
Copyright c© 2008 Tech Science Press CMES, vol.28, no.2, pp.109-125, 2008

A Smoothed Finite Element Method (SFEM) for Linear and Geometrically
Nonlinear Analysis of Plates and Shells
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Abstract: A smoothed finite element method
(SFEM) is presented to analyze linear and geo-
metrically nonlinear problems of plates and shells
using bilinear quadrilateral elements. The formu-
lation is based on the first order shear deformation
theory. In the present SFEM, the elements are fur-
ther divided into smoothing cells to perform strain
smoothing operation, and the strain energy in each
smoothing cell is expressed as an explicit form of
the smoothed strain. The effect of the number of
divisions of smoothing cells in elements is investi-
gated in detail. It is found that using three smooth-
ing cells for bending strain energy integration and
one smoothing cell for shear strain energy inte-
gration achieve most accurate results and hence
these numbers recommended for plates and shells
in this study. In the geometrically nonlinear anal-
ysis, the total Lagrangian approach is adopted.
The arc-length technique in conjunction with the
modified Newton-Raphson method is utilized to
solve the nonlinear equations. The numerical ex-
amples demonstrate that the present SFEM pro-
vides very stable and most accurate results with
the similar computational effort compared to the
existing FEM techniques tested in this work.
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1 Introduction

In the past decades, the finite element method
(FEM) has been playing a very important role in
solving various problems in engineering and sci-
ence, including mechanics problems of plates and
shells [Zienkiewicz and Taylor (2000); Liu and
Quek (2003)]. A number of plate and shell ele-
ments have been developed for linear and nonlin-
ear analysis. Batoz and Tahar (1982) proposed a
discrete Kirchhoff quadrilateral element (DKQ),
which can give efficient results for bending prob-
lems for thin plates, but not for thick plates. Bathe
and Dvorkin (1985) presented a 4-node plate el-
ement based on Mindlin-Reissner theory using
mixed interpolated tensorial components (MITC).
Belytschko and Leviathan (1994) developed a one
point quadrature quadrilateral shell element with
physical hourglass control. In recent years, mesh-
free methods have been developed and achieved
remarkable progress for solving plate and shell
problems, and many works are summarized in the
book by Liu (2002), Atluri (2005). Chen and Liu
(2001) had used the element free Galerkin (EFG)
method for solving static and dynamic problem of
thin plate of complicated shape. Composite lam-
inated plates had also been studied for vibration
problems, buckling problems [Chen et al. (2002,
2003)]. Shells had also been analyzed using EFG
[Liu et al. (2002)]. Wang and Chen (2004) pre-
sented a Mindlin-Reissner plate formulation using
a stabilized conforming nodal integration to mit-
igate the shear locking. A radial point interpola-
tion method [Liu et al. (2008)] was formulated for
plate problems using the smoothed nodal integra-
tion. Meshless Local Petrov-Galerkin (MLPG)
Method [Atluri and Shen (2002); Atluri (2004)]
was also employed for plates and shells analysis
by many researchers [Gu and Liu (2001); Long



110 Copyright c© 2008 Tech Science Press CMES, vol.28, no.2, pp.109-125, 2008

and Atluri (2002); Soric et al. (2004); Li et al.
(2005); Sladek et al. (2006); Jarak et al. (2007)],
and Atluri et al. (2004) proposed a meshless fi-
nite volume method through the MLPG “mixed”
approach. For nonlinear analysis of plates and
shells, Horrigmoe and Bergan (1978) presented
a general formulation for geometrically nonlin-
ear analysis of shells using flat finite elements.
Hughes and Liu (1981) presented a general non-
linear finite element formulation using uniform
reduced integration for shell analysis. Recently,
Lee et al. (2002) introduced a geometrically non-
linear assumed strain formulation of a nine-node
solid shell element. Wen and Hon (2007) formu-
lated a Reissner-Mindlin plate element for geo-
metrically nonlinear analysis by using a meshless
collocation method. The other works of plates
and shells analysis include those given by Basar
and Kintzell (2003), Qian et al. (2003), Suetake
(2006).

Although a significant mount of works have been
done using FEM, some inherent problems related
to element distortion still remain unsolved. Liu et
al. (2007a) proposed a smoothed finite element
method (SFEM) by combining the standard FEM
with the strain smoothing technique used in mesh-
free methods [Chen et al. (2005)]. The SFEM
further divides the elements into smoothing cells
and computes the integrals along the edges of
the smoothing cells based on the Green’s diver-
gence theorem. The n-sided polygonal element
can be easily carried out using the SFEM [Dai et
al. (2007)]. Liu et al. (2007b) gave detailed theo-
retical aspects including stability, bound property
and convergence about the SFEM and revealed
a number of attractive features resulted from the
“softening” effects of the strain smoothing tech-
nique. Other problems solved using SFEM in-
cluding free and forced vibration analysis [Dai
and Liu (2007)], piezoelectric element analysis of
two-dimensional smart structures [Nguyen-Van et
al. (2008)]. A plate element [Nguyen-Xuan et al.
(2008)] has been formulated using the SFEM. In
Nguyen-Xuan’s work, only linear plate problem
is considered and the formulation is the combina-
tion of SFEM and MITC, in which only the bend-
ing term is formulated by using SFEM, and shear

term is same as MITC element.

In the present paper, the smoothed finite ele-
ment method (SFEM) is further extended to lin-
ear and geometrically nonlinear analysis of plates
and shells. In the present work, all terms of the
element are formulated by using the SFEM, and
we overcome the shear locking by using fewer
smoothing cells in shear term than those in mem-
brane and bending terms. The smoothed strains
are computed directly only using shape functions,
and the shape functions of arbitrary point in the
quadrilateral element are created in a trivial, sim-
ple and explicit manner. Through an intensive
numerical study, it is found that three smoothing
cells for bending strain energy integration, and
one cell for shear strain energy integration in an
element produces the most accurate solutions that
are much more accurate compared with the exist-
ing FEM techniques.

2 Basic formulation

2.1 Kinematics of shells

In this section, the basic equations of shell theory
are briefed. Based on the first order shear defor-
mation theory, the displacements u = [u,v,w] at a
local coordinate system (x, y, z) are expressed as
follows:

u(x,y, z) = u0(x,y)− zθx(x,y)
v(x,y, z) = v0(x,y)− zθy(x,y)
w(x,y, z) = w0(x,y)

(1)

where u0, v0 and w0 are the displacements of the
mid-plane of the shell in the x, y and z directions,
θx and θy denote the rotations about the y and x
axes, respectively, as shown in Fig. 1.

The strain vector εεε can be written in terms of
the mid-plane deformations using Eq. (1), which
gives:

εεε =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

εxx

εyy

εxy

εxz

εyz

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=
{

εεεm

0

}
+
{

zεεεb

0

}
+
{

0
εεε s

}
(2)

where εεεm is the membrane strain, εεεb is the bend-
ing strain, and εεε s is the shear strain. Bending and
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Figure 1: Local coordinate system with the x-y
plane siting on the shell mid-plane

shear strains can be written as:

εεεb = −

⎧⎪⎨
⎪⎩

∂θx
x

∂θy

y
∂θx

y + ∂θy

x

⎫⎪⎬
⎪⎭ , εεε s =

{
∂w0

x −θx
∂w0

y −θy

}
(3)

For nonlinear analysis, the membrane strain is
given by:

εεεm =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂u0
x + 1

2

(
∂w
x

)2

∂v0
y + 1

2

(
∂w
y

)2

∂u0
y + ∂v0

x + ∂w
x

∂w
y

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= εεε0
m +εεε nl

m (4)

in which

εεε0
m =

⎧⎪⎨
⎪⎩

∂u0
x

∂v0
y

∂u0
y + ∂v0

x

⎫⎪⎬
⎪⎭ , εεεnl

m =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2

(
∂w
x

)2

1
2

(
∂w
y

)2

∂w
x

∂w
y

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5)

and for linear analysis,

εεεm = εεε0
m (6)

Using Eq. (2), the generalized strain vector ε̂εε can
be written as:

ε̂εε =

⎧⎨
⎩

εεεm

εεεb

εεε s

⎫⎬
⎭ (7)

The constitutive relationship can be expressed as:

σ̂σσ = D̂ε̂ (8)

where

σ̂σσ =

⎡
⎣N̂

M̂
Q̂

⎤
⎦ , D̂ =

⎡
⎣Dm 0 0

0 Db 0
0 0 Ds

⎤
⎦ (9)

in which N̂ =
{

Nx Ny Nxy
}T

is the mem-
brane force vector in the mid-plane, M̂ ={

Mx My Mxy
}T

is the bending moment vector,

Q̂ =
{

Qx Qy
}T

is the transverse shear force vec-
tor, Dm is the membrane stiffness constitutive co-
efficients, Db is the bending stiffness constitutive
coefficients, and Ds is the transverse shear stiff-
ness constitutive coefficients:

Dm =
∫ t

2

− t
2

D0dz = tD0 (10)

Db =
∫ t

2

− t
2

z2D0dz =
t3

12
D0 (11)

Ds =
∫ t

2

− t
2

kG

[
1 0
0 1

]
dz = κtG

[
1 0
0 1

]
(12)

where t is the thickness of the plate or shell, G
is shear modulus, κ = 5/6 is the shear correction
factor, and D0 is the constitutive coefficients ma-
trix given as:

D0 =
E

1−ν2

⎡
⎣1 ν 0

ν 1 0
0 0 (1−ν)/2

⎤
⎦ (13)

where E is Young’s modulus and ν is Poisson’s
ratio.

From Eq. (1), the generalized mid-plane displace-
ments vector û is defined as:

û =
{

u0 v0 w0 θx θy
}T

(14)

The displacements at any point in an element are
interpolated using the nodal displacements at the
nodes using the element shape functions created
by the element nodes. Both displacements and ro-
tations use the same shape functions. The bilinear
quadrilateral elements are used here, and the gen-
eralized mid-plane displacement vector û can be
then expressed as:

û(x) =
4

∑
I=1

NI (x)dI (15)
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where dI = {uI ,vI,wI ,θxI,θyI}T is the nodal dis-
placement at node I, and the diagonal matrix of
shape functions

NI (x) =⎡
⎢⎢⎢⎢⎣

NI (x) 0 0 0 0
0 NI (x) 0 0 0
0 0 NI (x) 0 0
0 0 0 NI (x) 0
0 0 0 0 NI (x)

⎤
⎥⎥⎥⎥⎦ (16)

in which NI (x) is the shape function associated to
node I.

2.2 Smoothing cells in SFEM

As shown in Fig. 2, the problem domain Ω is
divided into Ne quadrilateral elements, as in the
standard FEM. The quadrilateral element Ωk is
further divided into SC smoothing cells, Ωk1, Ωk2,
. . ., ΩkSC, such that Ωk = Ωk1 ∪Ωk2 ∪ . . .∪ΩkSC

and Ωki ∩ Ωk j = /0, (i �= j, i = 1, . . . ,SC, j =
1, . . .,SC). In the present SFEM, we use the strain
smoothing operation for each of the cells:

εεε0
mi =

1
Aki

∫
Ωki

εεε0
m (x)dΩ (17a)

εεεbi =
1

Aki

∫
Ωki

εεεb (x)dΩ (17b)

εεε si =
1

Aki

∫
Ωki

εεεs (x)dΩ (17c)

εεεnl
mi =

1
Aki

∫
Ωki

εεεnl
m (x)dΩ (17d)

where εεε0
mi, εεεbi, εεε si and εεεnl

mi are the aver-
aged/smoothed strains, and Aki is the area of the
ith cell Ωki of the kth element.

2.3 Integration scheme with strain smoothing
operation

Consider an element of the problem domain, sub-
stituting Eqs. (5) and (16) into Eq. (17a), the
smoothed strains εεε0

mi can also be written in ma-
trix form of:

εεε0
mi =

1
Aki

∫
Γki

nû (x)dΓ =
4

∑
I=1

nNI (x)dI

=
4

∑
I=1

(
B̂0

mi

)
I dI

(18)

where n is is the outward normal matrix contain-
ing the components of the outward normal vector
to boundary Γki, and B̂0

mi is the smoothed linear
membrane strain matrix given by:

(
B̂0

mi

)
I =

⎡
⎣biIx 0 0 0 0

0 biIy 0 0 0
biIy biIx 0 0 0

⎤
⎦ (19)

in which

biIx =
1

Aki

∫
Γki

nx ·NI (x)dΓ

=
1
Ak

Nl

∑
j=1

nx j ·NI (xng j) · l j

(20a)

biIy =
1

Aki

∫
Γki

ny ·NI (x)dΓ

=
1
Ak

Nl

∑
j=1

ny j ·NI (xng j) · l j

(20b)

In Eq. (20), Nl is the total number of the seg-
ments of Γki, nx j and ny j are the components of
the outward unit normal to the jth boundary seg-
ment, xng j is the coordinate value of Gauss point
of the jth boundary segment. The shape function
of local point in the element is shown in Fig.3.

Similarly, the smoothed bending strain over the
domain Ωki can be rewritten as

εεεbi =
4

∑
I=1

(
B̂bi
)

I dI (21)

where B̂bi is the smoothed bending strain matrix
of the domain Ωki given by

(
B̂bi
)

I =

⎡
⎣0 0 0 −biIx 0

0 0 0 0 −biIy

0 0 0 −biIy −biIx

⎤
⎦ (22)

The smoothed shear strain over the domain Ωki

can be expressed as

εεε si =
4

∑
I=1

(
B̂si
)

I dI (23)

in which

(
B̂si
)

I =
[

0 0 biIx −shI 0
0 0 biIy 0 −shI

]
(24)
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Figure 2: The problem domain Ω is divided into Ne quadrilateral elements, the kth element of domain Ωk is
further divided into SC smoothing cells.

Figure 3: The shape function of local point in the element. k1 = l1/l is a proportion, and k2 has the same
meaning.
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In Eq. (24), shI can be defined by

shI =
1

Nn

Nn

∑
j=1

NI (x j) (25)

where Nn is the total number of the nodes of the
smoothing cell Ωki, and NI (x j) is the shape func-
tion value of the jth node of the cell Ωki.

Using Eqs. (5), (15) and (17d), we obtain the
smoothed nonlinear strain over the domain Ωki as
follows

εεεnl
mi =

4

∑
I=1

(
1
2

B̂nl
mi

)
I
dI (26)

B̂nl
mi is the smoothing nonlinear strain matrix in the

smoothing cell given by(
B̂nl

mi

)
I
= A(Gi)I (27)

in which

(Gi)I =
[

0 0 biIx 0 0
0 0 biIy 0 0

]
(28)

A =
4

∑
I=1

[
biIxwI 0 biIxwI

0 biIxwI biIxwI

]T

(29)

where wI is the deflection at the node I of the ele-
ment.

Using Eqs. (6), (18), (21), (23) and (26), the
smoothing generalized strain ε̂εε in each cell can be
written as:

ε̂εε i =
4

∑
I=1

((
B̂0

i

)
I +

1
2

(
B̂nl

i

)
I

)
dI (30)

where B̂0
i is the smoothing linear strain matrix,

and B̂nl
i is the smoothing nonlinear strain matrix

given by:

B̂0
i =

⎡
⎣B̂0

mi
B̂bi

B̂si

⎤
⎦ , B̂nl

i =

⎡
⎣B̂nl

mi
0
0

⎤
⎦ (31)

3 Discrete equations

3.1 Smoothed Galerkin weak form

In the present SFEM, the displacement solution û
and the corresponding smoothed strain ε̂εε obtained

using û satisfy the following smoothed Galerkin
weak form:∫

Ω
δε̂εεT

D̂ε̂dΩ−
∫

Ω
δ ûT f̃dΩ = 0 (32)

where f̃ represents the external load applied over
the problem domain Ω. The properties of the
smoothed Galerkin weak form are examined and
proven by Liu (2008).

Substituting Eq. (15) into Eq. (32) and using the
strain-displacement relation, a set of discretized
algebraic system equations can be obtained in the
following matrix form:

Kd− f = 0 (33)

where K is the smoothed stiffness matrix, and f is
the force vector defined as:

f =
∫

Ω
N(x) f̃dΩ (34)

In obtaining the smoothed stiffness K, the integra-
tions over the problem domain Ω need to be per-
formed based on each element. In each element,
the smoothed strains introduced in last section are
used and the smoothed stiffness is given by:

KIJ =
SC

∑
i=1

∫
Ωi

(
B̂i
)T

I D̂
(

B̂0
i +

1
2

B̂nl
i

)
J

dΩ (35)

where B̂i is strain matrix, it is given as:

B̂i = B̂0
i + B̂nl

i =

⎡
⎣B̂0

mi
B̂bi

B̂si

⎤
⎦+

⎡
⎣B̂nl

mi
0
0

⎤
⎦ (36)

Substituting Eq. (36) into Eq. (35), the stiffness
matrix can be written as:

KIJ = K
0
IJ +K

nl
IJ (37)

For linear analysis

KIJ = K
0
IJ (38)

The matrices K
0
IJ and K

nl
IJ are given as:

K
0
IJ =

SC

∑
i=1

(
B̂0

i

)T
I D̂
(
B̂0

i

)
J Ai

= K
m
IJ +K

b
IJ +K

s
IJ

(39)
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K
m
IJ =

SC1
∑
i=1

(
B̂0

mi

)T
I Dm

(
B̂0

mi

)
J Ai (40)

K
b
IJ =

SC2
∑
i=1

(
B̂bi
)T

I Db
(
B̂bi
)

J Ai (41)

K
s
IJ =

SC3
∑
i=1

(
B̂si
)T

I Ds
(
B̂si
)

J Ai (42)

K
nl
IJ =

SC4

∑
i=1

⎛
⎜⎝

1
2

(
B̂0

i

)T
I D̂
(
B̂nl

i

)
J

+
(
B̂nl

i

)T
I D̂
(
B̂0

i

)
J

+1
2

(
B̂nl

i

)T
I D̂
(
B̂nl

i

)
J

⎞
⎟⎠Ai (43)

where Ai is the area of the ith smoothing cell, and
SC1, SC2, SC3 and SC4 are the smoothing cell
numbers and which can be given different values.

Note: For present method, we first use the same
set of bilinear shape functions as standard FEM;
therefore, the assumed displacement u and the
force vector f in present method are the same to
standard FEM. Only the smoothed strains ε̂εε in
present method and the resultant strains ε̂εε in stan-
dard FEM are different, and so are the solutions
of the nodal displacementsd.

3.2 Formulation for nonlinear problems

The Modify Newton-Raphson method is em-
polyed here to solve the assembled nonlinear
equilibrium equations. An incremental form
of Eq. (33), required by the Newton-Raphson
method, should be provided. It is can be rear-
ranged as:

g(d) = Kd−F = 0 (44)

The external load F is assumed to be proportional
to the fixed load F0 as:

F = λ F0 (45)

where λ is the load level parameter. The nonlinear
equilibrium equation (44) can be rewritten as:

g(d,λ ) = Kd−λ F0 (46)

In order to arrive at a new equilibrium state, dis-
placement and load level parameter are updated
by increments. The following incremental form of

the equation can be attained via a truncated Taylor
series expansion,

g(d+Δd,λ +Δλ ) = g(d,λ )+K
tΔd−Δλ F0 = 0

(47)

where Δd and Δλ are the displacement increment
and load increment factors, respectively. K

t
is the

smoothed tangent stiffness matrix which is given
by:

K
t
IJ =
SC

∑
i=1

(
B̂i
)T

I D̂
(
B̂i
)

J Ai +
SC

∑
i=1

(Gi)
T
I Ň(Gi)J Ai (48)

where B̂i is given in Eq. (36), Gi is given in Eq.
(28), Ň is the membrane stress matrix given as:

Ň =
[

Nxx Nxy

Nxy Nyy

]
(49)

where Nxx, Nxy, Nyy are the components of mem-
brane force N̂ given in Eq. (9).

In the incremental-iterative method, each load
step includes the application of external load and
subsequent iterations to restore equilibrium. In
subsequent iterations, the displacement increment
is written as:

Δd j+1
n =

[(
K

t
)

n

]−1 (
Δλ j+1

n F0 −g j
n

)
=
[(

K
t
)

n

]−1

{
Δλ j+1

n F0−
[
K
(
d j

n

)
dn −λ j

n F0
]}

(50)

where the subscript n is used to denote the load
step number and the subscript j is used to rep-
resent the subsequent iteration cycle. The Arc-
length method presented by Crisfield (1997) is
used to overcome the ‘snap-throughs’ and the
‘snap-backs’. The convergence is checked using
following criterion:

‖g(d,λ)‖
‖F(d,λ )‖ < δ (51)

where δ is the tolerance for convergence constant
which is set to 0.0001 in this study.
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4 Numerical examples

4.1 Analysis of a square plate

In order to test the efficiency of the present SFEM,
a square plate of the length L and the thickness t
subjected to different boundary conditions is con-
sidered in this section. The material properties are
taken as Young’s modulus Eand Poisson ratio υ .
Owing to the symmetry of the problem, only a
quarter of the plate is modeled, as shown in Fig.4.

4.1.1 Effect of the number of smoothing cells

A plate with L=10m and t=0.1m simply supported
at all sides subjected to a transverse uniform load
is investigated to study the effect of the number
of smoothing cells used in the elements. The
material properties are taken as Young’s modulus
E = 3.0e7N/m2, Poisson ratio υ=0.3.

This problem is analyzed using different num-
ber of elements and smoothing cells as shown in
Fig.5. In order to mitigate the shear locking effect,
only one smoothing cell is used on the shear strain
term, and six different divisions, SC=1, 2, 3, 4, 8
and 16, are used on the other terms. This tech-
nique to suppress the shear locking is the same as
the reduced and selective integration techniques
in FEM. For a comparison, the FEM quadrilat-
eral element with reduced integration (Q4-R) pro-
posed by Malkus and Hughes (1978) is also used
in the analysis. The analytic solutions are given
by Reismann (1988).

Table 1 shows the numerical results of central
deflection and Fig. 6 shows the relative error
between numerical results and analytical solu-
tions of the problem using SFEM with different
divisions of smoothing cells. From the result,
it is seen that when the number of smoothing
cells is one or two, numerical results are bigger
than analytical solutions, and when the number of
smoothing cells is three or more, the numerical
results are smaller than analytical solutions. The
more the smoothing cells, the smaller results ob-
tained. Regardless of the numbers of the smooth-
ing cells used, the SFEM is more accurate than
the FEM quadrilateral element with reduced in-
tegration (Q4-R) for this problem. These find-
ings confirm the properties of SFEM introduced

Figure 4: A quarter of a square plate is meshed
with quadrilateral elements.

Figure 5: Division of an element into smoothing
cells.
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Figure 6: Comparison of central deflection com-
puted using FEM and SFEM with different divi-
sions of smoothing cells
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]
Table 1: The central deflection ŵ for a simply supported square plate with a uniform load computed using
FEM and SFEM with different divisions of smoothing cells (ŵ = wcD/qL4).

Mesh SC=1&1 SC=2&1 SC=3&1 SC=4&1 SC=8&1 SC=16&1 Q4-R
2×2 0.0041256 0.0040660 0.0040371 0.0040086 0.0039946 0.0039806 0.0039714
3×3 0.0040915 0.0040669 0.0040547 0.0040426 0.0040366 0.0040306 0.0040266
4×4 0.0040793 0.0040658 0.0040591 0.0040524 0.0040491 0.0040458 0.0040436
5×5 0.0040738 0.0040653 0.0040611 0.0040568 0.0040547 0.0040526 0.0040512
6×6 0.0040709 0.0040651 0.0040621 0.0040592 0.0040577 0.0040563 0.0040553
8×8 0.0040681 0.0040648 0.0040632 0.0040615 0.0040607 0.0040599 0.0040593
Analytic solution 0.004064

by Liu et al. (2007b). There should be an opti-
mal certain number of cells that can produce the
most accurate result, and it is should be between
2∼4 for bilinear quadrilateral elements. Form the
results of this problem, we find that SFEM with
SC=3&1, meaning that three cells for bending and
membrane terms and one for shearing term, gives
the best results. Therefore, SFEM (SC=3&1) is
used in plates and shells problems in the follow-
ing section.

4.1.2 Shear locking

Shear locking results from the spurious appear-
ance of transverse shear, which is generated due
to the inability of the formulation based on the
first order deformation theory in reproducing pure
bending mode. In this work, we use only one
smoothing cell in computing shear strain matrix
for avoiding shear locking which is similar to one
point quadrature used in the FEM. To study the
effectiveness of the present SFEM, a simply sup-
ported uniformly loaded square plate is used in
the examination.

For comparison, several existing FEM elements
are also used in solving the same problem, includ-
ing the mixed interpolated tensorial components
element MITC4 [Bathe and Dvorkin (1985)], the
reduced integration quadrilateral element Q4-R
[Malkus and Hughes (1978)] and the discrete
Kirchhoff quadrilateral element DKQ [Batoz and
Tahar (1982)].

The results obtained using different methods are
presented in Table 2 and Fig. 7 in terms of data
and curves, respectively. It is clearly shown that

the SFEM can give the most accurate solution for
the full range of length/thickness ratio of the plate.
It works for both thick and thin plates without
shear lockings, even for extremely thin plate of
length/thickness ratio L/t = 107.The DKQ was
designed particularly for solving shear locking
problems, and it indeed works well for thin plates.
However, it gives wrong results for thick plates.
MITC4 and Q4-R work well for thick plates, but
the solution accuracy for the thin plates are much
lower than SFEM (SC=3&1).
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Figure 7: Shear locking test for a simply sup-
ported square plate.

4.1.3 Convergence and accuracy

In order to exam the convergence and accuracy of
coarse meshes in thin and thick plate, the simply
supported uniformly loaded square plate with var-
ious length ratios, a thin plate with L/t=100 and a
thick plate with L/t=5 are investigated in this sub-
section. A set of five meshes are used for studying
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Table 2: The central deflection ŵ of a simply supported square plate subjected to a uniform load with
different length/thickness ratios (mesh size:6×6, ŵ = wcD/qL4).

L/t 4 5 20 102 105 107

FEM (DKQ) 0.004061 0.004061 0.004061 0.004061 0.004061 0.004061
FEM (MITC4) 0.005376 0.004900 0.004106 0.004055 0.004053 0.003535
FEM (Q4-R) 0.005384 0.004905 0.004106 0.004055 0.004053 0.004101

SFEM(SC=3&1) 0.005390 0.004911 0.004113 0.004062 0.004060 0.004059
Analytic solution 0.005179 0.004907 0.004108 0.004064 0.004062 0.004062

Table 3: Numerical results of normalized central deflection ŵ for a simply supported square plate subjected
to uniform load (L/t = 100, ŵ = wcD/qL4).

Mesh FEM (Q4-R) FEM (DKQ) FEM (MITC4) SFEM (SC=3&1)
2×2 0.003971 0.004046 0.003971 0.004037
4×4 0.004044 0.004060 0.004044 0.004059
6×6 0.004055 0.004061 0.004055 0.004062
8×8 0.004059 0.004062 0.004059 0.004063

10×10 0.004061 0.004062 0.004061 0.004064
Analytic solution 0.004064

Table 4: Numerical results of normalized central deflection ŵ for a simply supported square plate subjected
to uniform load (L/t = 5, ŵ = wcD/qL4).

Mesh FEM (Q4-R) FEM (DKQ) FEM (MITC4) SFEM (SC=3&1)
2×2 0.004921 0.004046 0.004855 0.004987
4×4 0.004906 0.004060 0.004894 0.004921
6×6 0.004905 0.004061 0.004900 0.004911
8×8 0.004904 0.004062 0.004902 0.004908

10×10 0.004904 0.004062 0.004903 0.004907
Analytic solution 0.004907

here. Aforementioned existing quadrilateral plate
elements which are introduced in last subsection
are employed as comparison with present method.

Table 3 and Table 4 report the normalized central
deflections of the thin plate and the thick plate. It
is seen that the present SFEM has high accuracy
at coarse meshes and fast convergence regardless
of the thickness of the plate. DKQ works well
for thin plates nevertheless it gives wrong results
for thick plates. Both Q4-R and MITC4 have a
slightly lower accuracy than SFEM (SC=3&1).

4.1.4 Bending analysis with different boundary
conditions

A thin square plate with transverse uniform load
subjected to different boundary conditions is an-
alyzed in this subsection, length/thickness ratios
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Figure 8: Relative error of the central deflection
of the thin square plate with all sides clamped.

L/t=100 is studied. All edges simply supported
thin square plate has been investigated in last sec-
tion, two boundary conditions are tested here: (a)
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Table 5: The central deflection ŵ for a square plate subjected to uniform load. (a) All sides clamped. (b)
Two sides clamped and two sides simply supported (L/t = 100, ŵ = wcD/qL4).

Mesh
a b

FEM (Q4-R) SFEM(SC=3&1) FEM (Q4-R) SFEM(SC=3&1)
2×2 0.001214 0.001252 0.001737 0.001788
4×4 0.001253 0.001262 0.001879 0.001892
6×6 0.001261 0.001265 0.001902 0.001908
8×8 0.001264 0.001266 0.001910 0.001913

10×10 0.001266 0.001267 0.001914 0.001916
Analytic solution 0.001265 0.00192
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Figure 9: Relative error of the central deflection
of the thin square plate with two sides clamped
and two sides simply supported.

all edges clamped; (b) two edges clamped and two
simply supported.

Table 5 shows a comparison of the present re-
sults with the numerical results obtained from
FEM Quadrilateral element with reduced integra-
tion (Q4-R). The analytic solutions are given by
Reismann (1988). The relative errors of the cen-
tral deflection between numerical results and an-
alytical solutions are shown in Fig. 8 and Fig. 9.
It can be seen that for both boundary conditions,
the solution of the present SFEM is more accurate
than that of the FEM Q4-R element. The SFEM
model is less stiff than that of FEM of Q4-R ele-
ment, which confirms the properties of SFEM dis-
cussed in subsection 4.1.1.

4.1.5 Nonlinear analysis

In this subsection, a clamped square plate
under uniformly distributed load q is ana-

lyzed for geometrically nonlinear behavior us-
ing SFEM (SC=3&1). The side length and
thickness of the square plate are L=100mm and
t=1mm. The material properties for this plate
are E=2.1e06N/mm2 and υ=0.316. The analytic
solutions of central deflection are given by Chia
(1980).

(w11

t

)3
+0.2522

w11

t
= 0.0001333

qL4

Dt
w0 = 2.5223w11

(52)

where w0 is the central deflection and D is the
bending stiffness given as D = Et3/12

(
1−ν2

)
.

A quarter of the plate is modeled due to the sym-
metry. The numerical solutions are obtained using
four meshes of 2×2, 4×4, 6×6, 8×8. The nondi-
mensional central deflection w0/t is computed us-
ing the presented SFEM and listed in Table 6. Fig.
10 shows the load-displacement curves of numer-
ical results computed from present method with
different mesh density and analytic solutions cal-
culated using Eq. (52). It is observed that the
results converge very quickly to the analytic solu-
tion. When the mesh density is 8×8, the numer-
ical results curve is very closed to analytic solu-
tions curve.

4.2 Analysis of circular plate

Linear and nonlinear analysis of a clamped circu-
lar plate subjected to uniform load is further stud-
ied in this section. The configuration and mesh
are shown in Fig. 11; the radius of the plate is
R=5m and the thickness is t=0.1m. Poisson’s ratio
of the material is taken to be 0.3, Young’s modu-
lus of the material is 3e7N/m2.



120 Copyright c© 2008 Tech Science Press CMES, vol.28, no.2, pp.109-125, 2008

Table 6: Nondimensional central deflection w0/t of a clamped square plate subjected to a uniformly dis-
tributed load q.

q
w0/t

2×2 4×4 6×6 8×8 Analytical
0.1 0.064352 0.064820 0.064958 0.065007 0.068374
0.2 0.128357 0.128924 0.129126 0.129197 0.135593
0.3 0.191685 0.191669 0.191800 0.191846 0.200683
0.5 0.315178 0.311175 0.310655 0.310470 0.322050
0.8 0.489526 0.472092 0.469447 0.468527 0.479763
1.3 0.746123 0.693022 0.685407 0.682812 0.688258
2.1 1.077707 0.958577 0.943137 0.937963 0.933327
3.4 1.479089 1.263356 1.238257 1.229945 1.214635
5.5 1.939395 1.601500 1.566364 1.554802 1.531733
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Figure 10: Nonlinear center deflection versus load
for a clamped square plate subjected to a uni-
formly distributed load.

For linear analysis, the clamped circular plate sub-
jected to uniform load q. The analytical solu-
tions for deflections are given by Timoshenko and
Woinowsky-Krieger (1940):

w =
q

64D
(R2− r2)2 (53)

where r is the radial distance from the plate center,
and D = Et3/

(
12
(
1−ν2

))
is the bending stiff-

ness.

Figure 12 shows the deflections along the radial
line obtained from present method and the ana-
lytic solution computed by Eq. (53). It indicates
that the present SFEM gives very accurate results.

For nonlinear analysis, the clamped circular plate
with uniform loading q0 is considered. The ana-

Figure 11: Configuration and mesh of a quadrant
of a circular plate.
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Figure 12: Deflection for the clamped circular
plate subjected to uniform load along the radial
line.
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lytic central deflection is given by chia (1980):

qR4

Et4 =
16

3(1−ν2)[
w0

t
+

1
360

(1+ν)(173−73ν)
(w0

t

)3
]

(54)

where w0 is the central deflection.

Figure 13 shows the load-deflection curves of the
computed results by present method and analytic
solutions calculated using Eq. (54). It can be ob-
served that the present results agree well with an-
alytic solutions.
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Figure 13: Nonlinear center deflection versus load
for a clamped circular plate subjected to a uni-
formly distributed load.

4.3 Scordelis-Lo roof problem

The Scordelis-Lo roof shown in Fig. 14 is a fa-
mous benchmark problem for shell analysis to
test a numerical method. The length of the shell
is L=25ft, the radius is R=25ft, the thickness is
t=0.25ft and the span angle is θ0=40◦. The ma-
terial properties are: Poisson’s ratio υ=0.3, and
Young’s modulus E=4.32e8N/ft2. The boundary
conditions at each end are supported by a rigid di-
aphragm. The loading is uniform vertical gravity
load of q0=90N/ft2. Owing to the symmetry, only
a quarter of the roof is modeled.

Several existing shell elements are used here to
compare with the present method. They are 4-
Node SRI (A standard 4-node Mindlin element
with selective reduced integration) proposed by
Hughes and Liu (1981), YASE (A 4-node shell

Figure 14: A quarter of a shell panel is meshed
with quadrilateral elements.

element using one integration point and physi-
cal hourglass control) advanced by Engelmann
and Whirley (1990), MITC4 (A 4-node fully in-
tegrated shell element using Mixed Interpolated
Tensorial Components) proposed by Dvorkin and
Bathe (1984), QPH (One point quadrature quadri-
lateral shell element with physical hourglass
control) proposed by Belytschko and Leviathan
(1994). The theoretical value 0.3024 of the ver-
tical deflection at the centre of the free edge and
the results of existing elements are obtained from
Belytschko and Leviathan (1994). Table 7 shows
the comparisons of the present result with solu-
tions obtained by existing shell elements. It is ob-
served that the present SFEM (SC=3&1) works
very well.

4.4 Nonlinear analysis of shells

A cylindrical shell panel clamped along all four
boundaries shown in Fig. 14 is now investi-
gated for nonlinear analysis. The shell panel is
subjected to uniform inward radial loading q0.
This example has been studied extensively by a
number of researchers using the finite element
methods. The geometry parameters of the panel
are: L=254mm, R=2540mm, t=3.175mm and
θ0=0.1rad. The material properties are: υ=0.3
and E=3.10275kN/mm2. Due to double sym-
metry of geometry and deformations, only one-
quarter of the panel was discretized using a mesh
of 8×8.

The present results of the center deflection, to-



122 Copyright c© 2008 Tech Science Press CMES, vol.28, no.2, pp.109-125, 2008

Table 7: Scordelis-Lo roof (the value used for normalization is 0.3024)

Mesh SFEM (SC=3&1) 4-node SRI YASE MITC4 QPH
4×4 1.04 0.96 1.05 0.94 0.94
8×8 0.99 0.98 1.01 0.97 0.98

16×16 1.01 1.00 1.02 1.00 1.01
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Figure 15: Nonlinear response of a clamped cylin-
drical shell panel to a uniformly distributed load.

gether with solutions given by Horrigmoe and
Bergan (1978), Dhatt (1970) and Sabir and Lock
(1973), are shown in Fig. 15. It is seen that the so-
lutions agree well. The result using present SFEM
(SC=3&1) is slightly bigger than others. It is con-
firmed that the stiffness of the SFEM model is
softer than that of the FEM.

4.5 Reinforcing Plate of Automobile’s Front
Longeron

Finally, an actual structure component of a Re-
inforcing Plate of Automobile’s Front Longeron
with two fixed ends shown in Fig.16 is stud-
ied here using the present SFEM.The length
isL=271mm, the length of the flanging is
h=15mm, the width D=55.48mm, the radius of
hole is R=15mm and the thickness is t=1mm.
Poisson’s ratio of the material is taken to
be 0.3; Young’s modulus of the material is
E=2.1e5N/mm2. The loading is uniform pres-
sures on the surface which is q0=0.01N/mm2.
Due to the symmetry, only half of the model is
investigated with symmetry conditions applied on
the nodes on the plane of symmetry.

We study this problem using the present SFEM

Figure 16: Model of a Reinforcing Plate of Auto-
mobile’s Front Longeron.

(SC=3&1), and the FEM of quadrilateral ele-
ment with reduced integration (Q4-R). The results
of deflections along the line OA are plotted in
Fig.17. The reference solutions are obtained using
software Altair OptiStruct with large number of
(22017) nodes. Fig.17 shows that the results us-
ing present method with 205 nodes is more close
to the reference solutions.
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Figure 17: Deflection along the line OA (see
Fig.16).
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5 Conclusions

A novel Smoothed Finite Element Method
(SFEM) using quadrilateral elements is presented
in this paper to analyze linear and geometrically
nonlinear problems of plates and shells. The ef-
fect of the number of smoothing cells in an ele-
ment is investigated in detail. It is found that three
smoothing cells for bending strain energy integra-
tion, and one cell for shear strain energy integra-
tion is the most preferred for analysis of plates and
shells. The numerical examples reveal the follow-
ing features of the present method:

(1) It uses strain smoothing technique that re-
duces the over-stiff phenomenon in the fully
compatible displacement-based finite ele-
ment.

(2) Area integration over each smoothing cells
is recast into line integration along its edges,
and hence no mapping is needed. This allows
the use of extremely distorted elements.

(3) Shear locking phenomenon can be easily
avoided by using only one smoothing cell for
shear strain energy integration, and hence it
works very well for both thick and thin plates
and shells.

(4) Numerical results obtained from the SFEM
are more accurate and the convergence is
faster compare with the existing FEM ele-
ments.

(5) It works well for both linear and nonlinear
problems.
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