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A SMOOTH VARIATIONAL PRINCIPLE
WITH APPLICATIONS TO SUBDIFFERENTIABILITY

AND TO DIFFERENTIABILITY OF CONVEX FUNCTIONS

J. M. BORWEIN AND D. PREISS

ABSTRACT. We show that, typically, lower semicontinuous functions on a Ba-
nach space densely inherit lower subderivatives of the same degree of smooth-
ness as the norm. In particular every continuous convex function on a space
with a Gâteaux (weak Hadamard, Fréchet) smooth renorm is densely Gâteaux
(weak Hadamard, Fréchet) differentiable. Our technique relies on a more pow-
erful analogue of Ekeland's variational principle in which the function is per-
turbed by a quadratic-like function. This "smooth" variational principle has
very broad applicability in problems of nonsmooth analysis.

1. Introduction. Ekeland's variational principle [11-13] has proved, along
with its variants, to be a potent and flexible tool in analysis and in optimization
theory [2, 7, 12, 13, 17]. One notable limitation on its application is that even when
the original function is differentiable the perturbed function is not. A reasonable
smooth variant has long been sought.

In §2 we provide such a "smooth" variational principle. The geometric idea
behind this proof is as follows. Given a fixed penalty function one cannot, in gen-
eral, use penalization techniques to densely obtain minima for lower semicontinuous
functions on a given Banach space (but see Theorem 5.2). One can however adap-
tively adjust the penalty as one moves around the epigraph of the function, and
the final cummulative penalty can be well enough controlled so as to inherit the
differentiability properties of the underlying norm on the space.

In §3 we deduce the existence of appropriate subderivatives. These subderiva-
tives enable one to considerably extend and strengthen many existing nonsmooth
optimization results such as those in Treiman [25], as will be illustrated elsewhere
[6],

In §4 we obtain consequences for convex functions. One result particularly merits
comment. We show that every Banach space with a smooth renorm is a GDS, in the
language of Larman and Phelps [18]. This largely answers a long-standing question
of Day's [9, p. 167]. In §5 implications for distance functions are considered. These
include a strengthening of our variational principle in reflexive Banach space.

2. The smooth variational principle. Let A" be a Banach space with given
norm || • ||. For p > 1 we consider the class of convex functions, Yp, which consists
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518 J. M. BORWEIN AND D. PREISS

of all functions of the form

(2.1) Ap(x) := Y, pn\\x-vn\\p,     ^ pn = 1,        ßn>0,

where {vn} converges in norm to some v in X. Thus Av is a potentially infi-
nite convex combination of translates of pth powers of norms, with the translates
themselves converging.

DEFINITION 2.1. A bornology on X, denoted #, is for us any nonempty family
of bounded sets. We identify five particular bornologies. (a) G denotes the Gâteaux
bornology consisting of all singletons; (b) H denotes the Hadamard bornology con-
sisting of all norm compact sets; (c) WH denotes the weak Hadamard bornology
consisting of all weakly compact sets; (d) F denotes the Fréchet bornology consist-
ing of all bounded sets; (e) H, C denotes the bornology which adds all translates of
a given weakly compact set C to H.

DEFINITION 2.2. A norm is ^-smooth if it is Gâteaux differentiable away from
the origin uniformly on members of #. The Gâteaux derivative of the norm at x is
denoted fx.

DEFINITION 2.3. (a) Let A be a Banach space and let /: X -> [-00,00] be
lower semicontinuous. Suppose f(x) is finite. Then / is #-subdifferentiable at x
with subderivative 4> in X* if, for each e > 0 and each set S in the * bornology,
there exists 6 > 0 such that for 0 < t < S

(2:2) [f(x + th)-f(x)]r1-cb(h)>-e

uniformly for h in S. We write cb E 3* f(x).
(b) Superderivatives are similarly defined and denoted <f> E 3#f(x). Thus

3#-f(x) = -3#f(x).
(c) Finally, / is #-differentiable if it is both *-subdifferentiable and #-superdiffer-

entiable. The necessarily unique ^-derivative is denoted V*/(a;), and must coincide
with VGf(x).    □

Further information on subderivatives can be found in [5, 22] and the references
therein.

PROPOSITION 2.4. (a) Suppose that f is concave and continuous in a neigh-
borhood of x. If 3* f(x) is nonempty then f is *-differentiable at x and 3* f(x) =
{V*f(x)}.

(b) If p > 1 and \\ ■ || is ^-smooth then each function Ap is &-differentiable
throughout X.

PROOF, (a) Since / is concave and continuous, the Hahn-Banach theorem pro-
vides a superderivative <p in the sense of convex analysis [7]. Then <p E 3#f(x). If
<j> E d* f(x), then as observed above <p = <fi is the ^-derivative of / at x.

(b) It follows directly from the Weierstrass M-test that Ap is Gâteaux differen-
tiable everywhere with derivative

(2.3) VGAp(z) =p^2^\\x- unir1/*-,,.

Since {vn} is bounded and X^pn is absolutely convergent, it is easily verified that
Ap is actually ^-differentiable at each x.    D
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A SMOOTH VARIATIONAL PRINCIPLE 519

There is another class of differentiability properties inherited by Yp. If the norm
is uniformly Fréchet differentiable on the unit sphere, then, for p > 1, Ap will be
uniformly Fréchet differentiable at least on bounded sets. When X has a power
modulus of smoothness [20] one can be more specific. By extending the argument
in [15, Lemma 2.4], one may show that X has a power modulus of smoothness £s
(1 < s < 2) if and only if the function ga :— || • ||s/s satisfies

(2-4) \\Vga(x)-\7gs(y)\\<C\\x-y\r1

for x and y in X, where C is independent of x and y. It follows that As will also
satisfy (2.4) which is to say that As has a Holder-continuous derivative. This holds
in reflexive Lp spaces, in which case s = min{2,p}. Indeed Pisier's deep renorming
theorem [21] shows that every superreflexive space has a renorm with a power
modulus of smoothness. This motivates the next definition.

DEFINITION 2.5. Let A be a Banach space, let /: X —► [-00,00] be lower
semicontinuous, and suppose f(x) is finite. Then / is s-Hölder-subdifferentiable at
x with subderivative qb in X* if there exist positive constants 6X and Cx such that

(2.5) [f(x + h)- f(x)] - <p(h) > -Cx\\h\\1+S

whenever \\h\\ < 6X. We write <j> E 3HSf(x) (or 3s~HSf(x)). When s — 1 such
subderivatives are called Lipschitz smooth, written 3i,sf(x), and in Hubert space
they coincide with Rockafellar's proximal subderivatives [23].

THEOREM 2.6 (SMOOTH VARIATIONAL PRINCIPLE). Let X be a Banach
space, let g: X —► (—00,00] be lower semicontinuous, and let constants e > 0,
X > 0, and p > 1 be given. Suppose that xo satisfies

(a) g(x0) < £ + mfxg-

Then there exist Ap in Yp and v in X such that for all x in X

(b) g(x) + (e/Xp)Ap(x) > g(v) + (e/Xp)Ap(v),

while

(c) lla-o — v\\ < X,     and

(d) g(v) <£ + inf x g.

Moreover, if X has a # -smooth norm and p > 1 then

(e) OEd*g(v)+p(e/X)B\

where B* is the dual unit ball. Finally, if X has a (s+l)-power modulus of smooth-
ness, (e) holds with s-HS replacing #.

PROOF. We iteratively construct Ap as follows. Use (a) to fix constants ei and
£2 with

(2.6) g(x0) - mix g < £2 < £1 < e

and now select p with

(2.7) 0 < p < 1 - (ei/e).
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520 J. M. BORWEIN AND D. PREISS

Next select 6 with

(2.8) 0 < 9/p < [1 - (£i/£i)1/p]p-

Finally, let 6 := (1 — p)£/Xp. Yet vo := x0 and go := 9 and recursively define
sequences of functions {gn} and points {vn} by

(2.9) gn+i(x):=gn(x) + 6pn\\x-vn\\p

where vn+i is chosen so that

(2.10) gn+i(vn+i) < Ogn(vn) + (l- 6)infx gn+i-

Set sn := infx gn and an := gn(vn). To see that (2.10) is possible observe that an
also equals gn+i(vn)- Now 6 is strictly between 0 and 1, and either sn+i < an or
s„+i is attained at vn. Thus our recursion is possible. Use (2.10) to write

(2.11) s„ < sn+i < an+i < 6an + (1 - 6)sn+i < an

so that

(2.12) an+i - sn+i < 6(an - sn) < 6n+1(a0 - s0).

Substitute x := vn+i in (2.9) to produce

an > an+i = gn(vn+i) + 6pn[\vn+i - vn\\p >sn + Spn\\vn+i - vn\\p

which with (2.6) and (2.12) shows that

(2.13) 6pn[\vn+i - vn\\p < en(a0 - s0) < 6ne2.

Thence (2.8) shows that {vn} is a Cauchy sequence and that for n and m in N

IK - Vn|| < (e2/6)1/p/[l - (6/p)1/p] < (£i/¿)1/p.

Now (2.7) and the definition of 6 imply that for n and m in N

(2.14) \\vm -«„|| < (£i/6)1/p < (£/¿)1/p(l - p)1/p = X.

Letting v denote the limit of the sequence establishes (c). The desired member of
rp is defined by

(2.15) Ap(x):=J2lln\\x-vn\\p, pn:=pn(l-p).
n€N

We now establish (b). For x in the domain of g we have

g(x) + (£/Xp)Ap(x) = supgn(x) >  lim sn.
n «-.oo

Using (2.12) again gives

g(x) + (£/Xp)Ap(x) >  lim gn(vn) > supliminf gm(vn),
n—*oo rn     n—*oo

because {gm} increases with m. In addition, each gm is lower semicontinuous. Thus

(2.16) g(x) + (£/Xp)Ap(x) > supgm(v) = g(v) + (£/Xp)Ap(v)
m

which is (b).
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A SMOOTH VARIATIONAL PRINCIPLE 521

To establish (d) we first estimate Ap(xn). Since xq = vo, (2.14) and (2.15) imply
that Ap(x0) < pXp. We then use (2.16) to derive

g(x0) +£p> g(x0) + (£/Xp)Ap(x0) > g(v).

Then (2.6) and (2.7) show that

g(v) < £i + p£ + inf g < £ + inf g.
x x

We now suppose that p > 1 and that the norm is ^-smooth. Then Proposition
2.4(b) shows Ap to be #-differentiable at v. Let cb := -(£/Xp)V*Ap(v). It follows
from (b) and Definition 2.3 that 0 is a #-subderivative of g at v; and it is a
consequence of (2.3) and (2.14) that \\(b\\ < pe/A. The Holder-smooth case follows
similarly from Definition 2.5 and the discussion preceding it.    D

REMARK 2.7. (a) One can formulate the theorem in any complete metric space,
but the applications would all appear to lie in the normed setting. Various adapta-
tions are apparent. For example one can force the sequence {pn} to zero as rapidly
as wished. One may with some extra work often arrange for vn ^ v, so that (e)
remains valid with p = 1.

(b) When p = 1, Theorem 2.6 essentially recaptures Ekeland's principle [11]
since Ai(x) - Ai(v) < ||x - v\\. The strict inequalities in (a) and (d) are needed
for our general result.

(c) In Hubert space we observe that A2(x) — \[x — w\\2 for some w usually not
equal to v. Thus in this setting we may directly establish (e) with # replaced by
LS.    D

We finish this section with an easy application of the smooth variational princi-
ple.

COROLLARY 2.8. Let X admit a #-smooth renorm and suppose that f : X —>
(—00,00] is somewhere finite and is lower semicontinuous. Suppose f is coercive in
the sense that f(x) > c(||x||) where c is continuous and c(||x||)/||x|| tends to infinity
with \\x\\.  Then 3* f has dense range.

PROOF. Let ¡p be arbitrary in X* and let £ > 0 be given. Let g := f — <p.
As / is coercive g has a finite infimum. Apply Theorem 2.6 to g in the #-smooth
equivalent renorm, with p := 2 and A := 2. Since 3# f(v) — 3#g(v) + p, part (e)
completes the proof.    D

3. The existence of subderivatives. In light of the results of the previous
section it is meaningful to consider # -subderivatives for any derivative property
which Yp inherits from an appropriate norm. Thus where convenient we no longer
notationally distinguish the two previous classes of Definitions 2.3 and 2.5 and talk
about ^-derivatives and subderivatives in both settings.

THEOREM 3.1. Let X be a Banach space with a #-smooth renorm and let
f: X —* [—00,00] be lower semicontinuous. Then f is #-subdifferentiable at a
dense subset of points in its graph.

PROOF. Let £ > O and xo with /(xn) finite be given. Since / is lower semicon-
tinuous one can choose £ > X > 0 such that

(3.1) inf{/(x): ||x - x0|| < A} > f(x0) - £-
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522 J. M. BORWEIN AND D. PREISS

We apply Theorem 2.6 to f\:=f + 6\ where 6\ is the indicator function of {x:
||z —Zoll < ^}- Then f\ is lower semicontinuous and (3.1) shows that (a) of Theorem
2.6 holds for f\. We apply the theorem with this £ and A and p := 2.

This produces a point v with \\v — xn|| < A such that 3#f\(v) is nonempty. Since
fx and / agree in a neighborhood of v (of positive radius A — ||t> — xn||) and since
#-subderivatives are local objects, 3# f(v) is nonempty. Moreover, conclusion (d)
of the principle and (3.1) yield

/(ato) - e < /(«) = A(«) < inf /a + £ < f(x0) + e.

Thus we have produced a point (v, f(v)) in the graph of /, which is arbitrarily close
to the original point, where 3* f(v) is nonempty.      D

One can use this theorem to derive very precise subgradient results for lower semi-
continuous functions, and associated tangent cone formulae [6]. Here we develop
only a mean value estimate for locally Lipschitz functions. We define a generalized
#-derivative set for / at v by

(3.2) D*f(v) := {<p: p>n->p,xn -*v,<pnE 3*f(xn)}.
w

Note that subsequential limits exist since / is locally Lipschitz and since the dual
ball is w* sequentially compact (because X admits a G-smooth renorm, see Larman
and Phelps [18]).

THEOREM 3.2. Let X be a Banach space with a &-smooth renorm and let
f: U C X —» R be locally Lipschitz on the open set U. Let the closed interval [a, b]
lie in U.  Then there exists c in the open interval (a, b) and some <p in D& f(c) with

(3.3) f(b)-f(a)<<p(b-a).
Also, for any v in U

(3.4) 3f(v) =w*clconvD*f(v)

where 3f(v) is the Clarke subgradient of f at v.

PROOF. By subtracting an affine functional we may suppose that f(b) — f(a) —
0. Let c ^ b attain the infimum, s, of / over the closed interval [a, b]. Yet 6jy
be the indicator function of any neighborhood of [a, b] on which / is bounded
below.   Let n be any positive integer and select Kn sufficiently large so that for
9n ■= f + 6N + Knd2ab]

f(c) - l/n2 = gn(c) - 1/n2 < inf gn
X

where d[aib](x) := min{||x - y\\ : y E [a,b]}. We apply the smooth variational
principle to gn with xn := c, with p := 2 and with £/A :— X :— l/n. Then we
obtain a sequence {vn} converging to c such that 0 E 3#gn(vn) + (2/n)B*. The
function d? bX is * -differentiable since the norm is. If vn lies in [a,b] infinitely often
then 0 E 3#f(vn) + (2/n)B*, which implies that 0 E D* f(c). Otherwise, we may
assume that vn does not lie in [a, b] and so for some positive constant Mn

(3.5) 0 E 3*f(vn) + (2/n)B* + MnV*d[aM (vn).

In this case, elementary convex analysis shows that çn := V#d[aifc](D„) satisfies
cn(x — c„) < 0 for all x in [a,b], where c„ is any nearest point to vn in [a, b] and
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A SMOOTH VARIATIONAL PRINCIPLE 523

so converges to c. Since / is locally Lipschitz on U, (3.5) now allows us to extract
a w* convergent subsequence with limit p in D# f(c) such that p(x — c) > 0 for
all x in [a,b]. Since c ^ b, <p(b — a) > 0. Thus in both cases we establish (3.3)
except that c may equal a or b. We next establish (3.4). Fix h in X and, using the
definition of the Clarke derivative, select vn converging to v and tn decreasing to 0
such that

[f(vn + tnh) - ttVn)]^1 -* f°(v;h).
The previously established weak form of (3.3) applied on each interval [vn,vn + tnh]
ultimately produces a subsequence converging w* to some <p in D* f(v) with <p(h) >
f°(v; h). Since every Gâteaux-subderivative is a Clarke subderivative, and since df
is norm-w* closed we have established that

(3.6) /°(t);li)=inaxM/i):ï)ef)#/H}.
This establishes (3.4). Moreover, Lebourg's mean value theorem [7] implies that
(3.3) holds for some p in 3f(c) and c in (a,b). Finally, (3.6) allows us to replace
3f(c) by D#f(c).     D

Recent more difficult results of Preiss [22] allows one to replace 3*f(x) by
V*/(x) in the definition of D* f(c).

4. Convex differentiability spaces. We now collect up the implications for
convex functions.

THEOREM 4.1. Let X be a Banach space with a #-smooth renorm and let
f : U E X —+ R be convex and continuous on the open set U. (a) Then f is densely
* -differentiable in U. (b) In addition for v in U
(4.1) 3f(v) = w'clconv D*f(v)
where now

D*f(v) := {p: pn^ p>, xn -> v,pnE V#/(x„)}.
w'

PROOF, (a) follows directly from Theorem 3.1 and Proposition 2.4(a) applied
to —/. Part (b) follows similarly from Theorem 3.2.    D

REMARK 4.2. (a) Even on the real line Theorem 3.1 guarantees only a dense
set of subderivatives; not a set residual in category or measure. Otherwise, every
continuous function would be somewhere differentiable. Similarly Theorem 4.1 only
asserts the existence of a dense set; an example in [14] exhibits a convex function
on the real line for which the Lipschitz smooth points contain no residual set.

(b) It is elementary that the Fréchet differentiable points of a continuous convex
function form a (dense) Gg set, and we recover Ekeland and Lebourg's celebrated
result [13] that a space with a Fréchet renorm is an Asplund space.

(c) The Lipschitz-smooth case of Theorem 4.1 may be found in Fabian [14]. The
Holder-smooth, weak Hadamard, and Gâteaux (or Hadamard) results appear new.

(d) The discussion before Definition 2.5 shows that every superreflexive space
may be renormed so that (2.4) holds for some p(t) := is_1. Thus in any super-
reflexive space every continuous convex function is densely Fréchet differentiable at
a Holder rate (Kp,K varying with the point). Equally in any superreflexive space
every lower semicontinuous function is densely Hölder-subdifferentiable.

(e) A similar result holds for biconvex functions.    D
It is instructive to recast Theorem 4.1 as a negative result on the existence of

^-smooth renorms.
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COROLLARY 4.3. Suppose that X admits a continuous convex function which
is nowhere *-differentiable.  Then X has no equivalent #-smooth renorm.

The Gâteaux case of the corollary may be viewed as completing Leach and
Whitfield's result that a space with a smooth norm admits no strongly rough norm
[19] and Sullivan's extensions [24].

EXAMPLE 4.4. (a) The fact that f(x) := limsup,^,^ |xn| viewed as a convex
function on Zoo(N) has no smooth points now becomes an easy proof that Zoo(N)
(or loo/co) has no Gâteaux renorm. Similarly the standard facts that the usual
norm on Zi(R) (as any non-fx-finite Li) or £oo[0,1] has no smooth points shows
that the space has no Gâteaux renorm (see Larman and Phelps [18]).

(b) (7[0,1] has no weak Hadamard renorm. Indeed it was shown in [5] that the
supremum norm is nowhere weak Hadamard smooth. This holds for [0,1] replaced
by any perfect compact metric space.

(c) Coban and Kenderov [8] show that the supremum norm on C[/?(Q)] is densely
but not generically Gâteaux differentiable. Here ß(Q) is the Cech compactification
of the rationals.    □

Note also that (4.1), applied at 0 to the support function of a weak-star closed
bounded convex set in X*, shows that such a set is the weak-star closed convex
hull of ^-exposed points (appropriately defined).

5. Subderivatives of distance functions. Let C be a closed subset of a
Banach space X and let dc(x) := inf{||x — c\\: c E C} denote the metric distance
function. Recall that a norm has the Kadec property if the weak and norm topolo-
gies agree on the unit sphere.

THEOREM 5.1. (a) Suppose that the norm on X is strictly convex and X admits
a smooth renorm. Then there is a dense set of points D in X such that each x in
D has at most one nearest point in C.

(b) Suppose that X is weakly compactly generated, that C is boundedly relatively
weakly compact and that the norm on X is Kadec. Then there is a dense set of
points D in X such that each x in D has at least one nearest point in C.

PROOF, (a) Since X admits a smooth renorm and dc is Lipschitz, Theorem 3.1
applies. Let D be a dense subset of X\C wher dc has Gâteaux subderivatives. Let
x lie in D and let p E 3Gdc(x). Suppose that x has two nearest points pi and p2
in C. Then for i = 1 or 2

<p(Pi -x)< lim inf [dc(x + t(pt - x)) - dc(x)]/t~1

= liminf[dc(x + t(pz - x)) - ||p, - x||]/i_1

< lirnmf[||x + t(pt - x) - p¿|| - ||p¿ - x||]/í_1

= -\ÏPi -x\\.
But \\p\\ < 1 as dc is nonexpansive. Thus

tp(x-pi) = ||p, -x|| = dc(x)

and strict convexity of the norm implies that pi = p2.
(b) Observe first that we may assume that C is bounded. Thus X, being WCG,

admits a Gâteaux renorm which is uniform on C [1]. It is easy to verify that the
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A SMOOTH VARIATIONAL PRINCIPLE 525

norm is H, C smooth in the sense of Definition 2.3(e). Let Dbea dense subset of
X\C where dc has H,C subderivatives. Let x lie in D and let p E 3H'Cdc(x).
Let {cn} lie in C with ||cn — x|| < dc(x) + l/n2. Much as in (a) for n large, since
each c„ — x is in C — x,

p(cn - x) < n[dc(x + (c„ - x)/n) - dc(x)] + e/2
< n[dc(x + (cn - x)/n) - \\cn - x||] + £

< n[\\x - cn + (cn - x)/n\\ - \\cn - x||] + £

= £- \\cn -x\\

and
lim inf p(x — c„) > dc(x).
n—*oo

Thus, as \\p[\ < 1

(5.1) lim p(x - cn) = dc(x).
n—>oo

Since C is bounded and relatively weakly compact we may assume that cn converges
weakly to some point p. Then (5.1) shows that

||x-c„|| -» ||x-p|| =dc(x).

Finally the Kadec property ensures that x — cn converges in norm to x — p. Thus
p lies in C and x has a nearest point in C.     O

Part (a) partially extends a result in [16] and (b) recaptures much more simply
most of Theorem 4.1 in [1]. More on the properties of derivatives and subderivatives
of distance functions may be found in [3] where the reflexive case of Theorem 5.1 is
given. Note that the span of a boundedly relatively weakly compact set is always
a WCG space.

The ideas behind Theorem 5.1 can be used to show that in any reflexive space
Theorem 2.6 holds for very simple Ap. This was observed above in Hilbert space.
Precisely we have

THEOREM 5.2. Let X be a reflexive space and let || ■ || be any Kadec renorm
on X.  Then Theorem 2.6 holds with

(5.2) Ap(x) := ||x-w||p.

PROOF. Consider the function h defined by

(5.3) h(w) := inf{g(x) + (e/Ap)||x - w[[p : ||x - x0|| < 2A}.

Theorem 11 in Borwein and Giles [3] shows that since x is restricted to a bounded
set there is a dense set of w such that h(w) is attained by some v (because h admits
a Fréchet-subderivative at w). With Ei and £2 as in (2.6), select such a w with

(i) Hxo-HI^Atl-tei/^/p],
(ii) [[xo-w[[<X[(£i-£2)/£]1'p.

Now (i) implies that

(5.4) ||x0 - w\[p + Xp [g(x0) - inf g} /e < Xp.

Then clearly ||xn — w\\ < X. Now if ||xt — xo|| > 2A we see that ||x! — w|| > A and

g(xi) + (£/Xp)\\xi-w\\p>£ + infg
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while (5.4) shows that

(5.5) h(w) < g(x0) + (e/Ap)||x0 - w\\p <£ + inf g.

Thus

(5.6) h(w) = inf{g(x) + (£/Ap)||x - w\[p}.

This and the existence of a minimizing v establish (b) of Theorem 2.6. Also (5.5)
proves (d) and it remains to prove (c). We observe that \[v — u>|| < A(£i/e)1/p.
Otherwise

g(v) + (£/Xp)\\v - w\\p >infg + Ei> g(x0) + £i - £2
X

while
g(x0) + ei-£2> g(x0) + (£/Ap)||x0 - w\\p

by the second condition in the choice of w. This and the first condition in the
choice of w yield

||U - loll  < \\W - loll + \\V - W\\ < X[l - (£,/£)1/p] + A(£1/£)1/p = A.      D
Recall that every reflexive space admits a Fréchet and Kadec renorm, and every

superreflexive space admits a uniformly Fréchet and Kadec renorm [10]. In partic-
ular Theorem 5.2 holds in each reflexive Lp norm and we may rederive the Holder
nature of subderivatives theoreon. Finally, Theorem 5.2 only holds in reflexive
space.

PROPOSITION 5.3. // Theorem 2.6 holds with Ap given by (5.2) and with p > 1
then X is reflexive.

PROOF. Let / be any norm one continuous linear functional and apply the result
to infß / where B is the unit ball in X, with xo := 0, A :— 1, and e := 2. This
ensures the existence of w and v with ||u|| < 1 such that

f{x) + 2||x - w||p > f(v) + 2\\v - w\\p
for all x in B. Since \\v\\ < 1 we must have 0 E f + 2d\\v — w\\p and as / is not the
zero functional, v ^ w and / attains its norm in the direction of v — w. By James'
theorem [10] X is reflexive.    D

In Co any finite sum of norm-attaining functions is norm-attaining, and the same
argument shows that Theorem 2.6 generally does not hold if only finite sums are
admitted.
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