1], ψi(x) > 0 implies x ∈ Ui, and

P
i ψi(x) = 1.
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A.4. Proof of Lemma 9

For each x ∈ O let r(x) > 0 be such that {x} + r(x)B is contained in the neighborhood U of x given
by the assumption that F is locally Lipschitz on O. Let L(x) be the corresponding Lipschitz constant.
Then

{
{x}+ 1

2r(x)B
}
x∈K is an open covering of K which is compact. So we can extract a finite covering{

{xn}+ 1
2r(xn)B

}
n∈{1,... ,N}. Let (see [12], Sect. 5, Lem. 15)

L = max
n∈{1,... ,N}

L(xn), r = min
n∈{1,... ,N}

r(xn)
2

, M = max
n∈{1,... ,N}

r(xn), R = 3 sup
x∈K,v∈F (x)

|v|. (350)

Note that we have, for all i and j

F (xi) ⊂ F (xj) +RB. (351)

Then pick two points x and x′ in K.

If |x − x′| < r (≤ ri
2 ) and |x − xi| < ri/2, then we have |x′ − xi| < (r + ri/2) ≤ ri. So x and x′ are in

{xi}+ r(xi)B and we have

F (x) ⊂ F (x′) + Li|x− x′|B ⊂ F (x′) + L|x− x′|B.

If |x − x′| ≥ r and |x − xi1 | < ri1/2, |x′ − xi2 | < ri2/2. Then we can find a path joining x to x′ and visiting
(only once!) the points xij . To facilitate the notations, say that we have i1 < . . . ≤ ij ≤ . . . < i2. This gives

F (x) ⊂ F (xi1) + L|x− xi1 |B (352)
⊂ F (xi1+1) + [R + L|x− xi1 |]B (353)
... (354)
⊂ F (xi2) + [(i2 − i1)R+ L|x− xi1 |]B (355)
⊂ F (x′) + [L|x′ − xi2 |+ (i2 − i1)R+ L|x− xi1 |]B (356)

⊂ F (x′) +
[
L
ri2 + ri1

2
+ (N − 1)R

]
B (357)

⊂ F (x′) +
LM + (N − 1)R

r
|x− x′|B. (358)

So (80) holds with

LK =
LM + (N − 1)R

r
· (359)

A.5. Proof of Lemma 16

Let ψ : Rn → [0,∞) be smooth, vanish outside of the unit disk and satisfy
∫
ψ(ξ)dξ = 1. Let σ ∈ (0, 1] and,

for those x such that {x}+ σB ⊂ O, define

Vσ(x) :=
∫
V (x+ σξ)ψ(ξ)dξ (360)

and

ασ(x) :=
∫
α(x+ σξ)ψ(ξ)dξ. (361)
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Claim 6. For each compact set C ⊂ O and ε > 0, there exists σ◦ > 0 such that, for all σ ∈ (0, σ◦), the functions
Vσ and ασ are smooth on C and for all x ∈ C, we have

max
w∈F (x)

〈∇Vσ(x), w〉 ≤ α(x) + ε (362)

and

|V (x)− Vσ(x)| ≤ ε, |α(x) − ασ(x)| ≤ ε

2
· (363)

Proof. The smoothness of Vσ and ασ as well as (363) are standard results of analysis (see, for example [42],
Prop. I.8). To obtain (362), we follow the proof of [6] (Lem. 5.1) which is modeled after the proof of [18]
(Lem. B.5). Let ρ be such that C + ρB ⊂ O and let L be a Lipschitz constant for F on C + ρB. Let M1 > 0
satisfy |ξ| ≤M1 for all ξ ∈ C and let M2 > 0 satisfy |∇V (ξ)| ≤M2 for almost all ξ ∈ C + ρB. Define

σ◦ := min
{
ρ,

ε

2LM1M2

}
(364)

and consider σ ∈ (0, σ◦). Let x ∈ C and v ∈ F (x). Given ξ ∈ B, let gσ(ξ) be the closest point in F (x+ σξ) to
v. Then gσ : B → Rn is continuous and

gσ(ξ) ∈ F (x+ σξ), |gσ(ξ)− v| ≤ Lσ|ξ| ∀ξ ∈ B. (365)

Using the Lebesgue Dominated Convergence Theorem, we get

〈∇Vσ(x), v〉 =
∫
〈∇V (x+ σξ), v〉ψ(ξ)dξ. (366)

Then we have

〈∇Vσ(x), v〉 =
∫
〈∇V (x+ σξ), v〉ψ(ξ)dξ

=
∫
〈∇V (x+ σξ), gσ(ξ)〉ψ(ξ)dξ +

∫
〈∇V (x+ σξ), v − gσ(ξ)〉ψ(ξ)dξ

≤
∫
α(x+ σξ)ψ(ξ)dξ + Lσ

∫
|∇V (x+ σξ)| |ξ|ψ(ξ)dξ

≤ α(x) + ε
2 + LM1M2σ

≤ α(x) + ε.

(367)

From here we follow the proof of [18] (Th. B.1).
Let {Ui}∞i=1 be a locally finite open cover of O with U i a compact subset of O and let {κi}∞i=1 be a smooth

partition of unity on O subordinate4 to {Ui}. Note that, since
∑∞
i=1 κi(x) = 1 for all x ∈ O, we have

∞∑
i=1

〈∇κi, v〉 = 0 ∀(x, v) ∈ O × Rn. (368)

4See Footnote 3.
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Define

εi := inf
ξ∈Ui

min {µ(ξ), ν(ξ)} (369)

and

qi := max
ξ∈Ui,v∈F (ξ)

|∇κi(ξ)||v|. (370)

From Claim 6, for each i, there exists σi such that Vσi is smooth on U i and such that, for each x ∈ U i,

|V (x) − Vσi(x)| ≤ εi
2(i+1)(1 + qi)

(371)

and, for each v ∈ F (x),

〈∇Vσi (x), v〉 ≤ α(x) +
εi
2
· (372)

Define Vs(x) :=
∑∞
i=1 κi(x)Vσi (x). Vs is smooth on O. Also, defining, for each x ∈ O, Ix = {j : x ∈ Uj}, we

have

|V (x)− Vs(x)| ≤
∞∑
i=1

κi(x)|V (x) − Vσi(x)| ≤ max
j∈Ix

εj ≤ µ(x). (373)

Finally, with (368), we get, for all x ∈ O,

〈∇Vs(x), v〉 =
∞∑
i=1

〈∇κi(x), v〉Vσi (x) +
∞∑
i=1

κi(x)〈∇Vσi (x), v〉

=
∞∑
i=1

〈∇κi(x), v〉 (Vσi (x)− V (x)) +
∞∑
i=1

κi(x)〈∇Vσi (x), v〉

≤
∑
i∈Ix

[
qiεi

2(i+1)(1 + qi)
+ κi(x)

(
α(x) +

εi
2

)]
≤ α(x) + max

j∈Ix
εj ≤ α(x) + ν(x).

(374)

Since v ∈ F (x) was arbitrary, the result follows. �

A.6. Proof of Lemma 17

In this paragraph we prove Lemma 17. This Lemma is a straightforward extension of [18] (Lem. 4.3). The
only differences are that we want a result on G which is only an open subset of Rn and we want ρ′ to be a
class-K∞ function. So here we reproduce the proof of [18] (Lem. 4.3) with the modifications needed to handle
the above differences. Nevertheless to simplify the presentation we establish only that ρ ◦V is C1. The smooth
(C∞) result follows exactly as in [18] by modifying the definitions of ci and di below and estimating the higher
derivatives in terms of these numbers.



364 A.R. TEEL AND L. PRALY

A.6.1. Construction of ρ

For our expression of ρ, we need several ingredients:

• Let {Ci}∞i=1 be a sequence of compact subsets of G such that each x ∈ G is in some Ci and Ci is contained
in the interior of Ci+1, i.e.,

Ci ⊂
˚︷ ︷
Ci+1. (375)

Note that, since V is continuous on G, the set Ci
⋂{

x ∈ G : 1
i+2 ≤ V (x) ≤ 1

i

}
is a compact subset of G\A.

• Let ϕ : R→ [0, 1] be a C∞ function satisfying
∗ ϕ(t) = 1 if t ≤ 1

2 ,
∗ ϕ(t) = 0 if 1 ≤ t,
∗ ϕ′(t) < 0 if 1

2 < t < 1.
We denote ϕ̄ = supt∈R |ϕ′(t)|. Note that all the derivatives of ϕ must be 0 at t = 1

2 and t = 1.
• For each integer i, let Ii be the following open interval

Ii =
(

1
i+ 2

,
1
i

)
· (376)

• For i ≥ 1, let πi be the C∞ function defined as follows:
∗ πi(t) = 0 if t 6∈ Ii,
∗ πi(t) = 1− ϕ

(
(i+1)(i+2)

2 t− i
2

)
if 1
i+2 ≤ t ≤

1
i+1 ,

∗ πi(t) = ϕ
(
i(i+1)

2 t− i−1
2

)
if 1
i+1 ≤ t ≤

1
i ·

Note that

πi−1(t) + πi(t) = 1 ∀t ∈
[

1
i+ 1

,
1
i

]
· (377)

For i = 0, let π0 : R→ R≥0 be a C∞ function which is class-K∞ on R≥0.
• Let ci satisfy
∗ ci ≥ 1,
∗ ci ≥ |∇V (x)| for all x in Ci

⋃{
x ∈ G : 1

i+2 ≤ V (x) ≤ 1
i

}
,

∗ ci ≥ sup
t≥0
|π(k)
i (t)|, for all k ≤ i.

We choose di satisfying

0 < di < min
{
di−1

2
,

2
(i+ 2)ci+1(2ci + ci+1)

}
· (378)

• Let π be the function

π(t) =
∞∑
i=1

diπi(t) + π0(t− (1/3)) ∀t > 0,

π(0) = 0.

(379)
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Since each t > 0 is in at most two sets Ii, π(t) is the sum of at most three terms. So π is well-defined and
continuous on [0,+∞) and C∞ on (0,+∞). For i ≥ 3, 1

i+1 ≤ t ≤
1
i and k ≤ i− 1, we have, using (378),

|π(k)(t)| =
∣∣∣di−1π

(k)
i−1(t) + diπ

(k)
i (t)

∣∣∣ (380)

≤ di−1ci−1 + dici, (381)

≤ di−1

(
ci−1 +

ci
2

)
, (382)

≤ 1
i+ 1

· (383)

This implies

lim
t→0+

π(k)(t) = 0 ∀k. (384)

Also, for i ≥ 3, 1
i+1 < t < 1

i , we get from (377),

π′(t) = [di−1 − di]π′i−1(t) (385)

and so, since di ≤ di−1
2 and ϕ′(s) < 0 for s ∈

(
1
2 , 1
)
,

π′(t) > 0. (386)

With the properties of π0, this implies that π is a class-K∞ function.

With these data, we define on [0,+∞)

ρ(t) =
∫ t

0

π(s)ds. (387)

This function and its derivatives belong to class-K∞. The function is C∞ on (0,+∞) and all its derivatives
tend to 0 as t tends to 0.

A.6.2. Verification of the required properties

To conclude our proof we show that ρ ◦ V is C1 on G.

On G\{x : V (x) 6= 0}, ρ ◦ V is C1 since V and ρ are C∞ on G\{x : V (x) 6= 0} and (0,+∞) respectively.

On
˚︷ ︷

{x : V (x) = 0} ∩ G, ρ ◦ V is C1 since it is identically zero.

Finally, let x ∈ G ∩ ∂{ζ : V (ζ) = 0}. There exists ` so that x ∈ C`. And, for all k ≥ `, there exists δ > 0 such
that, for each ξ satisfying |ξ − x| ≤ δ, we have ξ ∈ G and V (ξ) ≤ 1

k . Also, for each such ξ satisfying also
V (ξ) 6= 0, there exists i ≥ k such that

ξ ∈ Ci ∩
{
x ∈ G :

1
i+ 1

≤ V (x) ≤ 1
i

}
· (388)
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With (378), this yields:

|∇ρ ◦ V (ξ)| = |di−1πi−1(V (ξ)) + diπi(V (ξ))| |∇V (ξ)| , (389)

≤ di−1

(
ci−1 +

ci
2

)
|∇V (ξ)| , (390)

≤ di−1

(
ci−1 +

ci
2

)
ci, (391)

≤ 1
i+ 1

≤ V (ξ) ≤ 1
k
· (392)

On the other hand, the continuity of ρ ◦ V implies the existence of s∗ ∈ (0, 1) such that

ρ(V (x+ s(ξ − x))) ≥ ρ(V (ξ))
2

∀s ∈ [s∗, 1], (393)

ρ(V (x+ s∗(ξ − x))) =
ρ(V (ξ))

2
· (394)

Since (392) holds for all points x+ s(ξ − x) with s ∈ [s∗, 1], the Mean Value Theorem gives

0 ≤ ρ(V (ξ)) = 2
(
ρ(V (ξ)) − ρ(V (x+ s∗(ξ − x)))

)
≤ 2

1
k

(1− s∗) |ξ − x|. (395)

Collecting all of the above, we have established:
For each ε ∈ (0, 1

` ), there exists δ > 0 such that, for each h ∈ (0, δ] and each unit vector u, we have∣∣∣∣ρ(V (x+ hu))− ρ(V (x))
h

∣∣∣∣ ≤ 2 ε. (396)

This establishes that ρ ◦ V is differentiable at x and that its derivative is continuous at this point. �
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