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Abstract. A new smoothing function of the well known Fischer-Burmeister function is given.

Based on this new function, a smoothing Newton-type method is proposed for solving second-

order cone programming. At each iteration, the proposed algorithm solves only one system of

linear equations and performs only one line search. This algorithm can start from an arbitrary point

and it is Q-quadratically convergent under a mild assumption. Numerical results demonstrate the

effectiveness of the algorithm.
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1 Introduction

The second order cone (SOC) in Rn(n ≥ 2), also called the Lorentz cone or

the ice-cream cone, is defined as

Qn =
{
(x1; x2)| x1 ∈ R, x2 ∈ Rn−1 and x1 ≥ ‖x2‖)

}
,
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here and below, ‖ ∙ ‖ refers to the standard Euclidean norm, n is the dimension

of Qn , and for convenience, we write x = (x1; x2) instead of (x1, xT
2 )T . It is

easy to verify that the SOC Qn is self-dual, that is

Qn = Q∗
n =

{
s ∈ Rn : sT x ≥ 0, for all x ∈ Qn

}
.

We may often drop the subscripts if the dimension is evident from the context.

For any x = (x1; x2), y = (y1; y2) ∈ R × Rn−1, their Jordan product is

defined as [5]

x ◦ y =
(
xT y; x1 y2 + y1x2

)
.

Second-order cone programming (SOCP) problems are to minimize a linear

function over the intersection of an affine space with the Cartesian product of

a finite number of SOCs. The study of SOCP is vast important as it covers

linear programming, convex quadratic programming, quadratically constraint

convex quadratic optimization as well as other problems from a wide range of

applications in many fields, such as engineering, control, optimal control and

design, machine learning, robust optimization and combinatorial optimization

and so on [13, 24, 4, 23, 29, 22, 18, 10, 11].

Without loss of generality, we consider the SOCP problem with a single SOC

(PSOCP) min
{
〈c, x〉 : Ax = b, x ∈ Q

}
(1)

and its dual problem

(DSOCP) max
{
〈b, y〉 : AT y + s = c, s ∈ Q, y ∈ Rm

}
, (2)

where c ∈ Rn, A ∈ Rm×n and b ∈ Rm , with an inner product 〈∙, ∙〉, are given

data. x ∈ Q is variable and the set Q is an SOC of dimension n. Note that our

analysis can be easily extended to the general case with Cartesian product of

SOCs.

We call x ∈ Q primal feasible if Ax = b. Similarly (y, s) ∈ Rm × Q is

called dual feasible if AT y + s = c. For a given primal-dual feasible point

(x, y, s) ∈ Q×Rm ×Q, 〈x, s〉 is called the duality gap due to the well known

weak dual theorem, i.e., 〈x, s〉 ≥ 0, which follows that

〈c, x〉 − 〈b, y〉 = 〈AT y + s, x〉 − 〈Ax, y〉 = 〈x, s〉 ≥ 0.
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Let us note that 〈x, s〉 = 0 is sufficient for optimality of primal and dual feasible

(x, y, s) ∈ Q×Rm ×Q.

Throughout the paper, we make the following Assumption:

Assumption 2.1. Both (PSOCP) and its dual (DSOCP) are strictly feasible.

It is well known that under the Assumption 2.1, the SOCP is equivalent to its

optimality conditions:

Ax = b,

AT y + s = c,

x ◦ s = 0, x, s ∈ Q, y ∈ Rm,

(3)

where 〈x, s〉 = 0 is usually referred to as the complementary condition.

There are an extensive literature focusing on interior-point methods (IPMs) for

(PSOCP) and (DSOCP) (see, e.g., [1, 17, 6, 23, 16, 11] and references therein).

IPMs typically deal with the following perturbation of the optimality conditions:

Ax = b,

AT y + s = c,

x ◦ s = μe, x, s ∈ Q, y ∈ Rm,

(4)

where μ > 0 and e = (1; 0) ∈ R×Rn−1 is identity element. This set of condi-

tions are called the central path conditions as they define a trajectory approach-

ing the solution set as μ ↓ 0. Conventional IPMs usually apply a Newton-type

method to the equations in (4) with a suitable line search dealing with constraints

x ∈ Q and s ∈ Q explicitly.

Recently smoothing Newton methods [2, 14, 25, 19, 20, 7, 15, 8, 12] have

attracted a lot of attention partially due to their superior numerical perform-

ances. However, some algorithms [2, 19] depend on the assumptions of uniform

nonsingularity and strict complementarity. Without the uniform nonsingularity

assumption, the algorithm given in [27] usually needs to solve two linear systems

of equations and to perform at least two line searches at each iteration. Lastly,

Qi, Sun and Zhou [20] proposed a class of new smoothing Newton methods for

nonlinear complementarity problems and box constrained variational inequal-

ities under a nonsingularity assumption. The method in [20] was shown to be
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locally superlinearly/quadratically convergent without strict complementarity.

Moreover, the smoothing methods available are mostly for solving the comple-

mentarity problems [2, 3, 19, 20, 7, 8], but there is little work on smoothing

methods for the SOCP.

Under certain assumptions, IPMs and smoothing methods are globally conver-

gent in the sense that every limit point of the generated sequence is a solution of

optimality conditions (3). However, with the exception of the infeasible IPMs

[2, 21, 20], they need a feasible starting point.

Fukushima, Luo and Tseng studied Lipschitzian and differential properties

of several typical smoothing functions for second-order cone complementar-

ity problems. They derived computable formulas for their Jacobians, which

provide a theoretical foundation for constructing corresponding non-interior

point methods. The purpose of this paper is just to present such a non-interior

point method for problem (PSOCP), which employs a new smoothing func-

tion to characterize the central path conditions. We stress on the demonstration

of the global convergence and locally quadratic convergence of the proposed

algorithm.

The new smoothing algorithm to be discussed here is based on perturbed opti-

mality conditions (4) and the main difference from IPMs is that we reformulate

(4) as a smoothing linear system of equations. It is shown that our algorithm has

the following good properties:

(i) The algorithm can start from an arbitrary initial point;

(ii) The algorithm needs to solve only one linear system of equations and

perform only one line search at each iteration;

(iii) The algorithm is globally and locally Q-quadratically convergent under

mild assumption, without strict complementarity. The result is stronger

than the corresponding results for IPMs.

The following notations and terminologies are used throughout the paper.

We use “,” for adjoining vectors and matrices in a row and “;” for adjoining

them in a column. Rn (n ≥ 1) denotes the space of n-dimensional real column

vectors, and Rn × Rm is identified with Rn+m . Denote x2 = x ◦ x . For any

x, y ∈ Rn , we write x <Q y or x 4Q y (respectively, x �Q y or x ≺Q y) if

Comp. Appl. Math., Vol. 30, N. 3, 2011



“main” — 2011/11/25 — 13:23 — page 573 — #5

LIANG FANG and ZENGZHE FENG 573

x − y ∈ Q or y − x ∈ Q (respectively, x − y ∈ intQ or y − x ∈ intQ, where

intQ denotes the interior of Q). R+(R++) denotes the set of nonnegative (pos-

itive) reals. For x ∈ Rn with eigenvalues λ1 and λ2, we can define the Frobe-

nius norm

‖x‖F :=
√

λ2
1 + λ2

2 =
√

tr(x2).

Since both eigenvalues of e are equal to one, ‖e‖F =
√

2. For any x, y ∈ Rn ,

the Euclidean inner product and norm are denoted by 〈x, y〉 = xT y and ‖x‖ =
√

xT x respectively.

The paper is organized as follows. In Section 2, we give the equivalent for-

mulation of the perturbed optimality conditions and some preliminaries. A

smoothing function associated with the SOC Q and its properties are given in

Section 3. In Section 4, we describe our algorithm. The convergence of the new

algorithm is analyzed in Section 5. Numerical results are shown in Section 6.

2 Preliminaries

For any vector x = (x1; x2) ∈ R×Rn−1, we define its spectral decomposition

associated with SOC Q as

x = λ1u1 + λ2u2, (5)

where the spectral values λi and the associated spectral vectors ui of x are

given by

λi = x1 + (−1)i+1‖x2‖, (6)

ui =






1

2

(
1; (−1)i+1 x2

‖x2‖

)
, x2 6= 0;

1

2
(1; (−1)i+1ω), x2 = 0,

(7)

for i = 1, 2, with any ω ∈ Rn−1 such that ‖ω‖ = 1. If x2 6= 0, then the

decomposition (5) is unique. Some interesting properties of λ1, λ2 and u1, u2

are summarized below.
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Property 2.1. For any x = (x1; x2) ∈ R × Rn−1, the spectral values λ1,

λ2 and spectral vectors u1, u2 as given by (6) and (7), have the following prop-

erties:

(i) u1 + u2 = e.

(ii) u1 and u2 are idempotent under the Jordan product, i.e., u2
i = ui , i = 1, 2.

(iii) u1 and u2 are orthogonal under the Jordan product, i.e., u1 ◦ u2 = 0, and

have length
√

2/2.

(iv) λ1, λ2 are nonnegative (respectively, positive) if and only if x ∈ Q (re-

spectively, x ∈ intQ).

Given an element x = (x1; x2) ∈ Rn , we define the arrow-shaped matrix

Lx =

(
x1 xT

2

x2 x1 I

)

,

where I represents the (n − 1) × (n − 1) identity matrix. It is easy to verify that

x ◦ s = Lx ◦ s = Ls ◦ x = Lx Lse for any s ∈ Rn . Moreover, Lx is symmetric

positive definite if and only if x ∈ intQ, i.e., x �Q 0.

3 A smoothing function associated with the SOC Q and its properties

First, let us introduce a smoothing function. In [7], it has been shown that the

vector valued Fischer-Burmeister function φF B(x, s) : Rn ×Rn → Rn defined

by

φF B(x, s) = x + s −
√

x2 + s2 (8)

satisfies the following important property

φF B(x, s) = 0 ⇐⇒ x ∈ Q, s ∈ Q, x ◦ s = 0. (9)

The Fischer-Burmeister function has many interesting properties. However,

it is typically nonsmooth, because it is not derivable at (0; 0) ∈ R × Rn−1,

which limits its practical applications. Recently, some smoothing methods are

presented, such as the method using Chen-Harker-Kanzow-Smale smoothing

function (see [9, 28] and its references therein).
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We now smoothing the function φF B , so that we get a characterization of

the central path conditions (4). By smoothing the symmetrically perturbed

φF B , we obtain the new vector-valued function 8 : D → Rn , defined by

8(μ, x, s) =
1

2μ

[
μ2e − (x − μe)2 − (s − μe)2

]
, (10)

where D = {(μ, x, s) ∈ R++ ×Rn ×Rn : μ > ‖
√

x2 + s2‖F}.

Proposition 3.1. For any (μ1, x, s), (μ2, x, s) ∈ D,

‖8(μ1, x, s) − 8(μ2, x, s)‖F < |μ1 − μ2|.

Proof. For any (μ1, x, s), (μ2, x, s) ∈ D, without loss of generality, we

assume μ1 ≥ μ2 >
√

x2 + s2. Thus, we have

‖8(μ1, x, s) − 8(μ2, x, s)‖F

= ‖ −
x2 + s2

2μ1
−

μ1

2
e +

x2 + s2

2μ2
+

μ2

2
e‖F

= ‖
(μ1 − μ2)(x2 + s2)

2μ1μ2
−

μ1 − μ2

2
e‖F

≤ ‖
(μ1 − μ2)(x2 + s2)

2μ1μ2
‖F + |

μ1 − μ2

2
|

=
|μ1 − μ2|

2μ1μ2
‖x2 + s2‖F +

|μ1 − μ2|

2

≤
|μ1 − μ2|

2μ1μ2
‖
√

x2 + s2‖F‖
√

x2 + s2‖F +
|μ1 − μ2|

2

<
|μ1 − μ2|

2μ1μ2
μ1μ2 +

|μ1 − μ2|

2

= |μ1 − μ2|,

which completes the proof. �

As we will show, the function 8(μ, x, s) have many good properties that can

be used to characterize the central path conditions (4). 8(μ, x, s) is smooth
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for any (μ, x, s) ∈ D. This property plays an important role in the analysis

of the quadratic convergence of our smoothing Newton method. Semismooth-

ness is a generalization concept of smoothness, which was originally introduced

in [15] and then extended by L. Qi in 1993. Semismooth functions include

smooth functions, piecewise smooth functions, convex and concave functions,

etc. The composition of (strongly) semismooth functions is still a (strongly)

semismooth function.

Definition 3.1. Suppose that H : Rn → Rm is a locally Lipschitz contin-

uous function. H is said to be semismooth at x ∈ Rn if H is directionally

differentiable at x and for any V ∈ ∂ H(x + 4x)

H(x + 4x) − H(x) − V (4x) = o(‖4x‖).

H is said to be p-order (0 < p < ∞) semismooth at x if H is semismooth

at x and

H(x + 4x) − H(x) − V (4x) = O(‖4x‖1+p).

In particular, H is called strongly semismooth at x if H is 1-order semismooth

at x .

The following concept of a smoothing function of a nondifferentiable func-

tion was introduced by Hayashi, Yamashita and Fukushima [8].

Definition 3.2. A function H : Rn → Rm is said to be a semismooth (respect-

ively, p-order semismooth) function if it is semismooth (respectively, p-order

semismooth) everywhere in Rn .

In fact, the function 8(μ, x, s) given by (10) is a smoothing function of

φF B(x, s). Thus, we can solve a family of smoothing subproblems 8(μ, x, s) =

0 for μ > 0 and obtain a solution of 8F B(x, s) = 0 by letting μ ↓ 0.

Definition 3.3 [8]. For a nondifferentiable function g : Rn → Rm , we con-

sider a function gμ : Rn → Rm with a parameter μ > 0 that has the following

properties:

(i) gμ is differentiable for any μ > 0;
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(ii) lim
μ↓0

gμ(x) = g(x) for any x ∈ Rn .

Such a function gμ is called a smoothing function of g.

Theorem 3.1. For any x, s ∈ Rn , let w :=
√

x2 + s2 whose spectral decom-

position associated with SOC Q is w = λ1u1 + λ2u2. If μ > ‖
√

x2 + s2‖F ,

then the following results hold:

(i) w < 0; (ii) μe � w; (iii) μ2e � w2.

Proof. Assume the spectral decomposition of w associated with SOC Q is

w = λ1u1 + λ2u2. From μ > ‖
√

x2 + s2‖F we have

μ > ‖
√

x2 + s2‖F = ‖λ1u1 + λ2u2‖F =
√

λ2
1 + λ2

2 ≥ max{λ1, λ2}. (11)

Thus, we have 0 ≤ λi < μ, i = 1, 2, which means that (i) holds. By

0 ≤ λi < μ, i = 1, 2, μe − w = (μ − λ1)u1 + (μ − λ2)u2 � 0,

which yields (ii), and μ2e − w2 = (μ2 − λ2
1)u1 + (μ2 − λ2

2)u2 � 0, which

gives (iii). �

Now, we give the main properties of 8(μ, x, s):

Theorem 3.2. (i) 8(μ, x, s) is globally Lipschitz continuous for any (μ,

x, s) ∈ D. Moreover, 8(μ, x, s) is continuously differentiable at any (μ,

x, s) ∈ D with its Jacobian

8′(μ, x, s) =












1

2μ2

(
x2 + s2 − μ2e

)

I −
1

μ
Lx

I −
1

μ
Ls












. (12)

(ii) lim
μ↓0

8(μ, x, s) = φF B(x, s) for any (x, s) ∈ Rn ×Rn . Thus, 8(μ, x, s) is

a smoothing function of 8F B(x, s).
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Proof. (i) It is not difficult to show that 8(μ, x, s) is globally Lipschitz con-

tinuous, and continuously differentiable at any (μ, x, s) ∈ D. Now we prove

(12). For any (μ, x, s) ∈ D, from (10) and by simply calculation, we have

8
′

μ(μ, x, s) =
1

2μ2
(x2 + s2 − μ2e),

8
′

x(μ, x, s) = I −
1

μ
Lx ,

8
′

s(μ, x, s) = I −
1

μ
Ls,

which yield (12).

Next, we prove (ii). For any x = (x1; x2) ∈ R × Rn−1 and s = (s1; s2) ∈

R × Rn−1, denote w =
√

x2 + s2 whose spectral decomposition associated

with SOC Q is w = λ1u1 + λ2u2. From Theorem 3.1, we have w < 0, and

0 ≤ λi ≤ μ, i = 1, 2. Therefore, we have

‖8(μ, x, s) − φF B(x, s)‖F

=

∥
∥
∥
∥

1

2μ

[
μ2e − (x − μe)2 − (s − μe)2

]
− x − s +

√
x2 + s2

∥
∥
∥
∥

F

=

∥
∥
∥
∥

1

2μ
(x2 + s2 + μ2e) −

√
x2 + s2

∥
∥
∥
∥

F

=

∥
∥
∥
∥

1

2μ
(
√

x2 + s2 − μe)2

∥
∥
∥
∥

F

=
1

2μ

∥
∥[(λ1 − μ)u1 + (λ2 − μ)u2]2

∥
∥

F

=
1

4μ

[
(λ1 − μ)2 + (λ2 − μ)2

]

≤
1

4μ

(
μ2 + μ2

)

=
1

2
μ → 0, when μ ↓ 0.

Thus, we have lim
μ↓0

8(μ, x, s) = φF B(x, s). Therefore, it follows from (i) and

Definition 3.3 that 8(μ, x, s) is a smoothing function of φF B(x, s). �
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4 Description of the algorithm

Based on the smoothing function (10) introduced in the previous section, the

aim of this section is to propose the smoothing Newton-type algorithm for the

SOCP and show the well-definedness of it under suitable assumptions.

Let z := (μ, x, c − AT y) ∈ D. By using the smoothing function (10), we

define the function G(μ, x, y) : R×Rn ×Rm → R×Rm ×Rn by

G(z) :=






μ

Ax − b

8(μ, x, c − AT y)




 . (13)

In view of (9) and (13), z∗ := (μ∗, x∗, y∗) is a solution of the system G(z) = 0

if and only if (x∗, y∗, c − AT y∗) solves the optimality conditions (3).

It is well-known that problems (PSOCP) and (DSOCP) are equivalent to (13)

[1, 20]. Therefore, z∗ is a solution of G(z) = 0 if and only if (x∗, y∗, c − AT y∗)

is the optimal solution of (PSOCP) and (DSOCP). Then we can apply Newton’s

method to the nonlinear system of equations G(z) = 0.

Let γ ∈ (0, 1) and define the function β : Rn+m+1 → R+ by

β(z) := γ min
{
1, ‖G(z)‖2

}
. (14)

Now we are in the position to give a formal description of our algorithm.

Algorithm 4.1. (A smoothing Newton-type method for SOCP).

Step 0. Choose constants δ ∈ (0, 1), σ ∈ (0, 1), and μ0 ∈ R++, and let

z̄ := (μ0, 0, 0) ∈ D. Let (x0, y0) ∈ Rn × Rm be arbitrary initial point and

z0 := (μ0, x0, y0). Choose γ ∈ (0, 1) such that γμ0 < 1/2. Set k := 0.

Step 1. If G(zk) = 0, then stop. Else, let βk := β(zk).

Step 2. Compute 1zk := (1μk,1xk,1yk) by solving the following system of

linear equations

G(zk) + G ′(zk)1zk = βk z̄. (15)

Step 3. Let νk be the smallest nonnegative integer ν such that

‖G(zk + δν1zk)‖
2 ≤

[
1 − σ(1 − 2γμ0)δ

ν
]
‖G(zk)‖

2. (16)
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Let λk := δνk .

Step 4. Set zk+1 := zk + λk1zk and k := k + 1. Go to step 1.

In order to analyze our algorithm, we study the Lipschitzian, smoothness and

differential properties of the function G(z) given by (13). Moreover, we de-

rive the computable formula for the Jacobian of the function G(z) and give the

condition for the Jacobian to be nonsingular.

Throughout the rest of this paper, we make the following assumption:

Assumption 4.1. The matrix A has full row rank, i.e., all the row vectors of A

are linearly independent.

Lemma 4.1 [7]. For any x, s ∈ Rn and any ω �Q 0, we have

ω2 �Q x2+s2 ⇒ Lω−Lx � 0, Lω−Ls � 0, (Lω−Lx)(Lω−Ls) � 0. (17)

Moreover, (17) remains true when “�” is replaced by “<” everywhere.

Theorem 4.1. Let z := (μ, x, y) ∈ D and G : D → D be defined by (13).

Then the following results hold.

(i) G is globally Lipschitz continuous, and continuously differentiable at

any z := (μ, x, y) ∈ D with its Jacobian

G ′(z) =







1 0 0
0 A 0

I −
1

2μ2

[
x2 +

(
c − AT y

)2 − μ2e
]

I −
1

μ
Lx −

(
I −

1

μ
L(

c−AT y
)
)

AT





 . (18)

(ii) Under Assumption 4.1, G ′(z) is nonsingular for any μ > 0.

Proof. By Theorem 3.1, we can easily show that (i) holds. Now we prove (ii).

For any fixed μ > 0, let

1z := (1μ,1x,1y) ∈ R×Rn ×Rm .

It is sufficient to prove that the linear system of equations

G ′(z)1z = 0 (19)
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has only zero solution, i.e., 1μ = 0, 1x = 0 and 1y = 0. By (18) and (19),

we have

1μ = 0, (20)

A1x = 0, (21)
(

I −
1

μ
Lx

)
1x −

(
I −

1

μ
L (c−AT y)

)
AT 1y = 0. (22)

Since

e2 �
(

x

μ

)2

+
(

c − AT y

μ

)2

,

It follows from Lemma 4.1 that

I −
1

μ
Lx � 0, I −

1

μ
L (c−AT y) � 0,

(
I −

1

μ
Lx

)(
I −

1

μ
L(c−AT y)

)
� 0. (23)

Premultiplying (23) by 1xT
(
I − 1

μ
L(c−AT y)

)−1
and taking into account A1x =

0, we have

1x T

(
I −

1

μ
L(c−AT y)

)−1 (
I −

1

μ
Lx

)
1x = 0. (24)

Denote

1x̃ =
(

I −
1

μ
L(c−AT y)

)−1

1x . (25)

From (24), we obtain

1x̃ T

(
I −

1

μ
Lx

)(
I −

1

μ
L(c−AT y)

)
1x̃ = 0. (26)

By (23),
(
I − 1

μ
Lx

)(
I − 1

μ
L(c−AT y)

)
is positive definite. Therefore, (26) yields

1x̃ = 0, and it follows from (25) that 1x = 0. Since A has full row rank, (21)

implies 1y = 0. Thus the linear system of equations (19) has only zero solution,

and hence G ′(z) is nonsingular. Thus, the proof is completed. �

By Theorem 4.1, we can show that Algorithm 4.1 is well-defined.

Theorem 4.2. Suppose that Assumption 4.1 holds. If μk > 0, then Algo-

rithm 4.1 is well-defined for any k ≥ 0.
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Proof. Since A has full row rank, it follows from Theorem 4.1 that G ′(zk)

is nonsingular for any μk > 0. Therefore, Step 2 is well-defined at the kth

iteration. Then by following the proof of Lemma 5 in [20], we can show the

well-definedness of Step 3. The proof is completed. �

5 Convergence analysis

In this section, we analyze the global and local convergence properties of Al-

gorithm 4.1. It is shown that any accumulation point of the iteration sequence

is a solution of the system G(z) = 0. If the accumulation point z∗ satisfies a

nonsingularity assumption, then the iteration sequence converges to z∗ locally

Q-quadratically without any strict complementarity assumption. To show the

global convergence of Algorithm 4.1, we need the following Lemma (see [20],

Proposition 6).

Lemma 5.1. Suppose that Assumption 4.1 holds. For any z̃ := (ũ, x̃, ỹ) ∈

R++ ×Rn ×Rm , and G ′(z̃) is nonsingular, then there exists a closed neigh-

borhood N (z̃) of z̃ and a positive number ᾱ ∈ (0, 1] such that for any z =

(u, x, y) ∈ N (z̃) and all α ∈ [0, ᾱ], we have u ∈ R++, G ′(z) is invertible and

‖G(z + α1z)‖2 ≤
[
1 − σ(1 − 2γμ0)α

]
‖G(z)‖2. (27)

Theorem 5.1. Suppose that Assumption 4.1 holds and that {zk} is the iteration

sequence generated by Algorithm 4.1. Then the following results hold.

(i) μk ∈ R++ and zk ∈ 2 for any k ≥ 0, where

2 = {z = (μ, x, y) ∈ D : μ ≥ β(z)μ0} . (28)

(ii) Any accumulation point z∗ := (μ∗, x∗, y∗) of {zk} is a solution of

G(z) = 0.

Proof. Suppose that μk > 0. It follows from (15) and Step 4 that

1μk = −μk + βkμ0, (29)

μk+1 = μk + λk1μk . (30)
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Substituting (29) into (30), we have

μk+1 = μk − λkμk + λkβkμ0 = (1 − λk)μk + λkβkμ0 > 0, (31)

which, together with μ0 > 0 and λk = δνk ∈ (0, 1) implies that μk ∈ R++ for

any k ≥ 0.

Now we prove zk ∈ 2 for any k ≥ 0 by induction. Since

β0 = β(z0) = γ min
{
1, ‖G(z0)‖

2
}

≤ γ ∈ (0, 1),

it is easy to see that z0 ∈ 2. Suppose that zk ∈ 2, then

μk ≥ βkμ0. (32)

We consider the following two cases:

Case (I): If ‖G(zk)‖ > 1, then

βk = γ. (33)

Since βk+1 = γ min{1, ‖G(zk+1)‖2} ≤ γ , it follows from (16), (31), (32)

and (33) that

μk+1 − βk+1μ0 ≥ (1 − λk)βkμ0 + λkβkμ0 − γμ0 = βkμ0 − γμ0 = 0. (34)

Case (II): If ‖G(zk)‖ ≤ 1, then

βk = γ ‖G(zk)‖
2. (35)

By (16), we have ‖G(zk+1)‖ ≤ ‖G(zk)‖ ≤ 1. From (31), (35), and taking into

account βk+1 = γ ‖G(zk+1)‖2, we have

μk+1 − βk+1μ0 = (1 − λk)μk + λkβkμ0 − γμ0‖G(zk+1)‖
2

≥ (1 − λk)βkμ0 + λkβkμ0 − γμ0‖G(zk)‖
2

= βkμ0 − γμ0‖G(zk)‖
2

= 0. (36)

Combining (34) and (36) yields that zk ∈ 2 for any k ≥ 0.
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Now, we prove (ii). Without loss of generality, we assume that {zk} converges

to z∗ as k → +∞. Since {‖G(zk)‖} is monotonically decreasing and bounded

from below, it follows from the continuity of G(∙) that {‖G(zk)‖} converges to a

nonnegative number G(z∗). Then by the definition of β(∙), we obtain that {βk}

converges to

β∗ = γ min
{
1, ‖G(z∗)‖2

}
.

It follows from (15) and Theorem 5.1 (i) that

0 < μk+1 = (1 − λk)μk + λkβkμ0 ≤ μk,

which implies that {μk} converges to μ∗. If ‖G(z∗)‖ = 0, then we obtain the

desired result. In the following, we suppose ‖G(z∗)‖ > 0. By Lemma 4.1,

0 < β∗μ0 ≤ μ∗. It follows from Theorem 4.1 that G ′(z∗) exists and it is

invertible. Hence, by Lemma 5.1, there exists a closed neighborhood N (z̃) of

z̃ and a positive number ᾱ ∈ (0, 1] such that for any z = (μ, x, y) ∈ N (z̃) and

all α ∈ [0, ᾱ], we have μ ∈ R++, G ′(z) is invertible and

‖G(z + α1z)‖2 ≤
[
1 − σ(1 − 2γμ0)α

]
‖G(z)‖2. (37)

Therefore, for a nonnegative integer ν̄ such that δν̄ ∈ (0, ᾱ], for all sufficiently

large k, we have

‖G(zk + δν̄1zk)‖
2 ≤

[
1 − σ(1 − 2γμ0)δ

ν̄
]
‖G(zk)‖

2.

For all sufficiently large k, since λk = δνk ≥ δν̄ , it follows from (16) that

‖G(zk + δν̄1zk)‖
2 ≤

[
1 − σ(1 − 2γμ0)λk

]
‖G(zk)‖

2

≤
[
1 − σ(1 − 2γμ0)δ

ν̄
]
‖G(zk)‖

2.

This contradicts the fact that the sequence {‖G(zk)‖} converges to ‖G(z∗)‖ > 0.

This completes the proof. �

To establish the locally Q-quadratic convergence of our smoothing Newton

method, we need the following assumption:

Assumption 5.1. Assume that z∗ satisfies the nonsingularity condition, i.e.,

all V ∈ ∂G(z∗) are nonsingular.

Now we are in the position to give the rate of convergence for Algorithm 4.1.
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Theorem 5.2. Suppose that Assumption 4.1 holds and that z∗ is an accumu-

lation point of the iteration sequence {zk} generated by Algorithm 4.1. If

Assumption 5.1 holds, then:

(i) λk ≡ 1 for all zk sufficiently close to z∗;

(ii) {zk} converges to z∗ Q-quadratically, i.e., ‖zk+1 − z∗‖ = O(‖zk − z∗‖2);

moreover, μk+1 = O(μ2
k).

Proof. By using Lemma 3.1 and Theorem 4.1, we can prove the theorem

similarly as in Theorem 8 of [20]. For brevity, we omit the details here. �

6 Numerical results

In this section, we conducted some numerical experiments to evaluate the ef-

ficiency of Algorithm 4.1. All these experiments were performed on an IBM

notebook computer R40e with Intel(R) Pentium(R) 4 CPU 2.00 GHz and 512

MB memory. The operating system was Windows XP SP2 and the implemen-

tations were done in MATLAB 7.0.1. For comparison purpose, we also use

SDPT3 solver [12] which is an IPM for the SOCP.

For simplicity, we randomly generate six test problems with size m = 50 and

n = 100. To be specific, we generate a random matrix A ∈ Rm×n with full row

rank and random vectors

x ∈ intQ, s ∈ intQ, y ∈ Rm, and then let b := Ax and c := AT y + s.

Thus the generated problems (PSOCP) and (DSOCP) have optimal solutions

and their optimal values coincide, because the set of strictly feasible solutions

of (PSOCP) and (DSOCP) are nonempty. Let x0 = e ∈ Rn and y0 = 0 ∈ Rm

be initial points. The parameters used in Algorithm 4.1 were as follows:

μ0 = 0.01, σ = 0.35, δ = 0.65 and γ = 0.90.

We used ‖H(z)‖ ≤ 10−5 as the stopping criterion.

The results in Table 1 indicate that Algorithm 4.1 performs very well. We also

obtained similar results for other random examples.
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SDPT3 Algorithm 4.1

problem IT CPU(s) IT CPU(s)

problem 1 8 0.2 6 0.09

problem 2 7 0.1 6 0.06

problem 3 9 0.2 7 0.08

problem 4 8 0.1 5 0.06

problem 5 9 0.1 7 0.06

problem 6 8 0.2 5 0.07

Table 1 – Comparison of Algorithm 4.1 and SDPT3 on SOCPs.
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