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Abstract. In this paper we introduce a new smoothing function and show that it is
coercive under suitable assumptions. Based on this new function, we propose a smoothing
Newton method for solving the second-order cone complementarity problem (SOCCP). The
proposed algorithm solves only one linear system of equations and performs only one line
search at each iteration. It is shown that any accumulation point of the iteration sequence
generated by the proposed algorithm is a solution to the SOCCP. Furthermore, we prove
that the generated sequence is bounded if the solution set of the SOCCP is nonempty
and bounded. Under the assumption of nonsingularity, we establish the local quadratic
convergence of the algorithm without the strict complementarity condition. Numerical
results indicate that the proposed algorithm is promising.
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1. Introduction

The second-order cone (SOC) in R
n (n > 1), also called the Lorentz cone, is

defined as

Kn := {(x1, x̄
T)T ∈ R× R

n−1 : x1 > ‖x̄‖}.
Here and below, ‖ · ‖ denotes the 2-norm defined by ‖x‖ =

√
xTx for a vector x. For

convenience, we write (uT, vT)T as (u, v) for any vectors u, v ∈ R
n throughout the

paper.

This paper was partly supported by the Project of Shandong Province Higher Educational
Science and Technology Program (J10LA51), National Natural Science Foundation of
China (10971122, 11101248), and Excellent Young Scientist Foundation of Shandong
Province (BS2011SF024).
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We consider the second-order cone complementarity problem (SOCCP) as follows:

(1.1) Find (x, y) ∈ R
n × R

n, such that x ∈ K, y ∈ K, xTy = 0, y = F (x),

where F : R
n → R

n is a continuously differentiable function, and K ⊂ R
n is the

Cartesian product of second-order cones, that is,

K = Kn1 × . . . ×Knr ,

with r, n1, . . . , nr > 1 and n =
r

∑

i=1

ni, and x = (x1, . . . , xr), y = (y1, . . . , yr) with

xi, yi ∈ Kni , i = 1, . . . , r.

The following proposition shows that the complementarity condition on K =

Kn1 × . . . ×Knr can be decomposed into complementarity conditions on each Kni .

Proposition 1.1 ([17]). Let K = Kn1 × . . .×Knr , x = (x1, . . . , xr) ∈ R
n1 × . . .×

R
nr and y = (y1, . . . , yr) ∈ R

n1 × . . . × R
nr . Then the following relation holds:

x ∈ K, y ∈ K, xTy = 0 ⇔ xi ∈ Kni , yi ∈ Kni , (xi)Tyi = 0, i = 1, . . . , r.

In the following analysis, we assume that K = Kn. We do not lose any generality,

because in view of Proposition 1.1, our analysis can be extended to the general case

in a straightforward manner.

The SOCCP contains a wide class of problems such as the nonlinear comple-

mentarity problem (NCP) and the second-order cone programming (SOCP) [17].

A number of methods for solving the SOCCP have been proposed. They include

the smoothing-regularization method [17], the derivative-free descent method [23],

the merit function method (e.g., [6], [8]), the damped Gauss-Newton method [22],

the nonsmooth method [7] and so on. Most of the methods are proposed for the

monotone SOCCP.

Definition 1.2 ([17]). The function F : R
n → R

n is said to be monotone if for

any (x, y) ∈ R
n × R

n,

(x − y)T(F (x) − F (y)) > 0.

Recently, smoothing Newton methods have attracted a lot of attention partially

due to their encouraging convergent properties and numerical results. The main idea

of this class of methods is to reformulate the problem concerned as a family of pa-

rameterized smooth equations and then to solve the smooth equations approximately

by using Newton’s method at each iteration. By driving the parameter to converge

to zero, one can expect to find a solution to the original problem. However, in order
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to obtain the local superlinear (quadratic) convergence, some algorithms (e.g., [1],

[2], [5], [26]) depend on the assumptions of uniform nonsingularity and strict comple-

mentarity. Recently, Qi, Sun and Zhou [27] proposed a class of smoothing Newton

methods for the NCP and box constrained variational inequalities. The Qi-Sun-Zhou

method [27] was shown to be locally superlinearly/quadratically convergent without

strict complementarity. Due to its simplicity and weaker assumptions imposed on

smoothing functions, the Qi-Sun-Zhou method [27] has been further studied for the

NCP (e.g., [14], [20], [31], [32]) and the SOCP (e.g., [10]–[12], [15], [28]).

In this paper, we present a new smoothing function which is coercive under suitable

assumptions. Based on this new function, we propose a smoothing Newton algorithm

for the SOCCP by modifying and extending the Qi-Sun-Zhou method [27]. It is

proved that the proposed algorithm has the following nice properties:

(a) It is well-defined and a solution to the SOCCP can be obtained from any accu-

mulation point of the iteration sequence generated by this method.

(b) If the solution set of (1.1) is nonempty and bounded, then the iteration sequence

is bounded and hence it has at least one accumulation point.

(c) The algorithm solves only one system of linear equations and performs only one

line search per iteration.

(d) The whole iteration sequence converges to the accumulation point globally. Fur-

thermore, if the Jacobian of F is Lipschitz continuous on Rn, then the iteration

sequence converges locally quadratically without strict complementarity.

The paper is organized as follows. In the next section, we introduce some pre-

liminaries to be used in the subsequent sections. Moreover, we present the new

smoothing function and give its properties. In Section 3, we propose a smoothing

Newton method for solving the SOCCP and show the well-definedness of the algo-

rithm. The global convergence and local quadratic convergence of the algorithm are

investigated in Section 4. Preliminary numerical results are reported in Section 5.

Some conclusions are made in Section 6.

In our notation, Rn denotes the space of n-dimensional real column vectors, and

R
n
+ (or R

n
++) denotes the non-negative (or positive) orthant in R

n. Rn1 × . . . × R
nr

is identified with R
n1+...+nr . Thus, (x1, . . . , xr) ∈ R

n1 × . . . × R
nr is viewed as a

column vector in R
n1+...+nr . I denotes the identity matrix with suitable dimension.

〈·, ·〉 denotes the Euclidean inner product. For any x, y ∈ R
n, we write x �K y (or

x ≻K y) if x − y ∈ K (or x − y ∈ intK, where intK denotes the interior of K). For
any α, β > 0, α = O(β) (or α = o(β)) means that α/β is uniformly bounded (or

tends to zero) as β → 0.
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2. Preliminaries and a new smoothing function

In this section, we first give a brief description of the Euclidean Jordan algebra

associated with the SOC K, which is a basic tool used in this paper. Then, we
introduce a new smoothing function and give its properties.

For any vectors x = (x1, x̄), s = (s1, s̄) ∈ R×R
n−1, their Jordan product associated

with the SOC K is defined by

x ◦ s := (xTs, x1s̄ + s1x̄).

The identity element under this product is e := (1, 0, . . . , 0)T ∈ R
n. Given an element

x = (x1, x̄) ∈ R× R
n−1, we define the symmetric matrix

Lx :=

(

x1 x̄T

x̄ x1I

)

,

where I represents the (n − 1) × (n − 1) identity matrix. It is easy to verify that

x ◦ s = Lxs = Lsx for any x, s ∈ R
n. Moreover, Lx is positive semidefinite (or

positive definite and hence nonsingular) if and only if x ∈ K (or x ∈ intK).
Spectral decomposition is one of the basic concepts in Euclidean Jordan algebras.

For any x = (x1, x̄) ∈ R × R
n−1, its spectral decomposition with respect to the

SOC K is defined as
x = λ1u1 + λ2u2,

in which

λi = x1 + (−1)i‖x̄‖

and

ui =















1

2

(

1, (−1)i x̄

‖x̄‖
)

if x̄ 6= 0,

1

2

(

1, (−1)i κ

‖κ‖
)

otherwise, for any κ 6= 0,

i = 1, 2.

Since x ∈ K (or x ∈ intK) if and only if both λ1 and λ2 are nonnegative (or positive),

one can define

√
x =

√

λ1u1 +
√

λ2u2 for any x ∈ K,

x−1 = λ−1
1 u1 + λ−1

2 u2 for any x ∈ intK,

x2 = λ2
1u1 + λ2

2u2 for any x ∈ R
n.

Note that x ◦ x−1 = e. Moreover, for any x ∈ R
n, x2 = x ◦ x and x2 ∈ K.
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For any x ∈ R
n, we define [x]+ to be the nearest-point (in the Euclidean norm)

projection of x onto K. For any α ∈ R, let [α]+ = max{0, α}. Then from Proposi-
tion 3.3 in [16] we know that

|x| =
√

x2 = |λ1|u1 + |λ2|u2

and the projection of x onto K can be written as

[x]+ = [λ1]+u1 + [λ2]+u2 = (x + |x|)/2.

Define the vector-valued function by

(2.1) ϕ0(x, y) := 2(x − [x − y]+) = x + y −
√

(x − y)2.

In [16], it has been shown that ϕ0(x, y) satisfies the following property:

(2.2) ϕ0(x, y) = 0 ⇔ x ∈ K, y ∈ K, xTy = 0.

It is well known that ϕ0 is typically nonsmooth, because it is not differentiable at

(0, 0) ∈ R
n × R

n which limits its practical applications. In order to overcome this

difficulty, we can use a smoothing function of ϕ0.

Definition 2.1 ([17]). For a nondifferentiable function g : R
n → R

n, a function

gµ : R
n → R

n with a parameter µ > 0 is called a smoothing function of g if

(i) gµ is differentiable for any µ > 0;

(ii) lim
µ↓0

gµ(x) = g(x) for any x ∈ R
n.

In this paper, by smoothing the symmetric perturbed function of ϕ0, we obtain a

new vector-valued function ϕ(µ, x, y) : R+ × R
n × R

n → R
n defined by

(2.3) ϕ(µ, x, y) = (cosµ + sin µ)(x + y) −
√

(cosµ − sin µ)2(x − y)2 + 4µ2
e,

where µ is a real parameter. As we will show, the function ϕ given in (2.3) is a

smoothing function of ϕ0 and it possesses some nice properties.
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Theorem 2.2. Let ϕ(µ, x, y) : R+ × R
n × R

n → R
n be defined by (2.3). Denote

(2.4) ω := ω(µ, x, y) =
√

(cos µ − sin µ)2(x − y)2 + 4µ2
e.

Then the following results hold:

(i) ϕ(µ, x, y) is continuously differentiable at any (µ, x, y) ∈ R++ × R
n × R

n with

its Jacobian

(2.5)

ϕ′(µ, x, y) =





(cosµ − sin µ)(x + y) − L−1
ω [−(1 − 2 sin2 µ)(x − y)2 + 4µe]

(cosµ + sin µ)I − (cos µ − sin µ)2L−1
ω Lx−y

(cosµ + sin µ)I + (cos µ − sin µ)2L−1
ω Lx−y



 .

(ii) ϕ(µ, x, y) is a smoothing function of ϕ0(x, y).

P r o o f. It is easy to show that ϕ(µ, x, y) is continuously differentiable at any

(µ, x, y) ∈ R++ ×R
n ×R

n. For any (µ, x, y) ∈ R++ ×R
n ×R

n, it follows from (2.4)

that ω ∈ intK and therefore Lω is invertible. From the definition of ω, we get

ω2 = (cosµ − sin µ)2(x − y)2 + 4µ2
e.

Then,

ω′
µ = L−1

ω [−(1 − 2 sin2 µ)(x − y)2 + 4µe],

ω′
x = (cos µ − sin µ)2L−1

ω Lx−y,

ω′
y = − (cosµ − sin µ)2L−1

ω Lx−y.

Therefore, due to the definition of ϕ, we have

ϕ′
µ(µ, x, y) = (cosµ − sin µ)(x + y) − L−1

ω [−(1 − 2 sin2 µ)(x − y)2 + 4µe],(2.6)

ϕ′
x(µ, x, y) = (cosµ + sin µ)I − (cos µ − sin µ)2L−1

ω Lx−y,(2.7)

ϕ′
y(µ, x, y) = (cosµ + sin µ)I + (cos µ − sin µ)2L−1

ω Lx−y.(2.8)

From (2.6)–(2.8), we have the desired Jacobian formula. Now we prove (ii). For any

x = (x1, x̄) and y = (y1, y) ∈ R× R
n−1, by the spectral factorization of ω2 we have

ϕ(µ, x, y) = (cosµ + sin µ)(x + y) −
(
√

λ1(µ)u1(µ) +
√

λ2(µ)u2(µ)
)

where

λi(µ) = (cosµ − sinµ)2‖x − y‖2 + 4µ2 + 2(−1)i‖v(µ)‖, i = 1, 2,

ui(µ) =















1

2

(

1, (−1)i v(µ)

‖v(µ)‖
)

if v(µ) 6= 0,

1

2

(

1, (−1)i κ

‖κ‖
)

otherwise, for any κ 6= 0,

i = 1, 2,

v(µ) = (cosµ − sinµ)2(x1 − y1)(x̄ − y).
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In a similar way, we have

ϕ0(x, y) = x + y −
(
√

λ1u1 +
√

λ2u2

)

,

where

λi = ‖x − y‖2 + 2(−1)i‖v‖, i = 1, 2,

ui =















1

2

(

1, (−1)i v

‖v‖
)

if v 6= 0,

1

2

(

1, (−1)i κ

‖κ‖
)

otherwise, for any κ 6= 0,

i = 1, 2,

v = (x1 − y1)(x̄ − y).

Without loss of generality, we choose the same κ ∈ R
n−1 as in ui(µ). It is obvious

that lim
µ↓0

v(µ) = v. Thus, we have

lim
µ↓0

λi(µ) = λi, lim
µ↓0

ui(µ) = ui, i = 1, 2,

which implies that

lim
µ↓0

ϕ(µ, x, y) = ϕ0(x, y).

Therefore, it follows from (i) and Definition 2.1 that ϕ(µ, x, y) is a smoothing function

of ϕ0(x, y). The proof is completed. �

At the end of this section, we discuss the coerciveness of the function ϕ defined

by (2.3).

Theorem 2.3. Let ϕ(µ, x, y) be defined by (2.3), and ξ, ζ ∈ R++ with ξ < ζ.

Suppose that {(µk, xk, yk)} ⊂ R++ × R
n × R

n is a sequence satisfying

(a) µk ∈ [ξ, ζ], {(xk, yk)} is unbounded; and
(b) there is a bounded sequence {(uk, vk)} such that {〈xk−uk, yk−vk〉} is bounded
below.

Then {ϕ(µk, xk, yk)} is unbounded.

P r o o f. By using Lemma 4.2 in [19] and the fact that

ϕ = (cos µx + sinµy) + (sinµx + cosµy)

−
√

[(cosµx + sin µy) − (sin µx + cosµy)]2 + 4µ2
e,

we can prove the theorem similarly as Theorem 4.1 in [19]. For brevity, we omit the

details here. �
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3. Description of the algorithm

The aim of this section is to propose a smoothing Newton method for solving

the SOCCP. Under suitable assumptions, we show the well-definedness of our algo-

rithm.

Let z := (µ, x, y). We define the function H(z) : R++×R
n×R

n → R++×R
n×R

n

by

(3.1) H(z) :=





µ

F (x) − y

ϕ(µ, x, y)



 ,

where ϕ is given by (2.3). Then, from Theorem 2.2 and (2.2), we know that (x, y) is

the solution to the SOCCP if and only if H(z) = 0. Therefore, instead of solv-

ing the SOCCP, we may apply Newton’s methods to solve the system of equations

H(z) = 0.

Lemma 3.1 ([30]). Let a, b, u, v ∈ R
n with a ≻K 0, b ≻K 0, a ◦ b ≻K 0. If

〈u, v〉 > 0 and a ◦ u + b ◦ v = 0, then u = v = 0.

Theorem 3.2. Let z := (µ, x, y) andH(z) be defined by (3.1). Then the following

results hold:

(i) H(z) is continuously differentiable at any z := (µ, x, y) ∈ R++ × R
n × R

n with

its Jacobian

(3.2) H ′(z) =





1 0 0

0 F ′(x) −I

ϕ′
µ(z) ϕ′

x(z) ϕ′
y(z)



 ,

where

ϕ′
µ(z) = (cos µ − sin µ)(x + y) − L−1

ω [−(1 − 2 sin2 µ)(x − y)2 + 4µe],(3.3)

ϕ′
x(z) = (cos µ + sin µ)I − (cosµ − sin µ)2L−1

ω Lx−y,(3.4)

ϕ′
y(z) = (cos µ + sin µ)I + (cosµ − sin µ)2L−1

ω Lx−y,(3.5)

and ω is defined by (2.4).

(ii) If F is a continuously differentiable and monotone function, then H ′(z) is in-

vertible for any µ ∈ (0, π/2).

P r o o f. By Theorem 2.2, it is easy to show that (i) holds. Now we prove (ii). Fix

any µ > 0. Let z̃ := (µ̃, x̃, ỹ) ∈ R × R
n × R

n be an arbitrary vector which satisfies
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H ′(z)z̃ = 0. It is sufficient to prove that µ̃ = 0, x̃ = 0, and ỹ = 0. From (3.2),

H ′(z)z̃ = 0 gives

(3.6) µ̃ = 0,

F ′(x)x̃ − ỹ = 0,

ϕ′
x(z)x̃ + ϕ′

y(z)ỹ = 0.

By the second equation in (3.6) and the monotonicity of F , we have

(3.7) 〈x̃, ỹ〉 = 〈x̃, F ′(x)x̃〉 > 0.

By (3.4) and (3.5), the third equation in (3.6) yields

[(cosµ + sin µ)I − (cos µ − sin µ)2L−1
ω Lx−y]x̃

+ [(cosµ + sin µ)I + (cos µ − sin µ)2L−1
ω Lx−y]ỹ = 0.

Since Lxy = x ◦ y for any x, y ∈ R
n, the above equality is equivalent to

(3.8) (cosµ + sin µ)(x̃ + ỹ) − (cosµ − sin µ)2L−1
ω [(x − y) ◦ (x̃ − ỹ)] = 0.

Premultiplying (3.8) by Lω yields

(3.9) (cosµ + sin µ)ω ◦ (x̃ + ỹ) − (cosµ − sin µ)2[(x − y) ◦ (x̃ − ỹ)] = 0.

Since

(cos µ + sin µ)(x̃ + ỹ) = (cosµx̃ + sin µỹ) + (sinµx̃ + cosµỹ),

(cos µ − sin µ)(x̃ − ỹ) = (cosµx̃ + sin µỹ) − (sin µx̃ + cosµỹ),

it follows from (3.9) that

[ω − (cosµ − sinµ)(x − y)] ◦ [cosµx̃ + sin µỹ](3.10)

+ [ω + (cosµ − sin µ)(x − y)] ◦ [sinµx̃ + cosµỹ] = 0.

Due to the definition of ω, we have

ω2 = (cosµ − sin µ)2(x − y)2 + 4µ2
e ≻K (cosµ − sin µ)2(x − y)2.

Then, by Proposition 3.4 in [16], we get

(3.11) ω − (cosµ − sin µ)(x − y) ≻K 0, ω + (cosµ − sin µ)(x − y) ≻K 0.
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Note that

[ω − (cosµ − sin µ)(x − y)] ◦ [ω + (cosµ − sinµ)(x − y)] = 4µ2
e ≻K 0,(3.12)

〈cos µx̃ + sinµỹ, sin µx̃ + cosµỹ〉 > 0,(3.13)

where the inequality (3.13) follows from (3.7). Set

a := ω − (cosµ − sin µ)(x − y), b := ω + (cosµ − sin µ)(x − y),

u := cosµx̃ + sin µỹ, v := sinµx̃ + cosµỹ.

Then, from (3.10)–(3.13) and using Lemma 3.1, we obtain that

cosµx̃ + sin µỹ = 0, sin µx̃ + cosµỹ = 0,

which yields

(3.14) cosµe ◦ x̃ + sinµe ◦ ỹ = 0, sin µe ◦ x̃ + cosµe ◦ ỹ = 0.

Since cosµ > 0 and sin µ > 0 for any µ ∈ (0, π/2), we obtain that

cosµe ≻K 0, sin µe ≻K 0, cosµe ◦ sin µe =
sin 2µ

2
e ≻K 0.

Then, from (3.7) and (3.14), also using Lemma 3.1, we have x̃ = ỹ = 0. Thus, the

null space of H ′(z) comprises only the origin, and hence H ′(z) is invertible. �

For any z := (µ, x, y) ∈ R++ × R
n × R

n, we define the norm-function as follows:

(3.15) Ψ(z) := ‖H(z)‖2.

Now we give our smoothing Newton method.

A l g o r i t hm 3.1 (A smoothing Newton method for the SOCCP).

Step 0 : Choose an accuracy parameter ε > 0. Choose constants δ, σ ∈ (0, 1), and

µ0 ∈ (0, π/2). Let (x0, y0) ∈ R
n×R

n be an arbitrary initial point. Set z := (µ0, 0, 0).

Set z0 := (µ0, x
0, y0). Take τ ∈ (0, 1) such that µ0τ < 1/2 and τ‖H(z0)‖ < 1. Set

k := 0.

Step 1 : If ‖H(zk)‖ 6 ε, then stop. Otherwise, compute

(3.16) βk := β(zk) = τ min{1, ‖H(zk)‖}.
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Step 2 : Compute ∆zk := (∆µk, ∆xk, ∆yk) ∈ R× R
n × R

n by

(3.17) H ′(zk)∆zk = −H(zk) + βk‖H(zk)‖z,

where H ′(zk) denotes the Jacobian of the function H at the point zk.

Step 3 : Choose αk := δlk , where lk is the first nonnegative integer l for which

(3.18) Ψ(zk + δl∆zk) 6 [1 − σ(1 − 2µ0τ)δl]Ψ(zk),

i.e., l = 0, 1, . . . are tried successively until the above inequality is satisfied for l = lk.

Step 4 : Set zk+1 := zk + αk∆zk and k := k + 1. Go to Step 1.

We note that Algorithm 3.1 solves only one system of linear equations and performs

only one Armijo-type line search at each iteration. If ‖H(zk)‖ = 0, then (xk, yk) is

the solution to the SOCCP. So, the stopping criterion is reasonable. In the following,

we give some remarks on Algorithm 3.1.

R em a r k 3.1. Suppose that F is a continuously differentiable and monotone

function and that {zk} is the iteration sequence generated by Algorithm 3.1. Then,
the following results hold:

(a) From (3.18), it is easy to see that the sequence {Ψ(zk)} is monotonically decreas-
ing, and hence, sequences {‖H(zk)‖} and {βk} are monotonically decreasing.

(b) Denote

(3.19) Ω := {z := (µ, x, y) ∈ R++ × R
n × R

n : µ > µ0β(z)‖H(z)‖},

where β(·) and µ0 are given in (3.16) and Step 0 of Algorithm 3.1, respectively.

Then, zk ∈ Ω for all k > 0. This can be obtained by induction. Since

β(z0)‖H(z0)‖ = τ‖H(z0)‖min{1, ‖H(z0)‖} 6 τ‖H(z0)‖ < 1,

we have µ0 > µ0β(z0)‖H(z0)‖. So, z0 ∈ Ω. Suppose that zk ∈ Ω, i.e., µk >

µ0βk‖H(zk)‖. Then

µk+1 − µ0βk+1‖H(zk+1)‖
= µk + αk∆µk − µ0βk+1‖H(zk+1)‖
= (1 − αk)µk + αkµ0βk‖H(zk)‖ − µ0βk+1‖H(zk+1)‖
> (1 − αk)µ0βk‖H(zk)‖ + αkµ0βk‖H(zk)‖ − µ0βk+1‖H(zk+1)‖
= µ0(βk‖H(zk)‖ − βk+1‖H(zk+1)‖) > 0,
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where the second equality follows from the first equation in (3.17); the first

inequality from the assumption that zk ∈ Ω; and the last inequality from the

result (a). That is, µk+1 > µ0βk+1‖H(zk+1)‖. Thus, zk ∈ Ω for all k > 0.

(c) 0 < µk < π/2 for all k > 0. First, we prove µk > 0 for all k > 0 by induction

on k. Suppose that µk > 0 for some k, e.g., it is satisfied for k = 0. Then, from

the first equation in (3.17), we get for any α ∈ (0, 1)

µk + α∆µk = µk + α(−µk + µ0βk‖H(zk)‖) = (1 − α)µk + αµ0βk‖H(zk)‖ > 0,

which implies that µk+1 > 0. Thus, we have µk > 0 for all k > 0. On the other

hand, from the result (b), we obtain that for all k > 0

µk+1 = (1 − αk)µk + αkµ0βk‖H(zk)‖ 6 (1 − αk)µk + αkµk = µk.

Hence, the sequence {µk} is monotonically decreasing. This shows that µk 6

µ0 < π/2 holds for all k > 0. By Theorem 3.2, we know that H ′(zk) is nonsin-

gular for all k > 0. Thus, the system of equations (3.17) is solvable, i.e., Step 2

is well-defined at the kth iteration.

(d) For any α ∈ (0, 1), denote

(3.20) Fk(α) = Ψ(zk + α∆zk) − Ψ(zk) − αΨ′(zk)T∆zk.

We obtain that Fk(α) = o(α), sinceΨ(·) is continuously differentiable around zk.

Then, from (3.17) and (3.20) we have

Ψ(zk + α∆zk) = Ψ(zk) + αΨ′(zk)T∆zk + Fk(α)

= Ψ(zk) + 2αH(zk)TH ′(zk)∆zk + o(α)

= Ψ(zk) + 2αH(zk)T[−H(zk) + βk‖H(zk)‖z] + o(α)

= (1 − 2α)Ψ(zk) + 2αβk‖H(zk)‖H(zk)Tz + o(α)

6 (1 − α)Ψ(zk) + 2αµ0τΨ(zk) + o(α)

= [1 − (1 − 2µ0τ)α]Ψ(zk) + o(α),

where the inequality follows from the fact that ‖z‖ = µ0 and βk 6 τ by Step 0

and Step 1 of Algorithm 3.1. Since µ0τ < 1/2, there exists a constant α ∈ (0, 1)

such that

Ψ(zk + α∆zk) 6 [1 − σ(1 − 2µ0τ)α]Ψ(zk)

holds for any α ∈ (0, α) and σ ∈ (0, 1). This demonstrates that Step 3 is

well-defined at the kth iteration.
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4. Convergence analysis

In this section, we show that any accumulation point z∗ of the iteration se-

quence {zk} is a solution to the system H(z) = 0. If the accumulation point z∗

satisfies a nonsingularity assumption, then the iteration sequence {zk} converges
to z∗ locally quadratically without strict complementarity. First, we prove the global

convergence of Algorithm 3.1. For this purpose, we need the following result:

Lemma 4.1. Let F be a continuously differentiable and monotone function and

{zk} be the iteration sequence generated by Algorithm 3.1. If there exists µ∗ > 0

such that µk > µ∗ holds for all k > 0 and ‖(xk, yk)‖ → ∞ (k → ∞), then

lim
k→∞

‖H(zk)‖ = ∞.

P r o o f. By assuming that {‖H(zk)‖} is bounded, we will derive a contradiction.
It follows from (3.1) that

(4.1) ‖H(zk)‖2 = µ2
k + ‖F (xk) − yk‖2 + ‖ϕ(µk, xk, yk)‖2.

Then, we obtain that {F (xk) − yk} and {ϕ(µk, xk, yk)} are bounded. Denote

β(xk, yk) := yk − F (xk).

It is easy to see that {β(xk, yk)} is bounded and yk = β(xk, yk)+F (xk). Suppose that

{uk} is an arbitrary bounded sequence. Then {F (uk)} is bounded by the continuity
of F . Let vk := β(xk, yk)+F (uk). Obviously, {vk} is bounded. Since F is monotone,

it follows from Definition 1.2 that

〈xk − uk, yk − vk〉 = 〈xk − uk, F (xk) − F (uk)〉 > 0.

Moreover, µk ∈ (µ∗, π/2). Thus, from Theorem 2.3 we have

lim
‖(xk,yk)‖→∞

‖ϕ(µk, xk, yk)‖ = ∞,

which, together with (4.1), shows that {‖H(zk)‖} is unbounded. A contradiction is
derived. The proof is completed. �

Now we are in the position to give the global convergence of Algorithm 3.1. To

this end, we need the following assumption:

A s s um p t i o n 4.1. The solution set of the SOCCP defined by S := {(x, y) ∈
R

n × R
n : x ∈ K, y ∈ K, xTy = 0, y = F (x)} is nonempty and bounded.
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Theorem 4.2 (Global convergence). Let F be a continuously differentiable and

monotone function. Suppose that {zk} is the iteration sequence generated by Algo-
rithm 3.1. Then the following results hold:

(i) {‖H(zk)‖} is monotonically decreasing and converges to zero.
(ii) lim

k→∞
µk = 0. Moreover, if Assumption 4.1 holds, then {zk} is bounded.

(iii) Any accumulation point of {zk} is a solution to (1.1).

P r o o f. According to the result (a) in Remark 3.1, we know that {‖H(zk)‖} is
monotonically decreasing and bounded from below by zero. Thus, there exists H∗ >

0 and β∗ > 0 such that lim
k→∞

‖H(zk)‖ = H∗ and lim
k→∞

βk = β∗. If H∗ = 0, then

we obtain the desired result. Suppose that H∗ > 0. Then from (3.16) we have

β∗ > 0. Since zk ∈ Ω for all k > 0 by the result (b) in Remark 3.1, we obtain that

µk > µ0β
∗H∗ > 0. Therefore, from Lemma 4.1, we know that {zk := (µk, xk, yk)} is

bounded and hence it has at least one accumulation point z∗ := (µ∗, x∗, y∗). Without

loss of generality, we assume that {zk} converges to z∗ as k → ∞. Since z∗ ∈ Ω, we

have 0 < µ0β
∗H∗ 6 µ∗ < π/2 by the results (b) and (c) in Remark 3.1. It follows

from Theorem 3.2 that H ′(z∗) exists and is invertible. Hence, there exists a closed

neighborhood N(z∗) of z∗ such that for any z ∈ N(z∗) we have 0 < µ < π/2 and

H ′(z) is invertible. Then, for any z ∈ N(z∗), let ∆z := (∆µ, ∆x, ∆y) ∈ R×R
n ×R

n

be the unique solution to the system of equations

H ′(z)∆z = −H(z) + β(z)‖H(z)‖z.

Denote

gz(α) := Ψ(z + α∆z) − Ψ(z) − αΨ′(z)T∆z.

Then, for any z ∈ N(z∗), we have lim
α→0

|gz(α)|/α = 0. Similarly to the result (d) in

Remark 3.1, for any α ∈ (0, 1) and z ∈ N(z∗), we have

Ψ(z + α∆z) 6 [1 − (1 − 2µ0τ)α]Ψ(z) + o(α).

Hence, we can find a positive number α ∈ (0, 1] such that

Ψ(z + α∆z) 6 [1 − σ(1 − 2µ0τ)α]Ψ(z)

holds for any α ∈ (0, α], σ ∈ (0, 1), and z ∈ N(z∗). Therefore, for all sufficiently

large k, there exists a nonnegative integer l̄ such that δl̄ ∈ (0, α] and

Ψ(zk + δl̄∆zk) 6 [1 − σ(1 − 2µ0τ)δl̄]Ψ(zk).
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For all sufficiently large k, since αk = δlk > δl̄, it follows from Step 3 and Step 4 in

Algorithm 3.1 that

Ψ(zk+1) 6 [1 − σ(1 − 2µ0τ)δlk ]Ψ(zk) 6 [1 − σ(1 − 2µ0τ)δl̄]Ψ(zk),

which implies that Ψ(zk+1) 6 CΨ(zk), where C = 1−σ(1−2µ0τ)δl̄ < 1 is a constant,

and thus Ψ(zk) → 0 as k → ∞, i.e., ‖H(zk)‖ → 0 as k → ∞. This contradicts
the fact that the sequence {‖H(zk)‖} converges to H∗ > 0. Thus, {‖H(zk)‖} is
monotonically decreasing and converges to zero.

Next, we prove (ii). Due to the definition of H and lim
k→∞

‖H(zk)‖ = 0, it is easy

to see that lim
k→∞

µk = 0. From the result (b) in Remark 3.1, we know that zk ∈ Ω

for all k > 0. This gives

‖H(zk)‖ 6
µk

µ0β(zk)
.

Denote

Φ(zk) :=

(

F (xk) − yk

ϕ(zk)

)

, λk := max

{

µk

µ0τ
,

√

µk

µ0τ

}

.

Since β(zk) = τ or β(zk) = τ‖H(zk)‖, we have ‖Φ(zk)‖ 6 ‖H(zk)‖ 6 λk and

lim
k→∞

λk = 0. Hence, under Assumption 4.1, by using the famous mountain pass

theorem (e.g., Theorem 3.5 in [32]), we can prove that {(xk, yk)} is bounded similarly
as Theorem 3.1 in [18]. Therefore, {zk} is bounded and hence it has at least one
accumulation point z∗ := (µ∗, x∗, y∗).

Finally, we prove (iii). Let z∗ be an accumulation point of {zk}. Then, there exists
a subsequence, which we write without loss of generality as {zk}, such that {zk} con-
verges to z∗ as k → ∞. It follows from the continuity of H that lim

k→∞
‖H(zk)‖ =

‖H(z∗)‖. Thus, from the result (i) we know that H(z∗) = 0 and z∗ is a solution

to (1.1). So, we complete the proof. �

Next, we discuss the local convergence of Algorithm 3.1. For this purpose, we

need the concept of semismoothness which was originally introduced by Mifflin [21]

for functionals. Qi and Sun [25] extended the definition of semismooth function to

vector-valued functions. A locally Lipschitz function F : R
n → R

m, which has the

generalized Jacobian ∂F (z) as in Clarke [13], is said to be semismooth at x ∈ R
n if

lim
V ∈∂F (x+th′),h′→h,t↓0

{V h′} exists for any h ∈ R
n; F is said to be strongly semismooth

at x if F is semismooth at x and, for any V ∈ ∂F (x + h), h → 0, it follows that

(4.2) F (x + h) − F (x) − V h = O(‖h‖2).

237



Lemma 4.3. Let ϕ(µ, x, y) be defined by (2.3). Then, ϕ(µ, x, y) is strongly

semismooth at all points (µ, x, y) ∈ R++ × R
n × R

n.

P r o o f. Theorem 4.2 in [9] shows that the function g(x, µ) =
√

x2 + µ2
e is

strongly semismooth at (x, µ) ∈ R
n × R. By recalling the definition of ϕ and the

fact that the composition of strongly semismooth functions is strongly semismooth,

we can obtain that ϕ(µ, x, y) is strongly semismooth at all points (µ, x, y) ∈ R++ ×
R

n × R
n. �

Since a vector-valued function is (strongly) semismooth if and only if its all com-

ponent functions are (strongly) semismooth, by Lemma 4.3, we obtain the following

corollary:

Corollary 4.4. Let H(z) be defined by (3.1). Then, there exists a neighborhood

N(z∗) of z∗ such that H(z) is semismooth at any point z ∈ N(z∗). Furthermore,

H(z) is strongly semismooth at any point z ∈ N(z∗) if F ′(x) is locally Lipschitz

continuous around x∗.

To obtain the local quadratic convergence of the algorithm, we need a few con-

ditions. For related smoothing methods, a typical condition is that z∗ satisfies the

strict complementarity condition and is nondegenerate (e.g., [3]–[5]). In this paper,

we use the following assumption:

A s s um p t i o n 4.2.

(i) All V ∈ ∂H(z∗) are nonsingular.

(ii) F ′(x) is locally Lipschitz continuous around x∗.

Theorem 4.5. Suppose that F is a continuously differentiable and monotone

function and that z∗ is an accumulation point of the iteration sequence {zk} gener-
ated by Algorithm 3.1. If Assumption 4.2 holds, then

(a) zk+1 = zk + ∆zk for all sufficiently large k,

(b) {zk} converges to z∗ quadratically, i.e., ‖zk+1−z∗‖ = O(‖zk −z∗‖2); moreover,

µk+1 = O(µ2
k).

P r o o f. Theorem 4.2 shows that H(z∗) = 0. Since all V ∈ ∂H(z∗) are non-

singular, it follows from Proposition 3.1 in [25] that ‖H ′(zk)−1‖ = O(1) holds for

all zk sufficiently close to z∗. Since H(·) is strongly semismooth around z∗, for all

zk sufficiently close to z∗, we have

(4.3) ‖H(zk) − H(z∗) − H ′(zk)(zk − z∗)‖ = O(‖zk − z∗‖2).

238



Note that H is locally Lipschitz continuous near z∗ since it is semismooth. Thus,

‖H(zk)‖ = O(‖zk − z∗‖) holds for all zk sufficiently close to z∗. So, for all zk

sufficiently close to z∗, it follows from (3.17) and (4.3) that

‖zk + ∆zk − z∗‖(4.4)

= ‖zk + H ′(zk)−1[−H(zk) + βk‖H(zk)‖z] − z∗‖
6 ‖H ′(zk)−1‖[‖H(zk) − H(z∗) − H ′(zk)(zk − z∗)‖ + µ0τ‖H(zk)‖2]

= O(‖zk − z∗‖2),

where the inequality uses the fact that βk = τ‖H(zk)‖ for all zk sufficiently close

to z∗. Similarly as the proof of Theorem 3.1 in [24], we have ‖zk−z∗‖ = O(‖H(zk)‖)
for all zk sufficiently close to z∗. Hence, it follows from (4.4) that for all zk sufficiently

close to z∗,

(4.5) ‖H(zk + ∆zk)‖ = O(‖zk + ∆zk − z∗‖) = O(‖zk − z∗‖2) = O(‖H(zk)‖2).

From Theorem 4.2, we know that ‖H(zk)‖ → 0 as k → ∞. Thus, (4.5) implies that
αk = 1 for all zk sufficiently close to z∗. This, together with (4.4), indicates that the

result (a) holds, and for all zk sufficiently close to z∗,

‖zk+1 − z∗‖ = O(‖zk − z∗‖2).

Next, we prove the second part of (b). It follows from (a) that for all sufficiently

large k,

(4.6) µk+1 = µk + ∆µk = µ0βk‖H(zk)‖ = µ0τ‖H(zk)‖2.

Thus, for all sufficiently large k, by using (4.5) and (4.6) we have

µk+1

µ2
k

=
‖H(zk)‖2

µ0τ‖H(zk−1)‖4
=

O(‖H(zk−1)‖4)

µ0τ‖H(zk−1)‖4
,

which implies that µk+1 = O(µ2
k). This completes the proof. �
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5. Numerical experiments

In this section, we conduct some numerical experiments to solve some SOCCP’s by

Algorithm 3.1 and report the computational results. All experiments were performed

on a personal computer with 2.0GB memory and Intel(R) Pentium(R) Dual-Core

CPU 2.93 GHz×2. The operating system was Windows XP and the computer codes
were all written in Matlab 7.0.1. In all the experiments, we used ‖H(zk)‖ 6 10−8 as

the stopping criterion.

5.1. Linear case

Find (x, y) ∈ R
n × R

n such that

(5.1) x ∈ K, y ∈ K, xTy = 0, y = Mx + q,

where M ∈ R
n×n and q ∈ R

n. We used x0 = e and y0 = 0 as the starting points.

In the first set of experiments, we set

M = diag(1/n, 2/n, . . . , 1), q = (−1,−1, . . . ,−1)T.

The parameters used in Algorithm 3.1 were chosen as µ0 = 0.1, σ = 0.5, δ = 0.8,

τ = 0.95/(1 + ‖H(z0)‖). The results are listed in Tab. 1, where n denotes the

problem size; IT and CPU denote the number of iterations and the CPU time in

seconds, respectively; FV and MU denote the value of ‖H(zk)‖ and µk when the

algorithm terminates.

n IT CPU FV MU

8 6 0.015 1.6874 × 10−9 1.4683× 10−9

16 8 0.015 4.2556 × 10−11 2.8190× 10−14

32 9 0.016 4.8565 × 10−10 6.5322× 10−14

64 11 0.016 2.5334 × 10−9 2.3882× 10−10

128 15 0.531 6.1484 × 10−14 1.5337× 10−18

256 21 5.516 4.1897 × 10−14 2.9229× 10−17

Table 1. Numerical results for the linear SOCCP of various problem sizes.

In the second set of experiments, the matrix M was obtained by setting M =

NTN , where N was a square matrix. Elements of N and q were chosen randomly

from the interval [0, 1]. The random problems of each case were generated 10 times.

Tab. 2 gives the results when we chose parameters in Algorithm 3.1 as µ0 = 0.1,

σ = 0.5, δ = 0.8, τ = 0.95/(1 + ‖H(z0)‖), in which n denotes the problem size;
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MIT and MCPU denote the maximum values of the number of iterations and the

CPU time in seconds, respectively; AIT and ACPU denote the average values of

the number of iterations and the CPU time in seconds, respectively; MFV and

MGAP denote the maximum values of ‖H(z)‖ and |xTy| at the final iteration in
the 10 trials, respectively.

n MIT AIT MCPU ACPU MFV MGAP

100 7 6.4 0.15 0.12 8.0853 × 10−9 3.9338× 10−9

200 9 7.3 1.05 0.85 2.0309 × 10−10 5.2779× 10−11

300 8 7.8 3.00 2.92 2.3614 × 10−9 9.5040× 10−10

400 9 8.5 7.63 7.16 7.6918 × 10−9 2.6244× 10−9

500 10 8.8 16.03 14.11 4.6039 × 10−9 1.1348× 10−9

600 9 8.6 24.38 23.28 7.4057 × 10−10 2.2742× 10−10

700 9 8.8 38.19 37.26 7.5673 × 10−10 1.9741× 10−10

800 12 9.4 73.31 55.65 7.8235 × 10−9 1.5626× 10−9

Table 2. Numerical results for the linear SOCCP of various problem sizes.

Table 3 gives the results for our second set of experiments when we chose param-

eters in Algorithm 3.1 as µ0 = 0.1, σ = 0.25, δ = 0.5, τ = 0.5/(2 + ‖H(z0)‖).

n MIT AIT MCPU ACPU

100 7 6.4 0.14 0.12

200 8 7.2 0.94 0.84

300 8 7.3 3.00 2.68

400 9 7.9 7.65 6.71

500 9 8.2 14.59 13.26

600 9 8.1 24.56 22.11

700 10 8.5 42.77 36.34

800 12 9.2 75.50 54.89

Table 3. Numerical results for the linear SOCCP of various problem sizes.

From the results in Tabs. 2 and 3, we may see that Algorithm 3.1 is effective for

solving the SOCCP (5.1). It can solve all the test problems and can deal with large-

scale SOCCP problems. It can find a solution point meeting the desired accuracy in

few iterations and in short CPU time. In addition, we also find that there are slight

changes in results for different values of σ, δ, and τ .

In our third set of experiments, elements of q were chosen randomly from the

interval [−1, 1] and M = NTN , where N ∈ R
n×n was a sparse matrix (the density

of N is nonzero) whose elements were chosen randomly from the interval [0, 1]. The
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random problems were generated 10 times for each nonzero density with problem

size n = 100 and n = 500. The parameters used in Algorithm 3.1 were chosen

as µ0 = 0.1, σ = 0.5, δ = 0.8, τ = 0.95/(1 + ‖H(z0)‖). The tested results are
listed in Tabs. 4 and 5, where Dens. denotes the nonzero density of matrix N ;

AIT and ACPU denote the average values of the number of iterations and the

CPU time in seconds, respectively; MFV and MMU denote the maximum values

of ‖H(z)‖ and µ at the final iteration in the 10 trials for each nonzero density,

respectively.

Dens. (%) AIT ACPU MFV MMU

5 7.6 0.217 6.0586× 10−10 3.5705× 10−12

10 7.8 0.245 1.5797× 10−9 2.2005× 10−11

20 7.1 0.224 5.2156× 10−9 7.3635× 10−11

40 7.2 0.241 7.6694× 10−9 4.6839× 10−11

60 7.2 0.209 5.7693× 10−9 1.9911× 10−11

80 7.3 0.236 3.0560× 10−9 3.7419× 10−12

Table 4. Numerical results for the linear SOCCP with different nonzero density (n = 100).

Dens. (%) AIT ACPU MFV MMU

5 7.9 23.21 1.0290× 10−9 2.6611× 10−11

15 8.0 23.87 3.9807× 10−9 7.5880× 10−12

35 8.2 23.18 8.5395× 10−9 4.1456× 10−12

55 8.2 22.37 9.2832× 10−9 1.5064× 10−12

75 7.8 20.47 8.7656× 10−10 1.3906× 10−13

95 8.3 22.49 2.4070× 10−9 1.9853× 10−13

Table 5. Numerical results for the linear SOCCP with different nonzero density (n = 500).

The results in Tabs. 4 and 5 show that our algorithm performs well. It has good

convergence and numerical stability. The number of iterations and CPU time slightly

change with the sparsity of N . We have also tested some other problems, and the

computation effect is similar.

5.2. Nonlinear case

Find (x, y) ∈ R
5 × R

5 such that

(5.2) x ∈ K, y ∈ K, xTy = 0, y = F (x),
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where K = K3 ×K2 and F : R
5 → R

5 is given by

F (x) =















24(2x1 − x2)
3 + exp(x1 − x3) − 4x4 + x5

−12(2x1 − x2)
3 + 3(3x2 + 5x3)/

√

1 + (3x2 + 5x3)2 − 6x4 − 7x5

− exp(x1 − x3) + 5(3x2 + 5x3)/
√

1 + (3x2 + 5x3)2 − 3x4 + 5x5

4x1 + 6x2 + 3x3 − 1

−x1 + 7x2 − 5x3 + 2















.

From the analysis in [17], we know that the function F (x) is monotone.

In the experiments, the initial points of Algorithm 3.1 were chosen randomly. We

set the parameters in Algorithm 3.1 as σ = 0.5, δ = 0.8, τ = 0.95/(1 + ‖H(z0)‖) and
µ0 was a random number in [1, 10]. We tested 10 times for this problem. Numerical

results are summarized in Tab. 6, where IT and CPU denote the number of itera-

tions and the CPU time in seconds, respectively; FV and GAP denote the values

of ‖H(z)‖ and |xTy| at the final iteration, respectively.

µ0 IT CPU FV GAP

7.3927 12 0.017 2.1610× 10−12 4.1943× 10−13

8.2521 20 0.016 3.0839× 10−11 3.3006× 10−12

1.7885 12 0.015 1.5593× 10−15 1.3878× 10−17

3.7678 10 0.016 1.2750× 10−10 2.6257× 10−11

7.4862 11 0.015 3.1223× 10−12 5.8269× 10−13

4.8751 13 0.016 1.8743× 10−15 1.3878× 10−16

7.3947 11 0.017 4.7698× 10−9 8.9623× 10−10

2.7836 12 0.016 3.5686× 10−14 6.0091× 10−15

7.1534 12 0.015 1.6149× 10−12 2.7273× 10−13

6.6358 20 0.015 9.8931× 10−10 1.7717× 10−10

Table 6. Numerical results for the nonlinear SOCCP with various initial points.

5.3. Comparison with interior point method

We consider the following problem:

min

r
∑

i=1

cT
i xi

(SOCP) s.t.
r

∑

i=1

Aixi = b,

xi ∈ Kni , i = 1, . . . , r,

where ci, xi ∈ R
ni , Ai ∈ R

m×ni , and Kni is an ni-dimensional second-order cone.

Let y ∈ R
m be the dual variable of the equality constraint. The KKT system of
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the SOCP is

(5.3)
r

∑

i=1

Aixi = b, xT
i (ci − AT

i y) = 0, xi ∈ Kni , ci − AT
i y ∈ Kni , i = 1, . . . , r.

Let n =
r
∑

i=1

ni, c = (c1, . . . , cr), x = (x1, . . . , xr), A = (A1, . . . , Ar). We solved the

problem (5.3) by Algorithm 3.1 and SDPT3 [29], a successful interior point method

software for the SOCP. The tested problems were randomly generated with sizes

n(= 2m) from 100 to 400 with each ni = 5. We generated a random matrix A and

a random vector x in the second-order cone which give a right-hand side b = Ax

and hence the problem is feasible. Moreover, we generated a random vector c in the

second-order cone, so the optimal value of the problem is obtainable. Throughout

the computational experiments, the parameters used in Algorithm 3.1 were chosen

as µ0 = 2 × 10−3, δ = 0.65, σ = 0.05, τ = 0.95/(1 + ‖H(z0)‖). Denote e
ni =

(1, 0, . . . , 0)T, an ni-dimensional vector; and e = (en1 , . . . , enr). We chose x0 = e,

y0 = 0 as the starting points.

The random problems of each case were generated 5 times. Tab. 7 and Tab. 8

give the numerical results when we implemented Algorithm 3.1 and SDPT3 for the

problem (5.3), respectively, wheremIT denotes the minimum value of the number of

iterations, AIT denotes the average value of the number of iterations, MCPU de-

notes the maximum value of the CPU time in seconds, ACPU denotes the average

value of the CPU time in seconds, AFV denotes the average value of ‖H(zk)‖ when
the algorithm terminates among the 5 tests, and mFV denotes the minimum value

of ‖H(zk)‖ when the algorithm terminates among the 5 tests. Comparing Tab. 7
and Tab. 8, we may see that the numerical results of Algorithm 3.1 are better than

those by SDPT3, either in terms of the number of iterations or the CPU time.

m n mIT AIT MCPU ACPU AFV mFV

50 100 11 12.4 0.92 0.75 2.43 × 10−9 5.72 × 10−10

100 200 15 16.6 1.26 1.02 1.18 × 10−10 2.78 × 10−12

150 300 13 15.8 2.05 2.33 9.53 × 10−9 6.57 × 10−11

200 400 12 13.2 4.51 3.94 5.82 × 10−9 3.44 × 10−10

Table 7. Numerical results of Algorithm 3.1 for the problem (5.3).

m n mIT AIT MCPU ACPU AFV mFV

50 100 13 14.2 1.21 0.81 5.94 × 10−9 6.38 × 10−10

100 200 15 18.4 3.77 1.65 4.78 × 10−9 3.94 × 10−11

150 300 14 17.2 5.18 3.63 1.71 × 10−9 6.79 × 10−11

200 400 16 19.6 5.96 4.88 1.32 × 10−10 3.02 × 10−10

Table 8. Numerical results of SDPT3 for the problem (5.3).
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6. Conclusions

It has been shown in [33] that the Qi-Sun-Zhou smoothing Newton method [27]

performs very efficiently for solving complementarity problems in practice. In this

paper, by modifying and extending the Qi-Sun-Zhou method [27], we propose a

smoothing Newton method for solving the SOCCP based on a new smoothing func-

tion. This new function is coercive under suitable conditions, which plays an im-

portant role in the convergence analysis. We prove that the proposed algorithm is

globally and locally quadratically convergent under suitable assumptions. Some nu-

merical results are also reported which indicate that our algorithm is effective for

solving the SOCCP.
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