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Abstract. For the regression model yi =f(t i)  + el (e's lid N(0,a2)), it is 
proposed to test the null hypothesis tha t f i s  a polynomial of degree less 
than some given value m. The alternative is that f is such a polynomial 
plus a scale factor b ~/2 times an ( m -  l)-fold integrated Wiener process. 
For this problem, it is shown that no uniformly (in b) most powerful test 
exists, but a locally (at b = 0) most powerful test does exist. Derivation 
and calculation of the test statistic is based on smoothing spline theory. 
Some approximations of the null distribution of the test statistic for the 
locally most powerful test are described. An example using real data is 
shown along with a computing algorithm. 
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1. Introduction 

Consider the univariate regression model 

(1.1) y i =  f ( t i )  + ei, l < i <_ n , 

where 0 < tl < " "  < t, < 1 and e; -- lid N(0, O'2). We assume a 2 is known. As 
formulated,  there is no parametric form assumed for the regression func- 
tion f ( t ) .  Often, a polynomial model for f will be used, either because of 
theoretical considerations in the scientific application, or more often for 
the convenience of the statistical modeller. The simple linear regression 
f ( t )  = fll + fl2t is, of course, one such model. We consider here the problem 
of testing the null hypothesis 
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H0: f i s  a polynomial of degree < m ,  

where m is given (e.g., m = 2 in the simple linear regression context). Of 
course, the testing problem is not complete until we have specified the 
alternative. Our goal here is not to specify a parametric alternative, but to 
allow a fairly arbitrary departure from the null model. It is difficult to 
formalize such a general alternative, and we follow Wahba (1978) in 
modelling the departure from the polynomial null model by a stochastic 
process. Specifically, under H~ we assume 

(1.2) f ( t )  = ~ ait i-' + x/-bZ(t) .  
i=1 

The summation on the r.h.s, represents the polynomial null model. Here, 
b _  0 is a scale parameter, and Z(t) is the ( m -  1)-fold integrated Wiener 
process. With these specifications, we can restate the hypothesis testing 
problem in terms of the single parameter b: 

Ho: b = O  vs. HI: b > O .  

Even with the problem so simplified, it will be seen below that no UMP 
test exists. However, a locally most powerful (LMP) test does exist. We 
believe that the LMP test provides a very useful procedure for general 
purpose tests of adequacy of regression models. 

There have been many studies on the model departure from a poly- 
nomial representation (see Smith (1973), Blight and Ott (1975), Steinberg 
(1983), Wecker and Ansley (1983) and Green et al. (1985)). In the first three 
papers, this problem is considered from a Bayesian point of view similar to 
the one used here. 

In Subsection 2.1, we give a detailed description of the Bayesian 
model, i.e., the stochastic process prior for the possible departures from the 
polynomial model. In Subsection 2.2, a basis for the space of natural 
splines of degree ( 2 m -  1) is described. This basis was discovered by 
Demmler and Reinsch (1975), and will prove useful for the theoretical 
analysis. In particular, simple representations are given for the relevant 
distributions in Subsection 2.3. For this setup, it is shown that no Uniform- 
ly Most Powerful test exists (Subsection 2.4), but a Locally Most Powerful 
test does exist (Subsection 2.5). We briefly describe the test. For a function 
f let f =  ( f ( t l ) , . . . , f ( tn ) ) '  denote the vector of values at the observation 
points. Then, there is an n x n symmetric, nonnegative definite matrix R 
such that for all natural spline functionsf(see definition in Subsection 2.2), 

j ( f )  = fot [ f lml( t)12dt = f " R f  . 



TEST OF POLYNOMIAL REGRESSION 385 

Let R- denote the Moore-Penrose generalized inverse of R, then our test is 
given by 

(1.3) reject Ho if T= y'R-y 
nZt7 2 > C ,  

where, of course, the critical value C is chosen to achieve a desired 
significance level. Some alternative characterizations of R, useful for 
computing, are given in Subsection 2.5. Determination of C requires 
knowledge of the null distribution of T. Some approximations discussed in 
Subsection 2.6 are based on standard results about weighted sums of 
independent chi-squared variables. One of these approximations (the 
Monte Carlo method) is put to use in Section 3, where the methodology is 
applied to an example. In this example a 2 is unknown. We utilize T = y'R-y/ 
n2t~ 2 where 62 is a nonparametric estimate of tr 2. 

2. Mathematical theory 

2.1 Specification of the alternatives 
The prior distribution on the space of alternatives is suggested by the 

following result. 

THEOREM 2.1. (Wahba (1978)) Let f(t) ,  t e [0, 1] have the prior 
distribution which is the distribution of the stochastic process X¢(t), 
t e [0, 1], 

(2.1) 
m 

X~( t) = i=~= l Oi~i( t) "~- ~rb Z(  t) ' 

where dpi(t)=ti-1/(i - 1)!, i =  1 ,2 , . . . ,m,  b is fixed, 0 =  (01, . . . ,0m)'~ 
N(O, ~l,,×m), and Z(t) is the ( m -  1)-fold integrated Wiener process (see 
Shepp (1966), pp. 321-324), 

( t - u )  m-' 
Z(t)  = fo ?m- d W ( . )  . 

Assume f is independent of  the e's in (1.1). Then the polynomial spline fi, a 
which is the minimizer of  

1 ~ [ y i - f ( t i ) ]  2 + 2fol[f(m)(t)]2dt 
n i=1 

has the property 
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fn.~(t) : } i m  E¢(f(t)l  Y =  y) , 

with 2 = tTZ / nb, where E¢ is the expectation over the posterior distribution 
o f f ( t )  with prior (2.1). 

In our problem we consider 0 to be deterministic. In this setup, testing 
H o : f e H o  vs. H ~ ' f ¢ H o  is the same as testing H 0 : b - - 0  vs. Hi: b > 0 ,  
where H0 is the null space of J ( f )  and b is given in (2. I). 

2.2 Conversion o f  the original problem 
Let S ff denote the space of natural splines, where 

S m = {sis ~ C2m-2[0, 1], s is a polynomial of degree 2m - 1 

on  ( t i ,  ti+l), i = 1,.. . ,n - 1, and of degree m - 1 on [0, t0, (tn, 1]}. 

We consider a basis for S~ introduced by Demmler  and Reinsch (1975) 
consist ing of e igenfunct ions  {~bkn}~=i along with eigenvalues {pkn}~=l 
satisfying 

(2.2) --1 ~ dpjn(li)dPkn(ti) --- 6~jk 
n i = i  

(2.3) fo' Ck)~)( t)cb~m)( t)dt = pkn6jk , 

for j ,  k = I, . . . ,  n with 0 = p~n . . . . .  pmn < p m + l , n  <-- "'" <-- pnn. Here, ~jk is 
Kronecker 's  delta. Note that {4~xn,..., ~bmn} span the space of polynomials of 
degree _< m - 1. 

As long as we can find n basis functions, call them {ill,..., fin}, for S~, 
we can build the Demmler-Reinsch basis from that basis. One such basis 
that is popular is based on the fact that W~ is a reproducing kernel Hilbert 
space (Aronszajn (1950)). For  any t in [0, 1] there is an q(t) ~ W~' such that 
g(t) = (g, tl(t))we, where ( . ,  .)we is any valid inner product under which W~' 
is a Hilbert space. Then r/(t~),..., q(tn) form a basis for S m. Another  popular 
basis discussed in Subsection 2.5 is obtained from B-splines (Lyche and 
Schumaker  (1973)). 

Since the Demmler-Reinsch basis functions have nice properties such 
as (2.2) and (2.3), we will use them to t ransform our problem. Define 
projections by 

1 n 
yv  = -  

/'/ i = l  
v = 1 ,2 , . . . ,n ,  
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and 

- -  , , ~  , n i =lf(ti)cbv"(ti)' v = 1,2,. n 

These are the generalized Fourier  coefficients of the data  vector and the 
sampled function.  Our  original null hypothesis  now can be restated as H0: 
~ = 0 f o r v = m +  1,..., n. 

2.3 Calculation o f  distributions 
In this subsection, we derive several distr ibutional  results that  will be 

needed. 

LEMMA 2.1. Assume the errors ei's in (1.1) are iid N(O, a2). Then 
conditioned on f ,  )Tx,..., )7, are independent normal such that 

n 

l i~lf(ti)dPjn(ti)--~ E[~- i f ]  = --~ = 

0 - 2  

Var [)Tjlf] = - - .  
n 

PROOF. )7 can be expressed as ~ty where ~ = cbj,(t~)/n and y = 
(yl, . . . ,  y,)', while f =  ~ w h e r e f  = ( f( t l ) , . . . , f ( t , )) ' .  We know 

Law [Yl f ]  = N( f ,  0-2I), 

then 

Law [Yl f ]  = Law [gi ty l f  ) 

= N(q~Z a2q>'¢) 

- - /  . 
= N  ~ ' n  

This completes our proof.  

LEMMA 2.2. Assume the ei's are iid N(O, a 2) and that f is given by 
(1.2) where Z is an (m - 1)-fold integrated Wiener process independent o f  
the ei's. Then f,,+~ ..... f~ are independent normal with mean 0 and Var (~)  = 
bpf~ 1, m < j < n. 

PROOF. Let us put  
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n 

z l  (t) = j E z ~ . ( t ) ,  

where {4~,,..., 4>,n} is the Demmler-Reinsch basis and 

1 . 
z~ = - -  E 1 z ( t , ) ~ j . ( t i ) .  

/-/ i= 

where Z is the (m - 1)-fold integrated Wiener process. H e r e ~  = x/~zj. Note 
that Z1 is the natural spline of degree ( 2 m -  1) that interpolates Z at 
t l , . . . ,  tn. 

Now we will show the following: 

(2.4) z i = ) ( t ) d W ( t ) ,  j > m . 

Theorem 4.5.6 of Arnold ((1974), p. 74) states that f j  ~ m ) ( t ) d W  is normal- 

ly distributed with distribution N ( O , S ) ,  w h e r e  ~ (nm)(t) = ~,W'm+l,n~,l't(rn) zt ~),..., q)nn-t(ra)tta~t~. 11 

and S is the ( n -  m ) ×  ( n -  m) matrix whose ( i , j )  element is--f01Ch~mm+)i,,(t) 

"ch~m+)i.,(t)dt = Pm+~,,6~i. Thus, the proof is done once we establish (2.4). 

Let us first consider h ~ w2m[0, 1] and let 

n i=lh(ti)dPJn(ti) 

n 

g l ( t )  = j~lL~bj,(t) , :  

g2(t )  = h ( t )  - g~ ( t ) .  

Now 

fo' d' -- fo d' ÷ fo' *Jm'(og mV)d' 

= I~ +/2,  say.  

By the definition of gl and (2.3) 

I,  = ) ( t )g lm)( t )d t  = pin • 

So f o r j  > m (which implies p~, > 0) 
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(2.5) 
1 1 

hJ= -~j~ fo ch)~l(t)glm)(t)dt" 

Thus, if Z had m derivatives, (2.4) would follow from (2.5). 
Let us denote the n-fold integrated Wiener process by ZI,I, so Z -- ZIm-~I. 

Then we have 

(2 .6)  

(2.7) 

zl01(/)  = w(t), 

(t) -- f /  z , . -  ,,(u) du . 

(see Shepp (1966), p. 327). If we apply the fundamental  theorem of calculus 
(m - 1) times to (2.7), then we get 

= w ( t ) .  

Since Wis a.s. continuous on [0, 1], ZCm-1) is a.s. in cm-~[0, 1], the space of 
( m - 1 )  times continuously differentiable functions, and hence Zcm-~) 
W2 m-i, but ZIm-a) ¢ W2 m. Thus, it will be necessary to modify (2.5) to apply 
to functions in W2 ~-1. 

Now thj,'s are natural splines of degree (2m - 1) with knots tl,..., t,, so 
by Lemma 3.1 of Lyche and Schumaker  (1973), we have 

fo I qb)nm)( t) gt2m)( t) dt = i= 1 a i g 2 ( t i )  , 

for some constants a~ .... ,a, .  Since g2(ti)= 0, 1 <_ i<_n (because gl inter- 
polates h at t~,..., t,), we have 11 = 0. So we have 

(2 .8 )  
1 a 

hi= -~j fo qb)~'(t)h")(t)dt" 

Assuming m _> 2 and selectingj > m, by applying an integration by parts to 
(2.8), we obtain 

(2.9) 
1 . 1 f l  ira+ --~ i~lh(ti)dPjn(ti)--_ pj, "1o ~'Jn 1)(t)hlm-ll(t)dt, 

since ~b)~m+ll(0)= qbJnm+l)(1)= 0 by the definition of natural splines. (Note 
that 4,) m+ll ~ L2[0, 1] when m > 2.) Even though we have only shown (2.9) is 
valid for h e w2m[0, 1], the right-hand side of (2.9) is defined whenever 
h ~ W~-a[0, 1]. Now we show it holds for h ~ W~-a[0, 1]. 

Let us define the linear functional 2~: W2 m- ~ ~ R by 
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21(h)-- - ~ 1 / ' l ' ~ l m +  pj, Jo q~jn ll(t)hlm-ll(t)dt , 

where R is the set of real numbers. Then by the Cauchy-Schwarz inequality 

1 
[ / ] , l (h)  ] - <  IlCh)~+lJIIL~to,,]llhlm-llltL~tO, l] 

Pj~ 

1 II 4~J~+llllL2t0,~ Ilhll wr 't0,11. 
pjn 

So 21 is a bounded,  hence continuous, linear functional on W2 ~-~ (Theorem 
3.3.2 of Ash (1972)). Now define another linear functional 22:W2 ~-1 ~ R 
by 

__1 ~ h(ti)dPjn(li) 22(h) = n i=1 

Thus 22 is continuous since it is a linear combination of evaluation 
functionals at tl,..., tn. Further,  by (2.9) the linear functionals 21, 22 agree 
on W2 m, which is dense in W2 m-1. Two continuous linear functionals 
agreeing on a dense set must be identical, so 21 = 22. Thus, (2.9) holds for 
h ~ W2 m-1. 

Since Z ~ W2 m-l, we have 

1 fo 1 qb)~+ll(t)zim_l,(t)dt 
z j= - Ps. 

: __ _ _ l  1 (m+l) fo (t) w(t)dt. 
Psn 

This last integral equals 

_ 1 fol ch)~)( t)dW(t) ,  
Pj, 

by applying integration by parts. Thus, we have shown (2.4) for m _> 2. If 
m = 1, then ~b)21 is a step function, and the right-hand side of (2.8) equals 

n 

1 ,~1 chJ2l(ti)[h(ti+l) - h(t i)] .  
p i l l  "= 

Now W ,~ 2 is dense in C[0, 1], and this last expression extends to a bounded 
linear functional on C[0, 1]. Since ZI1) -- Wis in C[0, 1], the argument  goes 
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th rough  as before. 

2.4 Nonexistence of a UMP test 
We have the following setup; 

n i=i 

S: i f .  1 f(ti)4,~.(ti) + e(ti)4,~.(ti) 
n i=1 n i=1 

= ~ + ~ ,  

n 

where ~ denotes ( l / n )  ~ig(ti)4,vn(ti). As we observed, ~ N(O, a2I/n) and 

Law (.~vlfi)= N(f~, o'2/n). For v > m, since j~ is r andom and independent  
of ~'~, we have by Lemma  2.2 

Law (3%) = Law (f i  + L) 

= N(O, bpT.l+a---n). 

THEOREM 2.2. For all n sufficiently large, there exists no UMP test 
for Ho" b = 0  vs. Hi: b > 0 .  

PROOF. Comput ing  the likelihood ratio at an alternative b, 

f ( ; ib )  fl 
f(fi]O) ~=,.+~ bp;. 1 + 

n 

exp 

)- 1/z n Ir lb  I 
= II  1 + ---f- p~ exp 

i=m+l (7 

1 n~/ 1 x ~~o2 
y X  o2 2 bp;.' + n 

~x ~' ( n_Lb +p jo) 
nb a 2 

For  testing Ho: b = 0 vs. Ht:  b = bo, bo > 0, there exists a Most  Powerful  
test 4,0 such that  

(2.10a) Eotho = a and 

1 if T o > c o ,  

(2.10b) ~bo = 0 if To < co, 
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where To -- ]~ [~2/(nbo/a2 + Pin)]. Given another  alternative bl > 0, bl > bo, 
for testing Ho: b = 0 vs. HI" b = bt, there exists a Most  Powerful  test ~b~ 
such that  

(2.11a) Eothi = a and 

~bl= / 1 if T l > C l ,  
(2.1 lb) 

0 if 7"1 < Cl, 

where T~ = ]~ [.~:/(nb~/tr 2 + pj,)]. These two Most  Powerful  tests, ~bo and 
thl, are uniquely determined by (2.10a), (2.10b) and (2. l la), (2. l lb), respec- 
tively, except on a set which has Lebesgue measure 0 (see Lehmann  (1959), 
Theorem 1, p. 65). 

The rejection region for ~bo is the exterior of an ellipsoid given by 

~2 n Yi 
(.J~m+l,.-.,.~n): izm~+l I ---~ - + nbo ) > Co 

and for ch~ is 

~2 n yi 
2 

i=m+l ( nb~ 
--~-+ pin) 

> c~ 

If 4~o is U M P ,  then it must  be unique,  and P ( t ~ I  = t~o) = 1. Thus the two 
tests are essentially the same; then all of the axes are the same, which 
implies 

co(nbo + ~r2pin) = C! (nb~ + cr2pin), m < i < n .  

Thus c~ < co since b~ > b0, but subtracting the j - th  equat ion f rom the i-th 
equat ion gives 

(2.12) (pi. - pi.)Co = (pi. - pj.)cl for i, j > m . 

Here we need only show there exist i, j such that  pi ~ pj. We know pi,'s have 
a property that  says there exist kl, k2 such that  

.2m kli2m<pi+,,,.,,<_k21 , i =  1 , 2 , . . . , n - m ,  

see Utreras (1983). Thus,  if we have a large enough n, then there exist 
1. /2m i~,i2, i~ < i2, such that  k2i 2m < ~ 2 , so there exist two distinct nonzero 
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eigenvalues (we conjecture that if n _> m + 2, then there are two distinct 
nonzero eigenvalues). From (2.12), we have Co= Cl, which contradicts 
co > c~. So the two most powerful tests are different. This completes our 
proof. 

2.5 L M P  test 
THEOREM 2.3. There exists a L M P  test f o r  Ho: b = O vs. H~ : b > 0 .  

PROOF. Let us put 37>m = 07m+~,...,f,) '. The probability density func- 
tion of 97>m given b is 

n ( 0"2)-I/2 
1 bpj, 1 + -  exp 

l(.F>m [b) - (2i[)(n_m)/2 j =m[-[+ 1 n 
_ 1  ~ ~ 

( :) T J = m + l  bp~l + -  

n 

and the derivative w.r.t, b is 

n 
l'(.~>m I b) = l(.Y>mib) J :~+] 

1 -1 
_] -~- pj, 

Pin ~2 

bpT, 1 + -  bp~l + 
n n 

The L M P  test will reject when l'0710)> kl(510) (Ferguson (1967), p. 235) 

since we want to maximize (d/db)f,d( )l(Plb)dul =o subject to fqba(~) 

• l(.~[O)du -- a, where ~ba is the critical function. Thus, when 

n 
E 

j=m+l 

,_1) 
A n ~2 

( 0.2)2 ~ 02 ~ Cl , 
bp~ ~ + - -  bp~ ] + - -  

n n b=O 

n 
-1 ~2 we reject the null hypothesis. Then we can use T =  =m~+1 (pj, yj /0 "2) as our 

J 
test statistic, so we have the LMP test given by 

-1 ~2 
(2.13) reject H0 if E p:" yj j>m 0.2 ~ C . 

Here we derive an alternative formula  for T which does not use the 
Demmler-Reinsch basis and is useful for computations.  Let ¢~ denote the 
n × n matrix with entry ¢),7 {dpj,(ti)/n}. Then T t - t = = y ¢)pu¢ ) y where pM is an 
n × n diagonal matr ix  with diagonal entries p;n, and p~  is the Moore-  
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n 

Penrose g-inverse of p~,. Here the polynomial splinef,(t) = v_~lj~tkv,(t) is the 

element of S~ that interpolatesf Note that 

fot (fn Iml (t))2dt 
n 

t t 
: f  ~pM~7 

==-fRy. 

Thus, T=  ytR-Yln2tr 2, with R - =  n2~p-~q9 (since qitq5 = 1/n), the Moore- 
Penrose generalized inverse of R (see Rao (1973), p. 26). So we can 
summarize our test as follows: 

reject Ho: b = O vs. H~ : b > O if 
yt R - y  

T -  n2o. 2 is too large. 

We derive another expression for T in terms of B-splines (Lyche and 
Schumaker (1973) and de Boor (1978)). The formulae are valid for any 
basis for the natural spline functions, although B-splines are recommended 
for their local support properties. Let Bl( t ) , . . . ,Bn( t )  be the basis for S m, 
then i f f~  S m, 

f ( t )  = ~ ciB,(t) , 
i = I  

a n d f / =  ( f ( t l ) , . . . , f ( tn ) )  = Btc, where Bo = Bi(tj), i , j  = 1,..., n. Then 

] .  
-- ct Qc 

= f t B - I Q ( B ' ) - I  f 

= f R f  , 

R = B-1Q(Bt) -1 , 

q 

where Qo = fB!')B) "), the matrix of L2 inner product of m-th derivatives of 

B-splines. Note that Q is a (2m - 1) banded matrix and B is an (m - 1) 
banded matrix by the local support properties for B-splines. 

2.6 Distribution o f  the test statistic 
To get the critical value c we have to know the null distribution of T. 

There is no exact closed form for the distribution of T. We will consider 
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some approximat ions .  Assume X~,...,Xk are iid N(0, 1). We want  to 
k 

approximate  the dis t r ibut ion of Q = E aiXi 2, where ai's are positive 
i= l  

-1 constants. For  our setting, k = n - m  and a~ = p~+m,,/n. There are several 
approximations using different methods (Kotz et al. (1970)). Their cumula- 
tive distribution functions, Gk(a, q), are the following: 

(1) By power series expansion 

q)  = 
i=0 

q )i 
d (  -- 1 ) i (  T 

(k ), F -~-+ i +  1 

k _ i - 1  k 

where Co = j:irI aj 1/2, c' e = (1/0 ,:0Z'de-rCf' with d, e = (1/2)j Z'a/i'=l This method 

will probably not work well for the tail region of interest. 
(2) By Laguerre expansion 

q )  oo l 
G~(a,q)=G k,-~ +i~lCi 

( i -  1)! 

k+i) r(y 
q ~k/2-q/21-k/2 

where G(k, a) denotes the cumulative Z: distribution function with k degrees 
i -1 k 

of freedom and co = 1, c[= (1/i) ,=0 y' d[-lc~, with d =  (1/ 2) j~1(1_ - -  a j / f l )  i, 

and L!al(x) = (1/i[)eXx-a(di/dxi)(e-Xxi+a), and fl can be chosen by user. 
2 (3) B y z  -expansion 

Gk(a,q)=Y.c[G(k+ 2i, ~ ) ,  

k i -1  k 
where c~o =jN:l(fl/aj)~/:,_ c c = (1/i) r--0 "Y" diCrc~' with d c = (1/2) j~l(1.= - fl/aj) i. 
Here in the case of (2) and (3) Ruben (1962) suggested that the best choice 
of fl for computational  purposes is fl = 2a~ a2(a~ + a,) -1. 

(4) By fix 2 approximation 
Satterthwaite (1946) suggested the approximation of Q by R = fix 2, 

where fl and v are chosen to make the first two moments agree with those 
of Gk(a, q). Thus, after some calculation 

v -  k and f l -  k 
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(5) By Monte Carlo 
One very simple method for obtaining the null distribution of T is 

Monte Carlo. We describe the computa t ion  of a p-value for a given 
observed value t of T. For  each Monte Carlo trial, generate iid N(0, 1) 
r a n d o m  var iab les  X 1 , . . . , X , , - m  and  c o m p u t e  a va lue  of  T =  ( I / n )  

n-rn 
-1 1~2 

• i~=l p i+m,n i • Then the Monte Carlo estimate of the p-value is the propor- 

tion of Monte Carlo trials wherein T_> t. About  8000 Monte Carlo trials 
are required to estimate a p-value near .05 with ± .005 accuracy (95% 
confidence). 

3. Application to real data 

We use the algorithm of Lyche and Schumaker  (1973) to compute 
B-splines and the inner products of their m-th derivatives. As mentioned 

in Subsection 2.5, our  test statistic T = ( ~  m -1~2)/  pj YJ 0.2 is the same as 
J 

yt(B-1Q(B~)-l)-y/n=o-=, where B is the B-spline evaluation matrix whose 
(i, j )  element is Bi(tj) and Q is the inner products of m-th derivatives of 

B-splines with F o r  R = B-'Q(B') w e  c a n  d e c o m -  

p o s e  as R = UA U t where U is an orthogonal  matrix and A is a diagonal 
matrix with n - m nonzero 2/s and m zeros as its diagonal elements. Here 
we note that 2j = p f ln  because R = ¢~pUq~ t =  U ( p u / n ) U  t =  UA Ut. Then its 
Moore-Penrose  g-inverse R- will be U A - U  t where A- has n - m nonzero 
element as 1/2j and m zeros. 

Thus our test statistic T will be expressed as 

'J ," • rt x2 
T =  2 2 - ---T--~ t u jY)  , 

n O "  j=l nO" 

where Uj is the j - th  column vector of U corresponding to 2j. 
We compute the p-value by Monte Carlo as described in the previous 

section. Our test statistic T can be compared with 8000 t's where t - -  
n - m  

Z ( 2 f 1 / n 2 ) ~  2 and the Z/s are iid N(0, 1). The computat ion was done in 
j = l  

double precision using the IMSL routine GGNML to generate the Zj-'s. 
When O-2 is not known, then we can use the estimate of O-2 proposed by 

Rice (1984) based on successive differences yi+ ~ - y;: 

#2 _ 1 n-1 
2(n -- 1) i :El (yi÷~ -- yi)2, 

where it is assumed that the ti's are sorted in ascending order. 



TEST OF POLYNOMIAL REGRESSION 397 

A numerical example follows. 
It is generally thought that the percentage of fruits attacked by codling 

moth larvae is greater on apple trees bearing a small crop. The data shown 
in Table 1 are adapted from the results of an experiment in Hansberry and 
Richardson (1935) containing evidence about this phenomenon. A straight 
line was fitted to this data in Snedecor and Cochran (1980) (see Fig. 1). We 
apply our test to this data and obtain ap-value of .13, which suggests that 
the simple linear model is adequate. 

A residual plot (or other diagnostic) can provide some hint of model 
inadequacy, but it is difficult to assess statistical significance from such a 
plot. In the example, one may be tempted to conclude that the linear fit is 

Table 1. Percentage of wormy fruits on size of apple crop. 

Size of crops Wormy fruits 
Tree 

(hundreds) (percentage) 

1 8 59 
2 6 58 
3 11 56 
4 22 53 
5 14 50 
6 17 45 
7 18 43 
8 24 42 
9 19 39 

10 23 38 
11 26 30 
12 40 27 
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Fig. I. Codling moth data. 
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inadequate (see Fig. 2), but the results presented here indicate that the 
apparent lack of fit could be the result of chance alone, although the 
moderately small p-value is still suggestive of model inadequacy that may 
become more apparent with more data. 

tt~ 

Q 

I 

20 25 30 35 40 45 50 55 

Fitted Value 

Fig. 2. Residuals from codling moth data. 

60 

4. Discussion 

The proposed test maximizes the derivative of the average power at 
b = 0, where the average is with respect to the "prior" distribution on the 
departure from a polynomial. Thus, the power may be quite low at a 
specific alternative. Nontheless, we expect the test will perform well against 
smooth alternatives, as will now be explained. 

The Demmler-Reinsch basis functions are analogous to sines and 
cosines, and the test statistic is a weighted sum of the squares of the 
Fourier coefficient analogous )~ of the data (see equation (2.13)). The 
weights are larger for the lower "frequencies". As smoother functions have 
"energy" concentrated at lower frequencies, the test will have better power 
at smoother alternatives. 

It is possible to generalize the methodology presented in Section 1 to 
any case where the null hypothesis is that the regression function belongs 
to a linear space H0 which is the null space of a quadratic functional J ( .  ) 
which can be associated with the inner product  of the reproducing kernel 
Hilbert space for a Gaussian measure. This is done in Cox et al. (1988). 

The enquiring reader may be interested in the selection of m, the order 
of the polynomial. We anticipate that m = 2 will be most frequently used in 
practice, corresponding to simple linear regression. In general, we do not 
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advoca t e  the p r o c e d u r e  p r o p o s e d  here  as a means  o f  select ing m,  bu t  
instead r e c o m m e n d  the use of  a genuine  mode l  select ion cr i ter ion for  tha t  
purpose .  See for  examp le  S h i b a t a  (1981). Th e  test here  will be useful  w h en  
a p o l y n o m i a l  regress ion mode l  of  a given o rde r  has a l ready been posi ted 
and one  wishes to check  its adequacy .  
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