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Abstract In the finite element method (FEM), a necessary
condition for a four-node isoparametric element is that no
interior angle is greater than 180◦ and the positivity of Jaco-
bian determinant should be ensured in numerical implemen-
tation. In this paper, we incorporate cell-wise strain smoothing
operations into conventional finite elements and propose the
smoothed finite element method (SFEM) for 2D elastic prob-
lems. It is found that a quadrilateral element divided into four
smoothing cells can avoid spurious modes and gives stable
results for integration over the element. Compared with
original FEM, the SFEM achieves more accurate results and
generally higher convergence rate in energy without increas-
ing computational cost. More importantly, as no mapping or
coordinate transformation is involved in the SFEM, its ele-
ment is allowed to be of arbitrary shape. Hence the restriction
on the shape bilinear isoparametric elements can be removed
and problem domain can be discretized in more flexible ways,
as demonstrated in the example problems.

Keywords Finite element method (FEM) · Smoothed finite
element method (SFEM) · Strain smoothing · Isoparametric
element · Gauss quadrature

1 Introduction

After more than half a century of development, finite element
method (FEM) has become a very powerful and versatile
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technique for numerical simulations in engineering and
science. Mapped elements, such as the well-known isopara-
metric elements, play a very important role in FEM. When
using a mapped element, a basic requirement is that the ele-
ment has to be convex and a violent distortion is not permit-
ted so that a one-to-one coordinate correspondence between
the physical and natural coordinates associated with the ele-
ment can be guaranteed. More specifically, for a 2D four-node
element using mapped bilinear shape functions, a necessary
condition is that any internal angle should not be greater than,
theoretically, 180◦. In numerical implementation, the deter-
minant of the Jacobian matrix should be always checked for
its positivity to avoid severely distorted elements [1, 13, 24].
In addition, in the numerical integration of Galerkin weak
form, Gauss quadrature is a commonly used method. Besides
the complexity in implementation, quadrature rule required
in problem with high-order approximated function will sub-
stantially increase the computational cost.

One of the major objectives of the recent development
of mesh-free method is to avoid problems related to ele-
ment distortion encountered in FEM [3, 11], and many useful
techniques have been developed so far. Recently, nodal inte-
gration method has been suggested in mesh-free methods
with the aim to eliminate “background” mesh for integration
[2, 5]. Direct nodal integration often suffers from numerical
instability and low accuracy. Chen et al. [7] found that the
instability is due to the vanishing of derivatives of shape func-
tions at the field nodes and the low accuracy is caused by the
violation of the integration constraints (IC) in the Galerkin
weak-form formulations. A linear consistent shape function
does not necessarily guarantee a linear exactness in the solu-
tion of a mesh-free method based on Galerkin weak form,
such as the EFG method [4], and RKPM [15]. They pro-
posed a stabilized conforming nodal integration using a strain
smoothing technique for a Galerkin mesh-free method and
thus the method shows higher efficiency, desired accuracy
and convergent properties. Yoo et al. [23] then extended the
stabilized nodal integration to the natural-element method
and solved the nearly incompressible problems without
any modification of integration scheme. Liu et al. [12, 14]
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introduced the nodal integration into the radial point interpo-
lation method to install linear conformability and good per-
formance has been observed for many problems including
contact problems [9].

In the mesh-free methods based on nodal integration, the
entire domain is still required to be discretized into cells based
on the field nodes for integration purpose, such as Voronoi
diagram, and the integrations are performed along the edges
of each cell. In addition, despite field function is approxi-
mated using high-order shape functions, the computed strains
and stresses are still constant within the cell associated with a
node. Though mesh-free method has good accuracy and high
convergence speed, the complex field approximation inevi-
tably increases the computational cost. Therefore a question
naturally arises. Can we project strain smoothing in a finite
element onto a constant field or set of constant fields based
on further divided cells in an element? If this can be done,
volume integrals involving shape function gradients can be
recast into surface integrals involving only shape functions.
Thus simple shape function, such as linear shape function
may be used. As the elements are, in fact, the integration cells
in the FEM, the domain integration can be changed to line
integration for 2D problems with the introduction of strain
smoothing technique. In this work, we implement this idea
to formulate and code a novel method, smoothed finite ele-
ment method (SFEM), which makes use of the existing FEM
technology and the strain smoothing technique. We will dem-
onstrate through intensive case studies the significant benefits
arising from this novel combination.

The paper is outlined as follows. First the strain smooth-
ing technique proposed by Chen et al. [7] is briefly reviewed.
The idea of SFEM and the construction of its shape functions
are then presented in Sect. 3. In Sect. 4, numerical imple-
mentation issues are discussed with emphasis on division of
smoothing cells for stability purpose. Standard patch tests are
conducted with elements of extremely distorted shapes. Some
numerical examples are analyzed using SFEM in Sect. 5 and
the accuracy and convergence rate are compared with FEM.
Some concluding remarks are made in the last section.

2 Strain smoothing

A 2D static elasticity problem can be described by equilib-
rium equation in the domain � bounded by � and � = �u +
�t , �u ∩ �t = Ø.

σi j, j + bi = 0 in �, (1)

where σi j is the component of stress tensor and bi is the
component of body force. Boundary conditions are given as
follows.

σi j n j = ti on �t (2)

ui = ūi on �u (3)

where ti is the traction on�t ; ūi denotes the prescribed bound-
ary displacements on �u and ni is the unit outward normal.

Its variational weak form is expressed as

∫

�

δ∇s(u)i j Di jkl∇s(u)kld� −
∫

�t

δui ti d� = 0, (4)

where ∇su denotes the symmetric part of displacement gra-
dient and Di jkl is material elasticity tensor.

In mesh-free method based on nodal integration form,
the above integration is performed over representative cells
of nodes in the problem domain [7]. To guarantee the conver-
gence of the solution, the linear exactness in the solution of
the weak form should be ensured. To meet the requirement,
the following integration constraint should be satisfied [7, 9]

∫

�

BT
I (x)d� =

∫

�t

NT
I (x)d�, (5)

where BI is the standard gradient matrix as given by

BI =
⎡
⎣ NI,1 0

0 NI,2
NI,2 NI,1

⎤
⎦, NI =

⎡
⎣ NI n1 0

0 NI n2
NI n2 NI n1

⎤
⎦ (6)

The condition is met by using strain smoothing techniques
for each representative nodal cell [7].

In this section, we formulate SFEM based on the con-
ventional FEM incorporating the idea of strain smoothing
operation used in the mesh-free nodal integration method [6].
The essence of the formulation of SFEM is as follows. (1)
Elements are used as in the FEM, but they are allowed to be
of polygon or other arbitrary shapes, which can be even con-
cave, as shown in Fig. 7 for example. (2) Galerkin weak form
given in Eq. (4) is applied and integration is performed on the
basis of element. Depending on the requirement of stability,
an element may be further subdivided into several smooth-
ing cells (SC). (3) A smoothing operation is performed for
each smoothing cell within an element. When choosing a
constant smoothing function, area integration over the cell
becomes line integration along its boundaries, and no gra-
dient of shape functions is involved in computing the field
gradients as well as in forming the stiffness matrix. The inte-
gration along the edges of each cell is performed numerically
using 1D Gauss integration scheme. (4) The shape function
is created via a simple and explicit manner, which ensures
efficiency, consistency and accuracy. Methods used in nat-
ural-element method [18, 19] and polygonal finite elements
[17, 20] can be introduced here for determination of shape
functions of interior points. Approaches widely used in creat-
ing mesh-free shape functions are also applicable, including
MLS/RK, PIM/RPIM. The formulations are detailed below.

A smoothing operation is performed to the gradient of
displacement for each smoothing cells in an element

∇uh(xC ) =
∫

�

∇uh(x)�(x − xC )d�. (7)
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Integration by parts for the right-hand side leads to

∇uh(xC ) =
∫

�

uh(x)n(x)� (x − xC ) d�

−
∫

�

uh(x)∇�(x − xC )d�, (8)

where � is a smoothing function. For simplicity, a piecewise
constant function is applied here, which is assumed to be
constant within �C and vanish somewhere else, as given by

�(x − xC ) =
{

1/AC x ∈ �C

0 x /∈ �C ,
(9)

where AC = ∫
�C

d� and �C is the smoothing cell (see
Fig. 3). Note that this kind of smoothing operation was also
used in the SPH method [13, 16] for field approximation pur-
pose.

Substituting � into Eq. (7), one can get the smoothed
gradient of displacement

∇̃uh(xC ) =
∫

�C

uh(x)n(x)�(x − xC )d�

= 1

AC

∫

�C

uh(x)n(x)d�, (10)

where �C is the boundary of the smoothing cell. Note that the
choice of constant � makes vanishing the second term on the
right-hand side of Eq. (8) and the area integration becomes
line integration along the edges of smoothing cell in Eq. (7).
Similarly the smoothed strain can be obtained as given by

ε̃h(xC ) =
n∑

I=1

B̃I (xC )dI , (11)

where B̃I is the smoothed strain matrix. For 2D case

B̃I (xC ) =
⎡
⎣ b̃I 1(xC ) 0

0 b̃I 2(xC )

b̃I 2(xC ) b̃I 1(xC )

⎤
⎦, (12)

where

b̃I k(xC ) = 1

AC

∫

�C

NI (x)nk(x)d�, (k = 1, 2) (13a)

If one Gaussian point is used for line integration along each
segment of boundary �C

i of �C , the above equation can be
transformed to its algebraic form

b̃I k(xC ) =
M∑

i=1

NI (xGP
i )nC

iklC
i , (13b)

where xi is the midpoint (Gaussian point) of boundary seg-
ment of �C

i , whose length and outward unit normal are de-
noted as lC

i and nC
i , respectively.

(a)

(b)

Fig. 1 a An elastic rod; b a rod element

The smoothed element stiffness matrix can be obtained
by assembly of those of all of the smoothing cells of the
element, i.e.,

Ke =
∑

C

B̃T
C DB̃C AC (14)

The smoothed B̃C matrices are constructed with an integra-
tion over the boundary of the cell c.

Note that it has been proved that the strain smoothing
stabilization can exactly satisfy the integration constraints of
Eq. (5) [6].

For demonstration purpose, a one-dimensional elastic rod
is studied as shown in Fig. 1a. Ignoring the inertia effect, the
differential equation governing this problem is expressed as

E A
d2u

dx2 + f (x) = 0, (15)

where E is the Young’s modulus and A is the area of the cross-
section of the rod. The element stiffness matrix obtained from
Galerkin weak form can be easily derived as follows assum-
ing constant E A along the bar

Ke = E A

L∫

0

B̃T B̃d Ldx = E A

L∫

0

[
B̃1

B̃2

] [
B̃1 B̃2

]
dx

= E A

L∫

0

[
∂ N1
∂x
∂ N2
∂x

] [
∂ N1
∂x

∂ N2
∂x

]
dx, (16)

where L is the length of the element and Ni (i = 1, 2) is the
shape function associated with node i .

If linear shape functions are adopted and one Gauss point
is sufficient for integration, the components of B̃ are calcu-
lated using Eq. (12)

B̃1 = [N1(0)n1 + N1(L)n2] /L = −1/L

B̃2 = [N2(0)n1 + N2(L)n2] /L = 1/L .

Therefore, the element stiffness matrix is obtained as

Ke = E A

L

[
1 −1

−1 1

]
(17)

which coincides with its counterpart in FEM.
Similarly, the element stiffness matrix of a three-node

triangular element is also derived with boundary integration
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(c)

Fig. 2 A 2D triangular element

performed along its sides (See Fig. 2). When linear shape
functions are used, the calculated strain matrix is expressed
as

B̃i = 1

2Ae

⎡
⎣ bi 0

0 ci
ci bi

⎤
⎦ , (i = 1, 2, 3), (18)

where Ae is the area of the element. The coefficients are given
by bi = yi+1−yi+2 and ci = xi−1−xi−2. Note that the index
is defined recursively in the form of (1 → 2 → 3 → 1). For
example, if i = 2, we have i + 1 ⇒ 3, i + 2 ⇒ 1, i − 1 ⇒ 1
and i − 2 ⇒ 3. It can be found once again that the calcu-
lated stiffness matrix is identical with three-node triangular
elements obtained in the standard FEM. Further division of
the element into three or six smoothing cells and assembly
of their contribution together lead to the same results due
to the constant derivatives of shape functions within an ele-
ment. The conclusion can be easily extended to any element
with constant strains/stresses, that both FEM and SFEM will
yield identical stiffness matrix. If we further investigate the
stiffness matrix for four-node rectangular element, or more
generally, quadrilateral element or polygonal elements, we
can find that the SFEM results are quite different from their
counterparts in FEM. This will be detailed in the following
section.

As recommended by Yoo et al. [23], higher-order gradi-
ents can be readily obtained by recursive application of the
non-local operator ∇̃ in Eq. (10). The first order of displace-
ment gradients are rewritten as

D̃u
i j (xC ) = ∂̃uh

i (xC )

∂x j
= 1

AC

∫

�C

NI (x)n j (x)d�ui I . (19)

As long as D̃u can be interpolated from nodal values, the sec-
ond order of the displacement gradients can be obtained in
the same way

D̃u
i jk(xC ) = ∂̃2uh

i (xC )

∂x j∂xk
= 1

AC

∫

�C

NI (x)nk(x)d� D̃u
i j I . (20)

3 Construction of SFEM shape functions

We may subdivide a quadrilateral element into four smooth-
ing cells and strain smoothing is performed over each cell and
“smoothed” cell integration becomes line integration along
boundary of the cell.

Table 1 Shape function value at different sites within an element (Fig. 5)

Site Node 1 Node 2 Node 3 Node 4 Descpription

1 1.0 0 0 0 Field node
2 0 1.0 0 0 Field node
3 0 0 1.0 0 Field node
4 0 0 0 1.0 Field node
5 0.5 0.5 0 0 Side midpoint
6 0 0.5 0.5 0 Side midpoint
7 0 0 0.5 0.5 Side midpoint
8 0.5 0 0 0.5 Side midpoint
9 0.25 0.25 0.25 0.25 Intersection of two bimedians a

a Note that if this point coincides with a field node, it should adopt the
shape function values of this node

Table 2 Eigenvalues of a free solid using one element (E = 3.0×107,
v = 0.3)

Eigenvalues FEM SFEM
1×1 GP 2×2 GPs SC = 1 SC = 4

1 4.286e7 4.286e7 4.286e7 4.286e7
2 2.308e7 2.308e7 2.308e7 2.308e7
3 2.308e7 2.308e7 2.308e7 2.308e7
4 0 1.484e7 0 1.113e7
5 0 1.484e7 0 1.113e7
6 0 0 0 0
7 0 0 0 0
8 0 0 0 0

Table 3 First eight eigenvalues of a free solid using 4 × 4 element
(E = 3.0 × 107, v = 0.3)

Eigenvalues FEM SFEM
1×1 GP 2×2 GPs SC = 1 SC = 4

1 2.770e6 8.439e6 2.770e6 8.291e6
2 2.770e6 6.182e6 2.770e6 6.152e6
3 0 4.408e6 0 4.032e6
4 0 4.160e6 0 3.968e6
5 0 4.160e6 0 3.968e6
6 0 0 0 0
7 0 0 0 0
8 0 0 0 0

Table 4 Eigenvalues of a solid fixed with 3 DOFs using one element
(E = 3.0 × 107, v = 0.3)

Eigenvalues FEM SFEM
1×1 GP 2×2 GPs SC = 1 SC = 4

1 3.445e7 3.462e7 3.445e7 3.454e7
2 1.899e7 2.002e7 1.899e7 1.943e7
3 1.632e7 1.784e7 1.632e7 1.724e7
4 0.935 1.148e7 0.935 8.724e6
5 0.707 6.255e6 0.707 4.949e6
6 0.707 0.707 0.707 0.707
7 0 0.707 0 0.707
8 0 0.354 0 0.354

In the SFEM, as only the shape function itself is used to
calculate the strain matrix, very simple shape functions can
be utilized at Gauss points on the edges of a cell. For any
point on edge, e.g., the midpoints #5, #6, #7 and #8 shown in
Fig. 7a, the values of the shape functions are calculated using
linear shape functions of two related nodes on the edge. The
values of the shape functions at point #9, the intersection of
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(1)

(3) (4)

(2)

(5)

(7)

(6)

(8)

(a)

(1)

(3)

(5)

(7)

(2)

(4)

(6)

(8)

(b)

Fig. 3 Eigenmodes of a patch divided into one four-node element.
a SC = 1 (1 GP); b SC = 4 (2 × 2 GPs)

two bimedians, are the average of those at the four midpoints.
If this point happens to coincide with one field node, its shape
function values should be identical with this node accordingly
as occurring in Fig. 7f, for example. Shape functions for other
interior points can be easily obtained in a similar way. For
clarity, the values of shape functions are listed explicitly in
Table 1 for some commonly used points.

For arbitrary interior point xQ(x, y), the shape function
can be obtained in such a way that

N (x) = pT(x)a, (21)

where x = [ x y ] in 2D problems, pT(x) = [ 1 x y xy ] is
the polynomial bases and a = [

a1 a2 a3 a4
]

is a vector of
the unknown coefficients. Using the Lagrange interpolation,

(1)

(3)

(5)

(7)

(2)

(4)

(6)

(8)

(a)

(1)

(3)

(5)

(7)

(2)

(4)

(6)

(8)

(b)

Fig. 4 Eigenmodes of a patch divided into 16 four-node elements.
b SC = 1 (1 GP); b SC = 4 (2 × 2 GPs)

the shape functions can be computed as follows

N (x) = [
1 x y xy

]
⎡
⎢⎣

1 x1 y1 x1 y1
1 x2 y2 x2 y2
1 x3 y3 x3 y3
1 x4 y4 x4 y4

⎤
⎥⎦

−1

, (22)

where xi = [ xi yi ](i = 1, 2, 3, 4) are the coordinates of the
four nodes associated with this element. Actually, the shape
functions at point #9 for quadrilateral element can also be
evaluated using above equation. Unless stated otherwise, we
still use the averaged shape functions in Table 1 for following
examples for convenience.
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(a) Quadrilateral elements 
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(c) Polygon elements 
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(b) Tile elements 

SC=5

SC=6

1 2

3

45

O

SC=4

1
2

3

4 QuadrilateralSC=1

1
2

3

4

Quadrilateral

SC=2

1
2

3

4

Triangular

SC=4

1
2

3

4

Triangular

Fig. 5 Mesh structure and smoothing cells. a quadrilateral elements; b tile elements; c polygonal elements

Different from the standard four-node isoparametric finite
elements, shape functions obtained above do not use coordi-
nate transformation or mapping. Note that the bilinear prop-
erty may or may not be preserved for a quadrilateral element
with arbitrary shape via above-mentioned procedures. How-
ever, the linear geometric conformability can still be ensured.
It is clearly seen that shape functions obtained by both method
could always satisfy the integration constraints as given in
Eq. (5). As the shape function is linearly changed along each
side of the smoothing cell, one Gauss point is sufficient for
accurate boundary integration.

For a polygonal element with n sides (n ≥ 4), we can
simply divide the element into n triangular smoothing cells.
Similarly the shape functions on its boundary are constructed
linearly using two related nodes. The shape functions for
the interior nodes can be obtained using the natural
element method, polygonal finite elements proposed by
Sukumar et al. [19, 20], or the mesh-free techniques, such as

MLS/RK methods [3, 15], radial point interpolation method
(RPIM). It should be mentioned here, though mesh-free tech-
niques are suggested, only nodes associated with the element
can be used to derive the shape functions and thus interpola-
tion nodes are limited to the interested element only. To de-
rive RPIM shape functions with linear consistency, note that
at least linear polynomials should be included in interpola-
tion bases. Detailed formulations can be found in references
[8, 11, 22].

Examining Eqs. (11) through (13), we can see that the
smoothed strain matrix B̃ is not only related to N and n,
but also to AC , the area of the smoothing cell. For an ele-
ment, if the areas of the divided smoothing cells are equal,
they are indeed cancelled for the interior points (but not for
points on element edges). However for a quadrilateral ele-
ment or polygonal element, the areas of smoothing cells may
not necessarily be equal, and they cannot be cancelled in
general.
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(a)

(b)

Fig. 6 Domain discretization using four-node elements. a Regular ele-
ments; b irregular elements

To sum up, similar to the FEM, the SFEM shape functions
should possess the following properties: (1) Delta function:
Ni (x j ) = δi j ; (2) Partition of unity:

∑n
i=1 Ni (x) = 1; (3)

Linear compatibility:
∑n

i=1 Ni (x)xi = x; (4) Ni (x) ≥ 0.
Any shape functions satisfying the four conditions can be
used in SFEM.

4 Numerical implementation

4.1 Stability condition

To investigate the property of the proposed SFEM, an inten-
sive numerical study has been conducted. SFEM results are
compared with the conventional FEM using four-node
isoparametric elements. Line integration is used for SFEM
while domain (element) integration is used for FEM, and all

(a) (b)

(d)(c)

(e) (f)

Fig. 7 A four-node element divided into four smoothing cells

the integrations are carried out using Gauss quadrature. First,
we conduct the free vibration analysis of a free single ele-
ment using the singular value decomposition technique. In
SFEM, we first use an entire element as one smoothing cell
(SC = 1) and plot the eigenmodes in Fig. 3a. Five spuri-
ous zero-energy modes are found, which do not carry proper
deformation information. The smoothed integration cannot
suppress the well-know hourglass modes. This means that
the use of smoothed integration can still give rise to insta-
bilities. We also found that FEM using only one Gauss point
(GP = 1) gives identical eigenmodes as in Fig. 3a. Next we
subdivide the element into four cells (SC = 4) and com-
pare the results with those of FEM using 2×2 Gauss points
(GP = 4). Once again the modes of the two methods coincide
with each other. The corresponding eigenvalues are listed in
Tables 2, 3, 4. From Fig. 3b, it is seen that, except three rigid-
body-movement modes, no zero-energy modes exist in them,
just as the FEM does using 2×2 Gauss points. In this case the
solution will be stable. So far it can be concluded that the one-
cell integration is “reduced” integration and the use of four
cells can catch all the “deformed” modes properly in SFEM.
Further comparison study is conducted using a single element
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Fig. 8 Nodal arrangement of a solid using nine elements in patch test
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L
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D
O A 

Fig. 9 Cantilever beam

with three degrees-of-freedom (DOFs) fixed, and the same
conclusion can be confirmed. The first eight eigenmodes
corresponding to meshes using 4×4 elements are given in
Fig. 4, from which the spurious zero-energy mode, rigid-

(a)

(b)

Fig. 10 Domain discretization of a beam using 4-node elements. a Reg-
ular elements; b extremely irregular elements

body-movement mode and properly deformed mode can be
clearly identified.

Division of a quadrilateral element into two or four trian-
gular smoothing cells is also investigated as shown in Fig. 5.



A smoothed finite element method for mechanics problems 867

0 10 20 30 40 50
–1

–0.5

0

0.5

1

1.5
x 10

–4

x (y=0)

v–
v 0

SC=1

SC=4

4–node FEM

SC=2

(a)

–6 –4 –2 0 2 4 6
–140

–120

–100

–80

–60

–40

–20

0

y (x=L/2)

S
he

ar
 s

tr
es

s 
τ xy

Stress at node

Stress at center of element

Analytical solu.

(b)

–6 –4 –2 0 2 4 6
–1000

–800

–600

–400

–200

0

200

400

600

800

1000

y (x=L/2)

N
or

m
al

 s
tr

es
s 

σ x

Stress at center of element

Stress at node

Analytical solu.

(c)

Fig. 11 Comparison of the numerical results of SFEM and analytical solutions. a Relative error in displacement v; b shear stress τxy ;
c normal stress σx

It is found that two triangular cells cannot suppress the
zero-energy modes mentioned above. The eigenmodes of
the four-triangular-SC case are the same as those obtained
by four-quadrilateral-SC case. Due to the convenient post-
processing of derivative variables, only four-quadrilateral SCs
are used in the following examples. For a polygonal/tile ele-
ment, we simply divide it into n triangular smoothing cells
and accurate integration can be obtained, which is demon-
strated in Fig. 5.

4.2 Procedure of SFEM

The numerical procedure for SFEM is briefed as follows.

1. Divide the domain into a set of elements and obtain
information on node coordinates and element connec-
tivity;

2. Loop over all the elements:

3. Loop over smoothing cells belonging to i-th element;
a. Determine the area and outward unit normal of each

side for cell �C ;
b. Compute the B̃C matrix using Eq. (12);
c. Evaluate the stiffness matrix and force vector of the

current cell;
d. Assemble the contribution of the current cell to form

element matrices and vectors using Eq. (14).
4. Implement essential boundary conditions;

Table 5 Tip displacements (×10−3 ) of the cantilever beam using
different regular elements (Analytical solu. = 8.900 × 10−3)

SC 8×2 16×4 32×8 64×16 128×32

1 11.617 9.436 9.031 8.937 8.908
2 10.602 9.262 8.990 8.926 8.906
4 8.551 8.800 8.884 8.896 8.899
FEM (GP=4) 7.969 8.644 8.884 8.884 8.896



868 G. R. Liu et al.

(a)

(b)

Fig. 12 Domain discretization of a beam using a tile elements and
b Polygonal elements
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Fig. 13 Comparison of the numerical results of SFEM and analytical
solutions using tile and polygonal elements

5. Solve the system equations to obtain the nodal displace-
ments;

6. Evaluate strains and stresses at interested nodes.

It can be seen that the procedure of SFEM is in great sim-
ilarity to that of conventional FEM except the computation of
strain matrix. Compared with the conventional isoparamet-
ric finite element method, the present method possesses the
following special features.

1. Shape functions in SFEM are more easily evaluated. They
are practically obtained explicitly.

2. Field gradient is computed directly using shape functions.
No derivative of shape functions is needed and thus the
requirement on the smoothness of shape functions may
be further relaxed.

3. No coordinate transformation or mapping is performed
and the integration over the element becomes line inte-
gration on edges of smoothing cells. Therefore no restric-

tion is imposed on the shape of element. Highly distorted
element is allowed to use.

4.3 Standard patch test

A patch test is a sufficient requirement as a means of assess-
ing the convergence of a numerical method based on Galer-
kin weak form. Linear displacements are imposed along the
boundaries of a square patch with at least one interior node.
Satisfaction of the patch test requires that the displacements
of all the interior nodes follow “exactly” (to machine preci-
sion) the same function of the imposed displacement. Two
types of discretization are used, as shown in Fig. 6: one with
10×10 regular elements and the other with irregular interior
nodes whose coordinates are generated in the flowing fashion

x ′ = x + 	x · rc · αir
y′ = y + 	y · rc · αir ,

(23)

where 	x and 	y are initial regular element sizes in x- and
y-directions, respectively. rc is a computer-generated random
number between −1.0 and 1.0 and αir is a prescribed irregu-
larity factor whose value is chosen between 0.0 and 0.5. The
bigger the value of αir , the more irregular the shape of gen-
erated elements. The following error norm in displacement
is used to examine the computed results.

ed =

ndof∑
i=1

∣∣ui − uh
i

∣∣
ndof∑
i=1

|ui |
. (24)

Here ndof is the total number of DOFs in the problem. It
is found that the SFEM can pass the patch test within machine
precision regardless of the number of SC and αir used.

As mentioned above, no mapping or coordinate trans-
formation is required and thus no Jacobian matrix and its
inverse are evaluated in the SFEM. The method is valid for
very irregular elements. Some commonly encountered cases
are demonstrated in Fig. 7, in which (a) and (b) are normal
and desired cases in FEM while (c)–(f) are usually prohibited.
Three nodes are collinear in (c) while in (d) the intersection
point #9 of two bimedians is located outside the element
region. In (e) node #3 is on the bimedian joining the mid-
points 5 and 7 and in (f) point #9 coincides exactly with
node #3. The feature of the last four can be expressed as

max(αi ) ≥ π, (i = 1, 2, 3, 4), (25)

where αi is the interior angle of a quadrilateral element.
The patches with elements of extremely irregular shapes,

as demonstrated in Fig. 8 correspond to the last four cases
in Fig. 7. Standard patch test is conducted for all the cases
in Fig. 8. As expected, all the patches can pass the stan-
dard patch test within machine precision. In case (b), the cell
96379 is automatically sequenced reversely as compared to
other cases and outside unit normal becomes inside unit nor-
mal and hence above formulations are still valid. It should
be mentioned that, in case (d), as point #9 coincides with the



A smoothed finite element method for mechanics problems 869

0 10 20 30 40 50

–0.5

0

0.5

x 10
–10

x (y=0)

d2 u/
dx

2

Exact solu.

SFEM (32×8 elements)

(a)

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2
x 10

–5

x (y=0)

d2 u/
dx

dy

Exact solu.
SFEM

(b)

0 10 20 30 40 50
–1.2

–1

–0.8

–0.6

–0.4

–0.2

0
x 10

–5

x (y=0)

d2 v/
dx

2

Exact solu.
SFEM

(c)

0 10 20 30 40 50
–3.5

–3

–2.5

–2

–1.5

–1

–0.5

0
x 10

–6

x (y=0)

d2 v/
dy

2

Exact solu.
SFEM

(d)

Fig. 14 Second order displacement gradients. a ∂2u/∂x2; b ∂2u/∂x∂y; c ∂2v/∂x2; d ∂2v/∂y2

element node #3, it should accordingly adopt the same shape
function values as this node.

In comparison, the shape of quadrilateral element in FEM
cannot be severely distorted and any interior angle of a quad-
rilateral element should be less than 180◦ in theory and 120◦
in practice. Therefore the last four cases should always be
avoided as their determinants of the Jacobian matrix are zero
or negative. However, in the proposed SFEM, such a limit
is not necessary. The effect of irregularity factor on solution
accuracy will be discussed through the following numerical
examples.

5 Numerical examples

5.1 Cantilever beam

A cantilever beam with length L and height D is studied as
benchmark problem here, which is subjected to a parabolic
traction at the free end as shown in Fig. 9. The beam is

assumed to have a unit thickness so that plane stress con-
dition is valid. The analytical solution is available and can be
found in a textbook by Timoshenko and Goodier [21].

u1 = Py
6E I

[
(6L−3x)x+(2+v)(y2− D2

4 )
]

u2 =− P
6E I

[
3vy2(L−x)+(4+5v) D2x

4 +(3L−x)x2
]
,

(26)

where the moment of inertia I of the beam is given by
I = D3/12.

The stresses corresponding to the displacements Eq. (26)
are
σ11(x, y) = P(L−x)y

I
σ22(x, y) = 0

τ12(x, y) = − P
2I

(
D2

4 − y2
) (27)

The related parameters are taken as E = 3.0 × 107 kPa,
v = 0.3, D = 12 m, L = 48 m and P = 1,000 N.

In order to study the convergence rate of the present
method, two norms are used here, i.e., displacement norm



870 G. R. Liu et al.

–0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8
–4

–3.5

–3

–2.5

–2

–1.5

–1

–0.5

log10(h)

lo
g1

0(
e d)

SFEM (SC=4,1.98)

4–node FEM (1.95)

SFEM (SC=1, 2.10)

(a)

(b)

 –0.6  –0.4  –0.2 0 0.2 0.4 0.6 0.8
 –6.5

–6

 –5.5

– 5

 –4.5

 –4

 –3.5

–3

log10(h)

lo
g1

0(
e e) SFEM (S1, 0.99)

4 – node FEM (S1, 0.98)

SFEM (S3, 2.05)

SFEM (S2, 1.932) 

FEM (S2, 1.879)

Fig. 15 Comparison of convergence rate between SFEM and FEM.
a Displacement norm; b energy norm. Note that in Scheme 1 (S1),
SC/GP=4 is employed for calculation of both stiffness matrix (displace-
ment) and stresses (energy) while in Scheme 2 (S2), SC/GP=4 is used
only for calculation of stiffness matrix (displacement), and SC/GP=1
is used for post-processing of stresses and energy. In Scheme 3 (S3),
SC/GP=1 is used all the time

Table 6 Relative errors of the cantilever beam using different element
sizes (regular elements, SFEM: SC = 4, FEM: GP = 4)

Elements 20×5 32×8 40×10 64×16 128×32

	h 2.4 1.5 1.2 0.75 0.375
	ed SFEM 4.789e-3 1.886e-3 1.210e-3 4.741e-4 1.188e-4

FEM 1.816e-2 7.204e-3 4.628e-3 1.816e-3 4.551e-4
	ee SFEM 3.189e-4 1.999e-4 1.600e-4 1.001e-4 5.007e-5

FEM 3.663e-4 2.304e-4 1.846e-4 1.155e-4 5.781e-5
CPU time (s) SFEM 0.625 1.110 1.766 4.594 31.083

FEM 0.562 1.110 1.656 4.532 36.127

and energy norm. The displacement norm is given in Eq.
(24) and the energy norm is defined by

ee = 1

2L D

⎡
⎣

∫

�

(εh − ε)TD(εh − ε)

⎤
⎦

1/2

. (28)
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Fig. 16 Comparison of CPU time between FEM and SFEM (exclusive
of solving algebraic equations)

Table 7 Relative errors of the cantilever beam using irregular elements
(40×10 elements)

αir FEM (4 GPs) SFEM (SC = 4)
	ed 	ee 	ea

d 	ea
e 	ea

e 	ea
e

0.1 4.925e-3 1.904e-4 1.455e-3 (1.334e-3) 1.656e-4 (1.658e-4)
0.2 6.028e-3 2.099e-4 2.509e-3 (2.086e-3) 1.843e-4 (1.854e-4)
0.3 7.673e-3 2.310e-4 3.808e-3 (2.612e-3) 2.033e-4 (2.060e-4)
0.4 1.024e-2 2.692e-4 5.880e-3 (4.545e-3) 2.379e-4 (2.493e-4)
0.5 Fail Fail 9.118e-3 (7.973e-3) 2.855e-4 (3.553e-4)
0.0 4.628e-3 1.846e-4 1.210e-3 (1.210e-3) 1.600e-4 (1.600e-4)
(regular)

a Results in parentheses correspond to the case that shape functions at
point #9 are evaluated using Eq. (22)

Fig. 17 Infinite plate with a circular hole subjected to unidirectional
tension

In the computations, the nodes on the left boundary are
constrained using the exact displacements obtained from
Eq. (26) and the loading on the right boundary uses the dis-
tributed parabolic shear stresses in Eq. (27). The beam is
analyzed using different number of elements and smooth-
ing cells. Figure 10 gives one example for the discretization.
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(a)

(b)

Fig. 18 Domain discretization of the infinite plate with a hole using
four-node element. a Regular elements; b Extremely irregular elements

When SC = 2, the element is divided only in x-directions.
From the results in Table 5, it is seen that, if an entire element
is selected as one smoothing patch (SC = 1), the displace-
ment is always overestimated as compared to the analytical
solution the solution corresponds to equilibrium model (up-
per bound solution), which is responsible for the over-pre-
dicted displacements. Though the spurious mode does not
appear in this setting, the under-integration gives relatively
low accuracy. If an element is divided into four smoothing
cells (SC = 4) or more, the computed displacement is smaller
than the exact one, but more accurate than that of FEM based
on pure displacement compatible formulation, which is the
lower bound solution. The computed deflection and the shear
stress are shown in Fig. 11. The numerical results agree well
with the analytical solutions. From Fig. 11a, it is observed
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Fig. 19 Computed and exact displacements of the infinite plate with a
hole. a u; b v

that, with the increase of the number of SC, the SFEM results
approach FEM gradually, though the latter may not necessar-
ily be more accurate. There exists an optimal value of SC that
gives the best results as compared to the exact ones.

When computing stresses using 4SC, we can average four
sets of stresses related to each smoothing cell and regard them
as those of this element. The stress can be weighted using the
respective area of each cell. Similarly, to calculate stresses at
a node, we simply average the stresses of four cells associated
with this nodes. It is seen from Fig. 11b that both methods
give very good approximation of stresses. To demonstrate the
capability of the SFEM with elements of complex shapes, the
beam is divided into tile elements and polygonal elements,
as shown in Fig. 12. The deflections are then compared and
plotted together with exact solutions in Fig. 13. Once again
the numerical results are in good accord as compared with
exact ones. Note clearly that these types of elements cannot
be used in the conventional FEM.
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Fig. 20 Computed and exact stresses of the infinite plate with a hole.
a σx ; b σy

Figure 14 illustrates the second-order displacement gra-
dients obtained using SFEM and the equations suggested in
Sect. 2. The SFEM results are in good agreement with the ana-
lytical solutions. The gradients near the boundaries are gen-
erally less accurate when compared with the internal region
because those nodes are unlikely to be the points of optimal
accuracy for gradients. This phenomenon is also reported in
nodal–natural element method [23].

The relative errors in displacement and energy of SFEM
are compared with four-node bilinear finite elements in
Table 6. The convergence rates are also demonstrated in
Fig. 15 using two schemes for energy calculation (S1 and S2).
It is seen that both methods achieve the equivalent conver-
gence rates in displacement and energy while the displace-
ment of SFEM is more accurate than FEM. The energy of
SFEM using S2 converges about one time faster as compared
to that using S1. When comparing the computational cost in
Fig. 16, we can see that both methods require nearly the same
CPU time when number of elements is not very large. With
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Fig. 21 Comparison of convergence rate between SFEM and FEM.
a Displacement norm; b Energy norm
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the increase of elements, however, it appears that FEM takes
more CPU time than SFEM.

To investigate the effect of element irregularity factor, we
perform the same analysis with enlarged αir (See Fig. 10).
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Fig. 23 Semi-infinite plane subjected to a uniform pressure

Fig. 24 Domain discretization of the semi-infinite plane using four-
node elements

From Table 7, it is noticed once again that SFEM is always
more accurate than FEM both in displacement and energy
when using the same meshes. When the shape of element is
severely distorted, FEM may fail to work due to the nega-
tive determinant of Jacobian matrix. Compared with regular
element, irregular meshes degrade the accuracy of computed
results for both methods. The more irregular the shape of ele-
ments, the less accurate the numerical results. The errors in
the parentheses are obtained using shape functions at point
#9 evaluated from Eq. (22). It is seen that the accuracy of dis-
placement is improved but the energy is degraded especially
for very irregular meshes.

5.2 Infinite plate with a circular hole

Figure 17 represents a plate with a central circular hole sub-
jected to a unidirectional tensile load of 1.0 N/m at infinity
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Fig. 25 Computed and exact displacements of the semi-infinite plane.
a u; b v

in the x -direction and Fig. 18 gives the discretization of the
domain using four-node elements. Due to its symmetry, only
the upper right quadrant of the plate is modeled. Plane strain
condition is considered and E = 1.0 × 103 N/m2, v = 0.3.
Symmetry conditions are imposed on the left and bottom
edges, and the inner boundary of the hole is traction free.
The exact solution for the stresses is ([21])

σ11 = 1 − a2

r2

[ 3
2 cos 2θ + cos 4θ

] + 3a4

2r4 cos 4θ

σ22 = − a2

r2

[ 1
2 cos 2θ − cos 4θ

] − 3a4

2r4 cos 4θ,

τ12 = − a2

r2

[ 1
2 sin 2θ + sin 4θ

] + 3a4

2r4 sin 4θ

(29)

where (r, θ) are the polar coordinates and θ is measured
counterclockwise from the positive x-axis. Traction bound-
ary conditions are imposed on the right (x = 5) and top
(y = 5) edges based on the exact solution Eq. (29). The
displacement components corresponding to the stresses are
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Fig. 26 Computed and exact stresses of the semi-infinite plane. a σx ; b σy ; c τxy

u1 = a
8μ

[
r
a (κ+1) cos θ+2 a

r ((1+κ) cos θ+cos 3θ)−2 a3

r3 cos 3θ
]

u2 = a
8μ

[
r
a (κ−1) sin θ+2 a

r ((1−κ) sin θ + sin 3θ)−2 a3

r3 sin 3θ
]
,

(30)

where κ is defined in terms of Poisson’s ratio by κ = 3 − 4v
for plane strain cases.

The domain is discretized using 196 regular and relatively
irregular quadrilateral elements. Each element is divided into
four smoothing cells. From Figs. 19 and 20, it is observed
that all the computed displacements and stresses are in good
agreement with the analytical solutions. Very irregular mesh
still gives desired results. Note that triangular elements are
also tested and it has been found that the results of both FEM
and SFEM are identical, as expected. The convergence rates
in displacement and energy are demonstrated in Fig. 21. It is

observed that the energy rate of SFEM using S2 is still faster
if compared to its counterpart of FEM, both of which achieve
a comparable speed in displacement. For a very coarse mesh,
the energy of SFEM is less accurate as compared to that of
FEM. However, as the meshes are refined, it is much more
accurate than of FEM.

To check the availability of SFEM in nearly incompress-
ible material, we make the Poisson’s ratio approach 0.5 grad-
ually. It is found from Fig. 22, that the SFEM is not particularly
better than the FEM based on displacement formulation for
solving this kind of locking problems, which in addition
demonstrate the difference of SFEM from the u − εmixed
formulations in FEM.

5.3 Semi-infinite plane

A semi-infinite plane shown in Fig. 23 is studied subjected
to a uniform pressure within a finite range (−a ≤ x ≤ a).
Plane strain condition is considered. The analytical stresses
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are given by

σ11 = p

2π
[2(θ1 − θ2) − sin 2θ1 + sin 2θ2]

σ22 = p

2π
[2(θ1 − θ2) + sin 2θ1 − sin 2θ2]. (31)

τ12 = p

2π
[cos 2θ1 − cos 2θ2]

The directions of θ1 and θ2 are referred in the figure. The
corresponding displacements can be expressed as

u1 = p(1−v2)
π E

[
1−2v
1−v

[(x+a)θ1−(x−a)θ2]+2y ln r1
r2

]

u2 = p(1−v2)
π E

[ 1−2v
1−v

[
y (θ1 − θ2)+2Harctan 1

c

]+2(x−a) ln r2

−2(x+a) ln r1+4a ln a+2a ln
(
1+c2

)
]

(32)

where H = ca is the distance from the origin to the point O ′
where the vertical displacement is assumed to be zero and
c is a coefficient.

Due to the symmetry about y-axis, the problem is mod-
eled with a 5 a × 5a square with a = 0.2 m, c = 100 and
p = 1 MPa. The left and bottom sides are constrained us-
ing exact displacement in Eq. (32) while the right side is
subjected to tractions computed from Eq. (31). The domain
is discretized using 418 elements as shown in Fig. 24. Four
smoothing cells are used for each element. The computed dis-
placements along the free surface (y = 0) are demonstrated
in Fig. 25 while the stress distributions along the diago-
nal line of the semi-infinite plane (y = −x) are given in
Fig. 26. It is seen that all the numerical results using SFEM
are in good accord with the analytical solutions. The conver-
gence rates in displacement and energy defined in Eqs. (22)
and (26) are also investigated and compared with four-node
finite elements as shown in Fig. 27. Similar to the previous
example, the displacement obtained from SFEM achieves the
same convergence rate as FEM but the energy of the former
converges faster than the latter. The SFEM results are more
accurate than those of FEM when using Scheme 2 for energy
calculation.

5.4 High-gradient heat conduction problem

Finally, a heat conduction problem is considered in a rectan-
gular plate (as shown in Fig. 28) with heat source

b(x, y) = 2s2 sec h2[s(y − 3)] tanh[s(y − 3)]. (33)

The boundary conditions are given by

T = − tan h(3s) at y = 0
T = tan h(3s) at y = 6
∂T
∂x = 0 at x = −0.25 and x = 0.25

(34)

The exact solution of this problem is

T = tanh[s(y − 3)]. (35)

As shown in the study by Belytschko et al. [3] this problem
has a very high gradient of temperature near y = 3.0. In Eq.
(33), the quantity s is a free parameter. The bigger the value
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Fig. 27 Comparison of convergence rate between SFEM and FEM.
a Displacement norm; b energy norm

of s, the higher the gradient of field T . As the steep gradient
occurs only near the area 2.5 ≤ y ≤ 3.5. Relatively small
(10×40) rectangular elements are used to discretize this area.
For the other two parts, (10×25) rectangular elements are
used, respectively. For comparison, the four-node isopara-
metric finite elements are applied to analyze this problem.
Note that s = 40 is used in the analysis.

The distribution of computed temperature along y-axis is
illustrated in Fig. 29, which once again compares well with
the analytical ones. Then we increase the number of smooth-
ing cells or Gauss points in FEM and study the relative error of
temperature using Eq. (24). From the results listed in Table 8,
we notice that, when GP/SC = 4, the temperature obtained
by SFEM is much more accurate than that of FEM. Increase
of GP/SC can enhance the accuracy for both methods when
dealing with high gradient problems. Gauss integration con-
verges much faster to exact solutions. When investigating the
gradient of the temperature, we notice that the two methods
give comparable results. Both computed results are not very
accurate at the tip as compared with the exact ones. The linear
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o

0.5

Fig. 28 Heat conduction in a rectangular plate

Table 8 Relative errors (×10−5) in temperature of the heat-transfer
problems using different Gauss points/Smoothing cells

GP/SC FEM SFEM

2×2 245.226 18.745
3×3 22.766 8.276
4×4 1.055 4.654

field approximation in both methods may be responsible for
the inadequate accuracy of the field gradient.

6 Conclusions

In this work, we propose the SFEM based on the framework
of finite element method but incorporating a strain-smoothing
technique used in Galerkin mesh-free method. The strain field
is projected onto a constant field or set of constant fields based
on smoothing cells within the element. Compared with the
conventional FEM using four-node isoparametric elements,
SFEM shows the following features.

(1) Field gradients are computed directly only using shape
functions itself and no derivative of shape function is
needed, which accordingly reduce the requirement on
the smoothness of shape functions. The shape functions
are created in a trivial, simple and explicit manner. High-
order field gradients can be evaluated accurately by recur-
sive application of the non-local gradient operation.

(2) Depending on the requirement on the accuracy and sta-
bility, an element may be further subdivided into finite
number of smoothing cells. In particular, a quadrilateral
element divided into four smoothing cells can avoid the
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Fig. 29 Computed and exact solutions for the high-gradient problem.
a Temperature T . b Gradient of temperature T‘y

spurious zero-energy mode. A smoothing operation is
conducted over each cell. If a constant smoothing func-
tion is used, area integration over a cell can be recast into
line integration along its edges.

(3) Unlike the conventional FEM using isoparametric ele-
ments, as no coordinate transformation or mapping is
performed in SFEM, no limitation is imposed on the
shape of elements used herein. Even severely distorted
elements are allowed. Domain discretization is more flex-
ible than FEM.

(4) The convergence rate in displacement of SFEM is
comparable with that of FEM while its energy generally
converges faster than that of four-node bilinear
finite elements. The numerical results of SFEM are gen-
erally more accurate than FEM, though the same post-
processing technique is used to smooth the strains and
stresses. The computational cost of the SFEM is roughly
less expensive than the FEM especially for domain
divided by a very large number of elements.
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(5) SFEM has been implemented using tile elements and
polygonal elements, where the standard FEM is not appli-
cable.

Several numerical examples are studied and their results
are in good agreement with analytical solutions. The accu-
racy and convergence are demonstrated through numerical
results. The method is easy to implement. As no coordinate
transformation is involved, the procedure of SFEM is more
straightforward than the isoparametric FEM. The method is
very robust and versatile. So far we did not encounter any
restrictions on this method other than material incompress-
ibility.

Though only 2D elastic problems are considered in this
work, there is no difficulty to extend the application of SFEM
to other relatively complicated problems, such as 3D prob-
lems, geometric and elasto-plastic nonlinear problems, etc.
Necessary theoretical foundations need to be laid in future
work including its relationship with FEM mixed formula-
tions. Error analysis and convergence study in theory will
also be conducted and compared with existing numerical
methods.
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