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A Smooth ROC Curve Estimator Based on
Log-Concave Density Estimates

Kaspar Rufibach

Abstract
We introduce a new smooth estimator of the ROC curve based on log-concave density

estimates of the constituent distributions. We show that our estimate is asymptotically equivalent
to the empirical ROC curve if the underlying densities are in fact log-concave. In addition, we
empirically show that our proposed estimator exhibits an efficiency gain for finite sample sizes
with respect to the standard empirical estimate in various scenarios and that it is only slightly
less efficient, if at all, compared to the fully parametric binormal estimate in case the underlying
distributions are normal. The estimator is also quite robust against modest deviations from the log-
concavity assumption. We show that bootstrap confidence intervals for the value of the ROC curve
at a fixed false positive fraction based on the new estimate are on average shorter compared to the
approach by Zhou and Qin (2005), while maintaining coverage probability. Computation of our
proposed estimate uses the R package logcondens that implements univariate log-concave density
estimation and can be done very efficiently using only one line of code. These obtained results lead
us to advocate our estimate for a wide range of scenarios.

KEYWORDS: diagnostic test, log-concave density estimation, nonparametric estimation, receiver
operating characteristic curve, sensitivity and specificity
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1 Introduction

The receiver operating characteristic (ROC) curve is a common way of assess-
ing the diagnostic accuracy of a diagnostic test with continuous outcome Z
that predicts presence or absence of a binary trait, typically a disease. The
ROC curve is defined as the plot of the sensitivity (the true positive fraction)
against one minus specificity (the false positive fraction) across all possible
choices of threshold values θ. Thus, the ROC curve displays the range of pos-
sible trade-offs between the true and false positive rates. To fix ideas, let F and
G denote distribution functions of the test result X and Y of a non-diseased
and a diseased subject, respectively. If F and G are absolutely continuous, the
ROC curve of the test can be expressed as

R(t;F,G) = 1−G(F−1(1− t)) (1)

where F−1 is the quantile function of F , and t ∈ (0, 1) is the false positive
fraction corresponding to a cut-off for positivity of the test.

We suppose that a sampleX1, . . . , Xm ∼ F from the non-diseased popu-
lation and a sample Y1, . . . , Yn ∼ G from the diseased population are available.
We further assume that all these observations are mutually independent and
denote the empirical distribution functions based on the samples by Fm and
Gn, respectively. The empirical quantile function for a sample X1, . . . , Xm is
defined as F−1(p) = Xi if F(Xi−1) < p ≤ F(Xi) for any p ∈ [0, 1] and by setting
X0 = −∞, Xn+1 =∞. In the absence of any further information about F and
G, plugging in these empirical distribution functions in (1) yields the nonpara-
metric maximum likelihood estimator R̃m,n(t) = R(t;Fm,Gn) of R(t;F,G), an
increasing step function that simply consists of plotting the empirical propor-
tions #{Yj > t}/n vs. #{Xi > t}/m for varying t. Strong consistency and
strong approximation properties of R̃m,n are provided in Hsieh and Turnbull
(1996). Being a fully nonparametric estimator, R̃m,n displays the data pattern
well but may suffer from substantial variability and, as a step function, is not
smooth. Moreover, due to the rugged form, an empirical ROC curve can have
the same true positive fraction corresponding to a range of false positive frac-
tions. This is inconvenient when one is interested in finding a particular false
positive fraction at a specified true positive fraction.

In applications, it seems sensible to assume that the true underlying
ROC curve R is in fact smooth. Thus we expect an estimator to perform
better if some smoothness is imposed (Lloyd and Yong, 1999, Section 1). The
most obvious way of doing so is to assume a parametric model, estimate the
distribution functions F and G on the basis of the samples of healthy and
diseased subjects, and compute the corresponding ROC curve. Assuming a
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normal distribution both in the control and in the cases group is the most
prominent parametric model (Pepe, 2003, Example 5.3).

Among the frequentist approaches that are between the two “extreme
cases”, the entirely nonparametric and the parametric ROC curve estimate,
are semiparametric models. Such models do not assume a parametric form for
the constituent distributions but rather for the ROC curve directly (Cai and
Moskowitz, 2004). The most prominent semiparametric model for the ROC
curve stipulates the existence of a function h such that h(X) ∼ N(0, 1) and
h(Y ) ∼ N(µ, σ2). The binormal ROC curve is then given by

R̄m,n(t) = Φ(a+ bΦ−1(t)) (2)

where a and b are to be estimated and Φ is the cumulative distribution (CDF)
of a standard normal distribution. Hsieh and Turnbull (1996) propose a gen-
eralized least squares estimate whereas Cai and Moskowitz (2004) and Zhou
and Lin (2008) discuss profile likelihood methods to estimate a and b in the
general setup (2).

With the purpose of defining a smooth, though more flexible than para-
metric, ROC curve estimate Lloyd (1998) proposes to plug in kernel estimates
of F and G into (1). As is common for all kernel estimates, a kernel and, more
importantly, a bandwidth have to be chosen. In the ROC curve estimation
problem this issue is even more pronounced, since both the ordinate and co-
ordinate of the estimated ROC curve are random and it is thus unclear which
variation to minimize in mean square. Lloyd (1998) suggests to circumvent the
bandwidth choice problem by a rather involved graphical examination of bias
and variation from bootstrap samples. That this kernel ROC estimate is more
efficient than the empirical is shown in the subsequent paper Lloyd and Yong
(1999). However, as discussed in the bandwidth comparison study performed
by Zhou and Harezlak (2002), Lloyd’s estimate may not be practical for routine
use in medical studies, although it has good theoretical properties. Its main
drawbacks is that bandwidth selection is ad-hoc and difficult. Hall and Hyn-
dman (2003) take a somewhat different approach as they choose the optimal
bandwidth not separately for F and G, but they derive optimal bandwidths
via minimizing the mean integrated squared error (MISE) for the estimation
of R directly. They show via simulations that their estimator improves on
existing approaches in terms of MISE.

Another approach to smooth estimation is taken in Qiu and Le (2001)
who combine kernel estimation of G with a quantile estimator due to Harrell
and Davis (1982). The latter has been shown to perform better than the usual
empirical quantile estimator in many scenarios. Du and Tang (2009) propose a
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monotone spline approach to ensure monotonicity and transformation invari-
ance of the estimated ROC curve. However, here one has to select a smoothing
parameter and Du and Tang (2009) propose to use cross validation to guide
that choice.

Further papers that deal with semiparametric approaches to estimate
a ROC curve are Lloyd (2002), Peng and Zhou (2004), and Wan and Zhang
(2007). However, it seems safe to say that diagnostic tests in applications
are to a large extent assessed by using the empirical ROC curve estimate
R̃m,n (Zhou and Harezlak, 2002, Section 1) and to a lesser extent the binormal
estimate, despite the well-known deficiencies of the latter. Presumably, this has
to be attributed to lack of easy accessible software that implements alternative
methods.

In Section 2 we briefly summarize some facts on log-concave density
estimation. Our new estimator is introduced in Section 3 and some theoretical
results are provided in Section 4. An illustration of the proposed ROC curve
estimate using a real-world dataset is discussed in Section 5 and its perfor-
mance in simulations is assessed in Section 6. Bootstrap confidence intervals
for the value of the ROC curve at a fixed false positive fraction t are intro-
duced in Section 7 and Section 8 discusses the features of the new estimator
under misspecification. Finally, in Section 9 we draw some conclusions. Ad-
ditional results on log-concave density estimation, on estimation of AUC, on
simulations and under misspecification as well as proofs are postponed to the
appendix.

2 Log-concave density estimation

In Section 3 we propose an alternative ROC curve estimator in the spirit of
Lloyd (1998). Namely, we also model the constituent distributions F and
G nonparametrically. However, we do not suggest to use kernels, but the
log-concave density estimate initially introduced in Walther (2002), Rufibach
(2006), Pal, Woodroofe, and Meyer (2007), and Rufibach (2007). The features
of the new ROC curve estimator are discussed in Section 3. More details on
recent research on log-concave density estimation is provided in the appendix.

Rate of uniform convergence for the univariate log-concave maximum
likelihood estimate was derived in Dümbgen and Rufibach (2009) and its com-
putation is described in Rufibach (2007), Dümbgen, Hüsler, and Rufibach
(2010), and Dümbgen and Rufibach (2011). The corresponding software is
available from CRAN as the R package logcondens (Rufibach and Dümbgen,
2011). The multivariate case has been treated by Cule, Samworth, and Stewart
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(2010) and the extension to discrete observations in Balabdaoui, Jankowski,
Rufibach, and Pavlides (2012). For a recent review of all these developments
we refer to Walther (2009).

To fix ideas, let p be a probability density on R. We call p log-concave
if it may be written as p(x) = expϕ(x) for some concave function ϕ : R →
[−∞,∞) and x ∈ R. Based on a sample of i.i.d. random variables V1, . . . , Vn ∈
R from p we seek to estimate this density via maximizing the normalized log-
likelihood function

`(ϕ) = n−1
n∑
i=1

log p(Vi) = n−1
n∑
i=1

ϕ(Vi)

over all concave functions ϕ : R→ [−∞,∞) such that
∫

expϕ(x) dx = 1.
The merits of imposing log-concavity as a shape constraint have been

described in detail in Balabdaoui, Rufibach, and Wellner (2009), Cule, Gra-
macy, and Samworth (2009), Walther (2009), and Dümbgen and Rufibach
(2011). The most relevant of those properties in the current context are that
many parametric models have log-concave densities. Examples include the
Normal, Exponential, Uniform, Gamma(r, λ) for r ≥ 1, Beta(a, b) for a, b ≥ 1,
generalized Pareto if the tail index γ is in [−1, 0], Gumbel, Fréchet, Logistic or
Laplace, to mention only some of these models. In addition, log-concavity can
be considered a straightforward generalization of normality that shares many
properties of the Normal distribution (Schuhmacher, Hüsler, and Dümbgen,
2011), but is much more flexible. For these reasons, assuming log-concavity
offers a flexible nonparametric alternative to purely parametric models that
includes a wide range of asymmetric, unimodal densities.

The crucial feature of p̂n, the log-concave density estimator and max-
imizer of `(ϕ), for our intended application is that the corresponding CDF
estimator P̂n is, under some regularity conditions and if the true density is
in fact log-concave, asymptotically equivalent to Pn. As a consequence, P̂n
can be regarded as a smoother of the empirical distribution function Pn for
finite sample sizes n and this will directly translate into a smooth estima-
tor for the ROC curve. Apart from the asymptotic result in Theorem A.1
given the appendix, Dümbgen and Rufibach (2009, Corollary 2.5) have also
derived additional features of P̂n for finite n that further support the plug-in
strategy indicated above. Namely, that P̂n(V1) = 0, P̂n(Vn) = 1, and that
P̂n(x) ∈ [Pn(x)−n−1,Pn(x)] whenever x is a knot point of the piecewise linear
function ϕ̂n.

To conclude the discussion of log-concave density estimation we would
like to mention the kernel smoothed version p̂∗n of p̂n introduced in Dümbgen
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and Rufibach (2009, Section 3) and generalized in Chen and Samworth (2011).
Closed formulas can be derived to compute p̂∗n and the corresponding CDF P̂ ∗n ,
see Dümbgen and Rufibach (2011). Since log-concavity is preserved under con-
volution, the smoothed estimate p̂∗n remains log-concave if the applied kernel
has this property. In Dümbgen and Rufibach (2009), the normal kernel was
used with a bandwidth chosen such that the variance of p̂∗n equals that of the
sample V1, . . . , Vn. As for p̂n, this makes p̂∗n a fully automatic estimator. Note
that p̂∗n is rather close to p̂n, see Chen and Samworth (2011, Proposition 3) for
a corresponding quantitative result.

Testing for log-concavity. Typically, shape constraints are motivated through
substantive considerations as above. However, researchers may want to for-
mally assess the hypothesis of log-concavity. Hazelton (2011) adapts Silver-
man’s bandwidth test (Silverman, 1982) to test log-concavity of densities in
any dimension and shows that it has healthy power in several scenarios. The
test works by constructing a kernel estimate of the target density in which
log-concavity is enforced by the use of a sufficiently large bandwidth. The test
statistic is the minimal bandwidth for which log-concavity is achieved and the
null distribution is generated via bootstrap.

In a more exploratory manner, log-concavity can be visually assessed
by comparing such an estimate to, e.g., a kernel estimate of the same data.

Illustration of the log-concave density estimates. To illustrate the log-
concave estimate, we show in Figure 1 density estimates applied to the log
of the carbohydrate antigen 19-9 measurements from the pancreatic cancer
serum biomarker study, for the pancreatitis patients (i.e. controls) only. This
data was initially analyzed in Wieand, Gail, James, and James (1989) and
re-assessed, among others, in Pepe (2003, Example 1.3.3), Cai and Moskowitz
(2004, Section 6), Wan and Zhang (2007), or Zhou and Lin (2008) to name
a few. For details on the dataset we refer to Section 5. In the left plot of
Figure 1, the two log-concave density estimates as well as the standard R kernel
estimate are displayed. It seems safe to assume a log-concave density for this
data – the test by Hazelton (2011) yields a p-value of p = 0.84 (based on 9999
bootstrap samples). Note that the log-concave estimate is able to capture the
data’s pronounced skewness. The fact that the log of the estimated density
is piecewise linear, see Section A in the appendix, can be seen through the
potential sharp kinks in the density, as it is the case in Figure 1. It is clear
that such kinks are alleviated by the smoothed version p̂∗n. However, when
looking at the CDFs on the right side of Figure 1, we see that the seemingly
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Figure 1: Pancreas dataset: Log-concave density estimation for log of CA 19.9
measurements, controls only.

“nicer” fit of p̂∗n on the density level does not imply a significant difference for
the estimated CDFs. The right picture further emphasizes that, as claimed
above, the log-concave CDF estimator (whether kernel smoothed or not) can be
considered to be a smoother version of the empirical CDF, a fact theoretically
supported by Theorem A.1.

3 A new ROC curve estimator

To define our new ROC curve estimator we first compute log-concave distri-
bution function estimates F̂m and Ĝn based on the samples X1, . . . , Xm and
Y1, . . . , Yn. The estimates are then plugged into (1) to get

R̂m,n(t) := R(t; F̂m, Ĝn) = 1− Ĝn(F̂−1m (1− t))

for t ∈ (0, 1). The corresponding estimate based on the CDFs derived from
the kernel smoothed log-concave estimates is denoted by R̂∗m,n(t). Being a
function of the integral of a piecewise exponential function, both estimators
are smooth, i.e. they are at least differentiable on the entire domain (0, 1) and
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infinitely often differentiable except on the joint set of knot points of f̂m and
ĝn.

In Section A of the appendix we recapitulate asymptotic results for
p̂n and P̂n. These results can be used to show that R̂m,n, as a process in
t, is asymptotically equivalent to R̃m,n if the log-concavity assumption holds,
see Section 4. This implies that the limiting behavior derived for R̃m,n in

Hsieh and Turnbull (1996) in some sense applies to R̂m,n or that asymptotic

confidence intervals derived for R̃m,n(t) are also valid for R̂m,n(t). In addition,

R̂m,n is smooth and, as we show in Section 6, for finite m and n typically more
efficient than R̃m,n. We therefore advocate the use of our new estimator as a

surrogate for R̃m,n and an alternative to the kernel estimate R̂m,n when it is
safe to assume that the constituent densities are log-concave.

It was shown in Lloyd and Yong (1999) that the estimated ROC curve
based on kernels outperforms the empirical, just as R̂m,n. One of the main
advantages of shape constraint estimation in general, and in our current setting
in particular, is that such estimates are fully automatic, i.e. they do not
necessitate the choice of a kernel, bandwidth, or some other regularization
parameter whose optimal value typically depends on the unknown function to
be estimated.

Admittedly, and as it is typical for semiparametric ROC curve esti-
mates, R̂m,n is generally not invariant with respect to monotone transforma-
tions of eitherX and/or Y . However, this is the case for virtually all parametric
models. A ROC curve R (true or estimated) is biased if there exists p ∈ (0, 1)
such that R(p) < p. Log-concave ROC curve estimates can indeed be biased.
However, the bias is in general constrained to regions of (0, 1) that are small,
and typically smaller compared to the binormal model. See Pepe (2003, p. 83)
for a detailed discussion of potential bias in binormal models.

Compared to a parametric model with Normal distributions for F and
G, the log-concave approach is certainly more flexible, at the cost of only a
small reduction in efficiency in case F and G are in fact Gaussian, as we verify
in our simulation study in Section 6.

4 Main result

In the sequel, a function g is said to belong to the Hölder class Hβ,L(I) of
functions with exponent β ∈ (1, 2] and constant L > 0 if for all x, y ∈ I we
have |g′(x) − g′(y)| ≤ L|x − y|β−1. The claim of asymptotic equivalence of
R̂m,n and R̃m,n under log-concavity is based on Theorem 4.1.
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Theorem 4.1. Assume that

C1 F is supported on IF = [0, 1] with positive density F ′ = f , and G has
(potentially infinite) support IG ⊆ R.

C2 F and G both have log-concave densities f = expϕ, g = exp γ where ϕ, γ
are both Hölder-continuous with exponent β ∈ (1, 2] and constant L > 0
on IF and [A,B] ⊂ IG, respectively.

C3 F and G have log-densities such that ϕ′(x) − ϕ′(y) ≥ CF (x − y) for
0 ≤ x < y ≤ 1 and γ′(x) − γ′(y) ≥ CG(x − y) for A ≤ x < y ≤ B and
two constants CF , CG > 0.

C4 The sample size m is a function of n such that n/m→ λ > 0 as n→∞.

Then, as n→∞,

√
n sup
t∈J

(
R̂m,n(t)− R̃m,n(t)

)
→p 0

for J = [F (A+ δ), F (B − δ)] for every δ > 0.

A strong approximation result for the empirical ROC curve process
was provided in Hsieh and Turnbull (1996, Theorem 2.2), see also Pepe (2003,
Result 5.2) or Horváth, Horváth, and Zhou (2008, Section 2), and implies the
following corollary:

Corollary 4.2. Let B1(t) and B2(t) be two independent Brownian Bridges.
Then, as n→∞,

√
n
(
R̂m,n(t)−R(t)

)
→d B1

(
1−R(t)

)
+
√
λ
g(F−1(1− t))
f(F−1(1− t))

B2(1− t)

uniformly on J .

Note that the original result in Hsieh and Turnbull (1996, Theorem 2.2)
relating the empirical and the true ROC holds a.s. where Brownian Bridges
depending on n are involved. This is the reason why we only get convergence
in distribution in Corollary 4.2. The proof of and some comments on the
assumptions of Theorem 4.1 can be found in Section D in the appendix.

5 Illustration of the new ROC curve estimate

We illustrate our new estimator and compare it to the empirical R̃m,n and bi-
normal estimate R̄m,n on the pancreatic cancer serum biomarker dataset. The
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study examined two biomarkers, an antigenic determinant denoted CA125 and
a carbohydrate antigen denoted as CA19.9. The data consists of 51 controls
that did not have cancer but suffered from pancreatitis and 90 pancreatic can-
cer patients. Here, we use the fully parametric binormal model, i.e. we esti-
mate a and b in (2) directly from the mean µ and variance σ2 of the underlying
distributions. The results are displayed in Figure 2 and we observe that (1)
Given that the empirical estimate follows the true curve closely, the binormal
model does not seem to be appropriate here, (2) Both log-concave estimates
are very close to the empirical estimate, acting as smoothers of the empirical
estimator as discussed above, (3) The difference between the log-concave and
the smoothed log-concave estimate in estimation of the ROC curve is small
and mainly concentrated at the boundaries of the domain of the ROC curve.
This is not surprising as the corresponding CDF estimates exhibit the same
behavior as shown in Figure 1. This can be explained by the fact that the dis-
continuities of p̂n at the smallest and largest order statistic of the sample under
consideration are smoothed out by p̂∗n. Finally, the test by Hazelton (2011)
yields a p-value to assess the null hypothesis of log-concavity of p = 0.84 for
the controls and p = 0.83 for the cases.

6 Simulations

Having shown asymptotic equivalence to the empirical estimate, it remains to
empirically verify that, apart from its inherent properties such as smoothness
and no need to choose any regularization parameters such as kernel and band-
width, we additionally enjoy a gain in efficiency by using R̂m,n instead of R̃m,n.
To this end, we have performed a simulation study for the scenarios provided
in Table 1. Scenarios 1–3 serve as a benchmark for comparing our estimators
to the binormal model. In addition, Scenario 2 has been analyzed in Lloyd
and Yong (1999) and Scenario 3 in Zhou and Lin (2008), what enables a direct
comparison to these estimators. Scenario 4 is intended to evaluate the effect
of only one distribution being non-normal but skewed. This seems a plausible
setup in ROC applications where values for the controls may be normal but
those of cases are right-skewed. Scenario 5 assesses the performance in case
both distributions are right-skewed. Finally, Scenario 6 evaluates the methods
for symmetric but non-normal distributions.

In our simulations, we compare the empirical ROC estimate R̃m,n, the
ROC estimates based on the two variants of log-concave density estimate (max-
imum likelihood and its smoothed version), the kernel estimate R̂m,n with
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Figure 2: Pancreas dataset: Log-concave density estimates for log of CA 19.9
measurements and induced ROC curves. The straight line in the right panel
is the bisecting line.

optimal bandwidths to estimate the ROC curve introduced in Hall and Hyn-
dman (2003), and the fully parametric binormal model. The latter model is
well-specified only if both F and G have a normal density. We would like
to emphasize that the binormal model was chosen as a competitor because it
serves as a parametric benchmark if in fact F and G indeed have a normal
density and our simulations show, that R̂m,n and R̂∗m,n are only slightly worse
than this benchmark. However, we generally discourage the use of binormal
models in practice.

To evaluate the performance of our competitors we use the average
square error (ASE), defined for a ROC curve estimate R̂ of a true ROC curve
R as

ASE(R̂) = n−1grid

ngrid∑
k=1

(
R̂(uk)−R(uk)

)2
for grid points ui, i = 1, . . . , ngrid. This criterion has been used in Zhou and
Lin (2008) to evaluate different variants of binormal ROC curve estimates.
Following the same approach as in the latter paper we choose the ui’s to
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Table 1: Scenarios we simulated from. Ga(α, β): Gamma distribution with
shape parameter α and rate parameter β. Log(µ, s): Logistic distribution
with location parameter µ and shape parameter s.
Scenario F m G n has been used in

1 N(0, 1) 20 N(1, 1) 20
2 N(0, 1) 100 N(1, 1) 100 Lloyd and Yong (1999, Figure 1)
3 N(0, 1) 100 N(2, 1.2) 100 Zhou and Lin (2008, Figure 1, left plot)
4 N(2, 1) 100 Ga(2, 1) 100
5 Ga(2, 1) 100 Ga(4, 1.5) 100
6 Log(0, 1) 100 Log(2, 1) 100

be equidistant on [0, 1], ngrid = 100 and we generated M = 500 samples
for each scenario. Using the same criterion and setting all the simulation
parameters to the values already used in (Zhou and Lin, 2008, left plot of
Figure 1) enables direct comparison of our Scenario 3 to their results and we
provide the analogous plot in Figure 4. In Figure 3 we display the results for
all the six scenarios from Table 1, reported as follows: For each simulation run,
the ASE is computed for the four estimators and (ASE(R̂)j/ASE(R̃m,n)j)

1/2

for R̂ ∈ {R̂m,n, R̂
∗
m,n, R̂m,n, R̄m,n} and j = 1, . . . ,M are reported. Thus, each

of the four estimates is benchmarked with respect to the empirical ROC curve
R̃m,n. Figure 3 allows for the following observations: In the purely normal
setting (Scenarios 1–3), the log-concave estimators are generally more efficient
than the empirical, to an even remarkable extent for Scenario 3. We attribute
this to the fact that here, the ROC curve is rather steep for small values on
the abscissa, a shape that R̂m,n and R̂∗m,n are able to more efficiently capture

than the empirical. The kernel estimator R̂m,n outperforms the empirical to an
extent comparable to the log-concave estimates. Finally, compared to the fully
parametric binormal model the loss of efficiency for the log-concave versions
and the kernel estimate is notably small.

When “visually averaging” the pointwise root mean square reductions
over t ∈ (0, 1) in Lloyd and Yong (1999, Figure 1, left plot) we see that their
kernel estimate does approximately 15% better than the empirical estimate, for
data simulated from our Scenario 2. This roughly corresponds to our median
reduction in that scenario.
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The gain of the log-concave ROC estimates over the empirical estimate
is maintained for non-normal though still log-concave setups (Scenarios 4-
6), whereas in these cases the binormal model is certainly misspecified and
therefore underperforming. In Scenarios 5 and 6, R̂m,n and R̂∗m,n provide values

of (ASE)1/2 with less variability than R̂m,n.
The effect of smoothing the maximum likelihood density estimate in

ROC curve estimation is for all the analyzed scenarios rather small. This is
to be expected given that these two estimates are close (Chen and Samworth,
2011, Propositon 3) and the fact that they are integrated when computing the
ROC curve.

In Zhou and Lin (2008) a new estimate for a and b in the semipara-
metric normal model is introduced and compared to a few competitors, e.g.
the one from Cai and Moskowitz (2004). Note that all these estimators are
rather complicated to compute and, to the best of our knowledge, no easy
accessible implementation for these estimators is available. The left plot in
Figure 1 of Zhou and Lin (2008) reports results for our Scenario 3 and the
analogous result using the estimators from our simulation study is displayed
in Figure 4. Although the estimates in Zhou and Lin (2008, Figure 1, left plot)
were explicitly tailored for the binormal model, our log-concave estimates are
only slightly, if at all, less efficient, which is consistent with the results shown
in Figure 3. The same applies to R̂m,n.

7 Bootstrap confidence intervals

To construct a confidence interval around R̂m,n at a fixed point t ∈ [0, 1], one
can, by virtue of Theorem 4.1, use standard errors based on asymptotic theory
for R̃m,n. Asymptotically, such an interval maintains the pre-specified coverage
probability, provided that the log-concavity assumption holds. However, to
exploit the gain in efficiency for finite samples in computation of confidence
intervals for values of the true ROC curve, we suggest to proceed as sketched in
Du and Tang (2009) for a similar spline estimator. Namely, draw B bootstrap
resamples {X#

i }mi=1 and {Y #
i }ni=1 from the original data and compute for each

of these resamples the estimator R̂m,n. This yields bootstrapped versions R̂#
m,n

of the estimated ROC curve. The (1−α) confidence interval at a point t ∈ [0, 1]
can then be based on the quantiles of this bootstrap distribution, i.e. we
compute [(R̂#

m,n(t))α/2, (R̂
#
m,n(t))1−α/2] where (R̂#

m,n(t))α/2 and (R̂#
m,n(t))1−α/2

are the (α/2)- and (1 − α/2)-quantile of the R̂#
m,n(t)’s from the bootstrap

samples.
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Figure 3: Results of simulation study. Horizontal dashed lines at 0.75, 1. Note
the different scalings of the y-axis.
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Figure 4: ASE for Scenario 3, to be compared with Zhou and Lin (2008, Figure
1, left plot). Horizontal dashed lines at 0.001, 0.002.

To assess the performance of these intervals we proceeded as follows:
For the scenarios in Table 1, we computed the above intervals at
t ∈ {0.1, 0.3, 0.5, 0.7, 0.9} for B = 500 and 1 − α = 0.95. As a benchmark
we compare the proportion of these intervals out of M = 500 simulation runs
that cover the true value R(t) to the same proportion computed using the
BTII interval proposed in Zhou and Qin (2005). BTII is a bootstrap confi-
dence interval that does not only estimate the true positive fraction at a fixed
t, but also accounts for the uncertainty due to the fact that we estimate the
quantile corresponding to t based on the controls. Zhou and Qin (2005) show
via simulations that BTII has superior coverage accuracy and shorter interval
length compared to other approaches over a wide range of scenarios and for
sample sizes comparable to those in our simulation setup.

In Figure 5 we present the results. We find that coverage proportions
are basically identical for BTII and the interval based on R̂m,n, for t ≤ 0.7.
Zhou and Qin (2005) noted that the BTII interval performs poorly for values
of t that correspond to high (≥ 0.95) sensitivities and small sample sizes.
Looking at the smallest values of t where the true R(t) ≥ 0.95 in our six
scenarios from Table 1, we get values of 0.74/0.74/0.49/0.95/0.77/0.72, i.e.
our results are in line with that rule-of-thumb: for Scenarios 1 and 3, BTII is

14

The International Journal of Biostatistics, Vol. 8 [2012], Iss. 1, Art. 7



●
● ●

●

●

●
● ● ●

●

● ● ●
●

●

● ● ● ● ● ● ● ●
●

●

●
●

● ●
●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Coverage proportions for confidence intervals over 500 simulations
C

ov
er

ag
e 

pr
op

or
tio

n

0.
1

0.
3

0.
5

0.
7

0.
9

0.
1

0.
3

0.
5

0.
7

0.
9

0.
1

0.
3

0.
5

0.
7

0.
9

0.
1

0.
3

0.
5

0.
7

0.
9

0.
1

0.
3

0.
5

0.
7

0.
9

0.
1

0.
3

0.
5

0.
7

0.
9

+: log−concave / o: BTII. Numbers at the bottom indicate Scenario from Table 1.

1 2 3 4 5 6

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Average length of confidence interval over 500 simulations

A
ve

ra
ge

 le
ng

th
 o

f c
on

fid
en

ce
 in

te
rv

al

0.
1

0.
3

0.
5

0.
7

0.
9

0.
1

0.
3

0.
5

0.
7

0.
9

0.
1

0.
3

0.
5

0.
7

0.
9

0.
1

0.
3

0.
5

0.
7

0.
9

0.
1

0.
3

0.
5

0.
7

0.
9

0.
1

0.
3

0.
5

0.
7

0.
9

+: log−concave / o: BTII.

Figure 5: Performance of confidence intervals for R at a fixed t. Comparison
of bootstrap intervals based on R̂m,n and the BTII intervals discussed in Zhou
and Qin (2005).

performing very poorly for t = 0.9, whereas the interval based on R̂m,n has a
better performance. Both methods approximately have the same difficulties in
reaching the prescribed level for t = 0.9 in scenarios 2, 5, 6. However, as can be
inferred from the lower plot in Figure 5, the intervals based on R̂m,n generally
yield confidence intervals with a shorter average length over the M = 500
simulations, a gain that is in line with the simulation results in Section 6.
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8 Performance if f and/or g is not log-concave

First of all, we would like to point to recent work on estimation of a log-
concave density under misspecification. Cule and Samworth (2010) show that
the log-concave density estimator f̂n converges to the density g that minimizes
the Kullback-Leibler distance to the true density f , in some exponentially
weighted total variation norm. If f is indeed log-concave, this implies a strong
type of consistency for the log-concave density estimator.

Now, it is by no means immediate how this generalizes to our ROC
curve estimate R̂m,n. To assess the robustness of R̂m,n, i.e. scenarios where at
least one of the constituent distributions does not have a log-concave density,
we extended the simulations reported in Section 6 to incorporate non-log-
concave densities, see Section C in the appendix. Additional scenarios are
given in Table 2. The conclusions from these simulations are that (1) R̂m,n

remains competitive even for moderate deviations from log-concavity for either
f and/or g, and that (2) for small samples it even still outperforms the kernel-
based estimator by Hall and Hyndman (2003).

9 Conclusions

We have presented a new approach to estimate ROC curves, which is based on
plugging in distribution function estimates received from log-concave density
estimates of the cases and controls data instead of their empirical counterparts.
We propose bootstrap confidence intervals at a fixed t and show asymptotic
equivalence between the empirical and the new ROC curve estimate if the log-
concavity assumption holds. The performance of the new method is assessed
via simulations and illustrated on a medical dataset. In what follows, we
recapitulate the reasons why we consider our new approach useful.

In applications, it seems sensible to assume that the true underlying
ROC curve R is in fact smooth, thus we expect a better performance of an
estimate by imposing some degree of smoothness. In addition, it is visually
appealing to have a smooth estimate rather than a jagged function like R̃m,n.

Many parametric densities are in fact log-concave. As illustrated for
the normal distribution in Scenarios 1 to 3 of our simulation study, not much
efficiency is lost when considering log-concavity instead of the actual paramet-
ric model if the underlying distributions are indeed Normal. Besides, assuming
log-concavity is much more flexible and robust to misspecification than impos-
ing some parametric model, especially the widely used binormal model.
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In our simulation study we have illustrated that over a wide spectrum
of distributions, the estimators R̂m,n and R̂∗m,n perform remarkably better than
the empirical ROC curve for finite sample sizes and have an efficiency that is
comparable, and in some scenarios slightly better, than the kernel estimator
R̂m,n. Confidence intervals based on R̂m,n have comparable coverage probabil-
ities but slightly shorter average interval lengths than the BTII interval from
Zhou and Qin (2005), if the log-concavity assumption indeed holds.

Taking into account these points, we advocate the use of our estimate
since (1) we do not loose much, if anything at all, with respect to R̂m,n or
the binormal model and gain substantially with respect to the empirical ROC
curve estimate but (2) are much more robust to misspecification than the
binormal model. As opposed to kernel estimates, both our estimators R̂m,n

and R̂∗m,n are fully automatic.

It was shown that, if the underlying densities are log-concave, R̂m,n is
asymptotically equivalent to R̃m,n, so our new estimator can be considered

a “smoother” of the empirical ROC curve. This “smoothing property” of P̂n
has given rise to at least two applications where empirical performance of a
method could be substantially improved by using P̂n in place of Pn as an
estimator of the CDF. In Müller and Rufibach (2009) it was demonstrated
that using quantiles based on P̂ ∗n instead of order statistics reduces estimation
variability to a much greater extent in comparison to the bias introduced in
tail index estimation in extreme value theory. This leads to a substantial
reduction in mean squared error. Similarly, in Dümbgen and Rufibach (2011)
a simulation study demonstrates increased power in the comparison of two
distribution functions when using the Kolmogorov-Smirnov statistics based on
the log-concave instead of the empirical distribution function estimate.

10 Software and reproducibility

Estimation of a univariate log-concave density and many additional related
quantities is implemented in the R package logcondens (Dümbgen and Ru-
fibach, 2011) available from CRAN. We have added the function logConROC

to this package that gives the ROC curve estimates R̂m,n and R̂∗m,n as well as
the corresponding area under the curve (AUC) in just one line of code. The
bootstrap confidence intervals from Section 7 are implemented as the function
confIntBootLogConROC_t0 in logcondens. Note that the active-set algorithm
used to maximize the log-likelihood function for the log-concave density es-
timate is remarkably efficient so that it only takes seconds to compute R̂m,n

for rather large sample sizes m and n, e.g. of order m = n = 104. For small
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to moderate sample sizes computation is immediate. The pancreas dataset
used to illustrate our estimate is also included in logcondens and thus readily
accessible. The code to compute the kernel estimator by Hall and Hyndman
(2003) is available from the author’s webpage. All this enables straightforward
reproducibility of the plots and simulations.

In addition, the function smooth.roc in the R package pROC (Robin,
Turck, Hainard, Tiberti, Lisacek, Sanchez, and Muller, 2011) offers the option
to fit a ROC curve based on log-concave density estimates.

This document was created using Sweave (Leisch, 2002), LATEX(Knuth,
1984, Lamport, 1994), R 2.14.0 (R Development Core Team, 2011) with the R
packages logcondens (Dümbgen and Rufibach, 2011, Rufibach and Dümbgen,
2011, Version 2.0.6), xtable (Dahl, 2009, Version 1.6-0), and cacheSweave
(Peng, 2008, Version 0.6).

Appendix

A Additional details on log-concave density

estimation

Here, we provide additional details and references on log-concave density esti-
mation.

Dümbgen and Rufibach (2009) show that the maximizer ϕ̂n of ` is
unique, piecewise linear on the interval [V(1), V(n)] with knots only at (some
of the) observations V(i), and ϕ̂n = −∞ elsewhere. Here V(1) ≤ V(2) ≤ · · · ≤
V(n) are the ordered observations, and a “knot” of ϕ̂n is a location where this

function changes slope. The MLEs ϕ̂n, p̂n = exp ϕ̂n and P̂n(t) =
∫ t
−∞ p̂n(x) dx

are consistent with certain rates of convergence, see Dümbgen and Rufibach
(2009) and Balabdaoui et al. (2009) as well as Theorem A.1 below.

The crucial feature of the estimate in our context is summarized in
Theorem A.1.

Theorem A.1. [Dümbgen and Rufibach, 2009, Theorems 4.1 and 4.4] Assume
that the log-density ϕ = log p ∈ Hβ,L(T ) for some exponent β ∈ [1, 2], some
constant L > 0 and a subinterval T = [A,B] of the interior of the support
{p > 0}. Then,

max
t∈T (n,β)

|ϕ̂n − ϕ|(t) = Op

(
ρβ/(2β+1)
n

)
,
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where T (n, β) :=
[
A+ρ

1/(2β+1)
n , B−ρ1/(2β+1)

n

]
and ρn = log(n)/n. In particular,

this entails that for β ∈ (1, 2]

max
t∈T (n,β)

∣∣P̂n(t)− Pn(t)
∣∣ = op(n−1/2)

where Pn is the empirical CDF of V1, . . . , Vn.

Note that the result for ϕ̂n remains true when we replace ϕ̂n−ϕ by p̂n−
p. Furthermore, it is well-known that the rates of convergence in Theorem A.1
are optimal, even if β was known (Has′minskĭı, 1978). Thus the log-concave
(log-)density estimator adapts to the unknown smoothness of p in the range
β ∈ (1, 2].

B Estimation of the AUC

In Section 6 we have shown that R̂m,n and R̂∗m,n (and R̂m,n) are valuable
approaches to estimate the ROC curve. In this section, we will show that this
holds true also in estimation of the AUC. AUC is the most widely used (Pepe,
2003, Section 4.3.1) summary measure for ROC curves and typically reported
in the analysis of a diagnostic test. First, note that Theorem 4.1 together with
Hsieh and Turnbull (1996, Theorem 2.3) implies that

√
n(ÂUC − AUC) :=

√
n

∫
J

(
R̂m,n(t)−R(t)

)
dt

→d N(0, σ2
AUC),

so that the AUC based on R̂m,n and R̃m,n share the same distributional limit
(under the assumptions of Theorem 4.1) as well and asymptotic results for
the empirical AUC are valid for the AUC based on the log-concave ROC. The
expression for the asymptotic variance σ2

AUC of the empirical AUC is provided
in Hsieh and Turnbull (1996, Theorem 2.3), see also the discussion in Pepe
(2003, Section 5.2.5).

C Estimation of R̂m,n and AUC under misspec-

ification

Here, we report on additional simulations when either f and/or g are misspec-
ified, i.e. not log-concave. We have chosen the Lomax densities as these are
an often-used and unbiased model. The t- and the normal mixture densities
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were selected as they are still unimodal but have slightly “too heavy” tails to
still be log-concave.

Table 2: Scenarios we simulated from to assess performance of the new esti-
mator in misspecified models.

Scenario F m G n
7 Lomax(3, 7) 20 Lomax(5, 3) 20
8 Lomax(3, 7) 100 Lomax(5, 3) 100
9 t(5, 0) 20 t(5, 2) 20
10 t(5, 0) 100 t(5, 2) 100
11 N(0, 1) 20 0.75·N(2.5, 1) + 0.25·N(2.5, 3) 20
12 N(0, 1) 100 0.75·N(2.5, 1) + 0.25·N(2.5, 3) 100

The ASE relative to the empirical estimate for the simulations from
Table 2 are displayed in Figure 6. As expected, the estimator by Hall and
Hyndman (2003) now clearly outperforms R̂m,n. However, the advantage of
the latter estimator is only substantial for the Lomax scenarios whereas for
the t and normal mixture setups the two estimators R̂m,n and R̂m,n perform

comparably, even with some advantage for R̂m,n. We thus conclude that R̂m,n

remains competitive even for moderate deviations from log-concavity in either
F and/or G, and that for small samples it still outperforms the kernel-based
estimator by Hall and Hyndman (2003).

As a matter of fact, if either F and/or G has a bimodal density it does
not seem sensible to use R̂m,n and we have thus omitted such scenarios from
our misspecification simulation study. It seems safe to assume that in such a
scenario, R̂m,n will outperform R̂m,n and that the latter should not be used
based on substantive arguments.

As a final remark on misspecified models we would like to empha-
size that one typically applies shape constraint estimates based on substantive
knowledge, i.e. knows that the densities of F and G are log-concave, or one
assesses this claim via formal testing, or via contrasting the log-concave to
kernel density estimates. In addition, as it comes out of the simulations, R̂m,n

is somewhat robust against misspecification.
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Scenario 7: 20 Lomax(3, 7) vs. 20 Lomax(5, 3)
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Figure 6: Results of simulation study for misspecified models. Horizontal
dashed lines at 0.5, 1, 1.5. Note the different scalings of the y-axis.
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D Proof of Theorem 4.1

We write
√
n sup
t∈J

∣∣∣R(t;Fm,Gn)−R(t; F̂m, Ĝn)
∣∣∣ =

=
√
n sup
t∈J

∣∣∣(1−Gn(F−1m (1− t)))− (1− Ĝn(F̂−1m (1− t)))
∣∣∣

=
√
n sup
t∈J

∣∣∣Ĝn(F̂−1m (t))−Gn(F−1m (t))
∣∣∣

=
√
n sup
t∈J

∣∣∣Ĝn(q̂1,t)−Gn(q̂1,t) + ĝn

(
q̂1,t + θm(q̂2,t − q̂1,t)

)
(q̂2,t − q̂1,t)

∣∣∣
≤
√
n sup
t∈J

∣∣∣Ĝn(q̂1,t)−Gn(q̂1,t)
∣∣∣+

√
n sup
t∈J

∣∣∣ĝn(q̂1,t + θm(q̂2,t − q̂1,t)
)

(q̂2,t − q̂1,t)
∣∣∣

=: T1(n,m) + T2(n,m)

where we defined q̂1,t = F−1m (t) and q̂2,t = F̂−1m (t) and θm is some value in
(0, 1) for all m. By the Bahadur-Kiefer theorem (see e.g. van der Vaart and
Wellner, 1996, Example 3.9.24 or van der Vaart, 1998, Section 21.2) we can
write for any t ∈ J F−1m (F (t)) = t+ (Fm(t)−F (t)) + oas(n

−1/2), what together
with strong consistency of Fm (van der Vaart, 1998, p. 265) implies that for
any ε ∈ (0, δ] we can find an n0 large enough so that for all m,n ≥ n0 almost
surely ∣∣∣F−1m (F (A+ δ))− A− δ − ρn

∣∣∣ ≤ ε

where ρn = log(n)/n. But this implies that F−1m (F (A + δ)) ≥ A + ρn and
similarly F−1m (F (B − δ)) ≤ B − ρn with probability one. Thus,

T1(n,m) =
√
n sup
t∈[F (A+δ),F (B−δ)]

∣∣∣Ĝn(q̂1,t)−Gn(q̂1,t)
∣∣∣

=
√
n sup
u∈[F−1

m ◦F (A+δ),F−1
m ◦F (B−δ)]

∣∣∣Ĝn(u)−Gn(u)
∣∣∣

and the latter expression is (almost surely) not smaller than

√
n sup
u∈[A+ρn,B−ρn]

∣∣∣Ĝn(u)−Gn(u)
∣∣∣ = op(1)

by virtue of the second statement of Theorem 4.4 in Dümbgen and Rufibach
(2009).
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As for T2(m,n) we first note ĝn is bounded with probability one (Pal
et al., 2007, Theorem 3.2 and Cule and Samworth, 2010, Lemma 3). Then,
using again Dümbgen and Rufibach (2009, Theorem 4.4) one can show that
under the assumptions C2 and C3

sup
t∈J
|F̂m(t)− F (t)| ≤ sup

t∈J
|Fm(t)− F (t)|+ op(n−1/2) (3)

what implies that
√
n(F̂m − F ) converges weakly in D[J ] (the space of cadlag

functions on J) to the same limit as
√
n(Fm − F ), namely to B ◦ F for a

standard Brownian Bridge B. But convergence of the estimated distribution
function in D[J ] implies convergence of the corresponding quantile process in
D[J ], by virtue of van der Vaart and Wellner (1996, Lemma 3.9.23). Thus, for
some generic constant C > 0,

T2(n,m) =
√
n sup
t∈J

∣∣∣ĝn(q̂1,t + θm(q̂2,t − q̂1,t)
)

(q̂2,t − q̂1,t)
∣∣∣

≤ C
√
λ(1 + op(1))

√
m sup

t∈J

∣∣∣F̂−1m (t)− F−1m (t)
∣∣∣

≤ C
√
λ(1 + op(1))

√
m sup

t∈J

{∣∣∣F̂−1m (t)− F−1(t) +
B ◦ F (F−1(t))

f(F−1(t))

∣∣∣+∣∣∣F−1m (t)− F−1(t) +
B ◦ F (F−1(t))

f(F−1(t))

∣∣∣} = op(1)

via van der Vaart and Wellner (1996, Lemma 3.9.23). 2

For the empirical ROC curve this is carried out in Tang, Emerson, and
Zhou (2008, Web supplement) and Tang and Zhou (2009, Web supplement).

Now, by Theorem 4.3 in Dümbgen and Rufibach (2009), again under
the assumptions of Theorem 4.1, we have that

√
n(F̂−F ) has the same limiting

distribution as
√
n(F− F ). This in turn implies that the above result carries

over to R̂m,n.

Comments on the assumptions of Theorem 4.1. As it can be inferred
from the proof, the crucial assumption is not log-concavity of the underly-
ing densities, but rather the Dvoretzky-Kiefer-Wolfowitz inequality (3) which
must hold for the CDF estimate. Indeed, log-concavity is only one possible
assumption that entails this property. The density whose quantile function
is involved in the ROC curve estimate needs to have finite support, since it
must fulfill the assumptions for the Bahadur-Kiefer theorem (van der Vaart,
1998, Section 21.2). However, it is easy to see that any truncated log-concave
density remains log-concave, so that this assumption does not seem to be too
restrictive.
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Rufibach, K. and L. Dümbgen (2011): logcondens: Estimate a Log-Concave
Probability Density from iid Observations, R package version 2.0.5.
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