
A SoC Design Methodology Involving a UML 2.0 Profile for SystemC

E. Riccobene1, P. Scandurra1, A. Rosti2, S. Bocchio2
1 Dip. Matematica e Informatica, Università di Catania (Italy)

{riccobene,scandurra}@dmi.unict.it
2 STMicroelectronics AST – Research & Innovation, Agrate Brianza (Italy)

{alberto.rosti,sara.bocchio}@st.com

Abstract

In this paper, we present a SoC design methodology joining
the capabilities of UML and SystemC to operate at system-
level. We present a UML 2.0 profile of the SystemC
language exploiting the MDA capabilities of defining
modeling languages, platform independent and reducible
to platform dependent languages. The UML profile
captures both the structural and the behavioral features of
the SystemC language, and allows high level modeling of
system-on-a-chip with straightforward translation to
SystemC code.

1. Introduction

 The increasing technological complexity coupled with
requests for more performance and shorter time to market
have produced a high interest for new methods and tools for
System-on-a-Chip (SoC) design. To meet increased
performance requirements and to achieve shorter
development times, a decade ago the EDA industry went
from gate level to register-transfer level (RTL) abstraction
demanding for higher levels of abstraction in the hardware
design process. However, RTL hardware design is still too
low as an abstraction level to design multimillion-gate
systems, and nowadays an important effort is being spent to
take another abstraction step moving from RTL level to
System level, and to develop new design and verification
methodologies. A new way is needed to describe an entire
system, including embedded software, and to formalize a
set of constraints and requirements - all far beyond the
capabilities of existing Hardware Description languages
(HDLs). Making complex SoCs requires modular,
component-based approach to both hardware and software
design.
 An issue facing SoC designers is to decide which System-
level Language to use and how the verification tasks will be
accomplished. Any language proposed to support system-
on-a-chip design must address two important design
characteristics: the integration of multiple heterogeneous
models and the ability to work at high levels of abstraction.

 Current system-level languages proposals can be
classified into four main classes:
1. reusing Hardware Description Languages such as

extending Verilog to SystemVerilog [14];
2. adapting software programming languages (C/C++

[11], Java [2]) with hardware design capabilities, to
exploit the spread knowledge about those programming
languages within the scientific community; this
happens also with SystemC [15];

3. a long-term solution, creating new specific languages
for system level design (Rosetta [1]); this approach will
probably lead to optimal results, but it also implies a
big effort;

4. a new frontier, extending standard lightweight
modeling methodologies, like UML [8,9], to be applied
as high level languages operating in synergy with some
other lower level system languages.

 This work can be seen as an effort further the forth and
new direction. Indeed, we have decided to adopt the UML
[9] as high level modeling language and to use SystemC
[15] as low level system language. The choice of SystemC
as implementation language is intentional, and mainly
motivated by our conviction that SystemC will be one of the
most important players in the future of SoC design and
verification, thanks to the openness and flexibility of the
language environment.
 In this paper, we present a UML profile for SystemC, able
to capture both the structural and the behavioral features of
the language, and we discuss how to improve the SoC
design methodology by the use of the UML and the UML
profile for SystemC. By means of an example, we show
how to model a system in UML (using the proper profile)
and generate the system executable model in SystemC.
 The plan of this paper is the following: in section (2) we
present a model-driven SoC design flow based on UML,
UML profiles and SystemC; in section (3), we describe the
UML profile for SystemC, and we show, by means of an
example, how to easily model systems and generate code
from models; in section (4) we report some previous related
approaches from research and industry; finally, in section
(5) a few concluding remarks are drawn.

1530-1591/05 $20.00 © 2005 IEEE

2. How to improve the SoC design flow by
UML and SystemC

 The conventional system level design for SoC currently
used at STMicroelectronics is illustrated in Fig. 1.

Fig. 1: Conventional SoC Design Flow

 The design process starts from the specification of the
system requirements – usually written in natural language –;
a functional executable model (or algorithmic specification)
is modelled from the requirements to capture the system
behavior. This is usually done in a software programming
language (like C/C++) or by modeling tools such as
Simulink [12]. This functional level contains the full model
of the system, including hardware and software parts, which
are verified together at high level of abstraction checking
their conceptual correctness.
 A fundamental choice – usually dictated by the sense and
experience of expert engineers – is the partitioning between
hardware and software, that decides the final destination of
the various parts of the design. Two separate design flows
start for the software and the hardware parts. The software
parts are compiled for the target processing elements (see
the right side of Fig. 1). In the flow for hardware
refinement (see the left side of Fig. 1), instead, there is still
a large gap between the specification level and the
implementation level. In addition, since the verification of
an integrated hardware and software system takes place
after both components are completed, errors discovered in
the verification phase are often uncorrectable.
 The hardware part is initially expressed in an hardware
description language at RTL; it is then refined to a
structural representation using the logic synthesis which
produces a netlist which can be mapped on a library of
standard cells or hard-macro blocks (blocks for which the
layout is already available) for the final implementation.
This structural representation is used to produce the final

physical layout by the chip floor planning, clock tree
synthesis and final automatic placement and routing.
 Many verification steps are carried out at these design
phases: simulation is carried out at functional level to
ensure the conceptual correctness of the system; the
hardware part is co-simulated at RTL level together with
the software parts running on ISSs (Instruction Set
Simulators); the correctness of the gate level netlist can be
checked with respect to the RTL original representation by
formal verification techniques; timing analysis is performed
on the gate level netlist to ensure that design time
constraints are met; finally, it is verified that the final layout
actually corresponds to the gate level netlist. Note that,
information about the parasitic capacitances and resistances
of the layout is used to back annotate delays; these data are
used to perform accurate simulation or timing analysis.
 We believe that the UML may improve the SoC design
flow essentially in tree ways (see Fig. 2): (i) the UML in a
platform-independent manner can be adopted at System
Functional Executable Model level to describe the
specification, like Simulink [12]; (ii) the UML profile for
SystemC can be used for the hardware description at the
abstraction layers on top of the RTL layer; (iii) UML
profiles tailored for programming languages like C/C++,
Java, etc. can be used, instead, for the software parts.

 Fig. 2: New SoC Design Flow

 This rising of design abstraction levels that UML allows
implies all the advantages of modeling with respect to
coding: visualization, reusing, integration, documentation,
model analysis and automatic generation of the SystemC
code. Moreover, note that, in the new proposed SoC Design
Flow, a further validation step, involving both the hardware
and the software parts, can be introduced at the
transactional level: the software part can be simulated by
performing transactions which carry accurate timing
information as defined by the hardware architecture model

at transactional level (Transactional Co-simulation in Fig.
2).
 An open question is whether UML is rich enough to
represent hardware adequately. People supporting UML are
convinced that the UML with its extension capabilities
(called profiles) allows to model any system at any level of
details. Indeed, certain diagrams of the new version UML
2.0 [9] are particularly suitable for system level modeling:
class diagrams in UML 2.0 allow also to describe class
ports that communicate through interfaces; composite
structure diagrams show the static system structure (classes
with their internal structure including attributes, methods,
and relationships with other classes - by means of
inheritance, generalisation, and associations -, their ports
and interfaces); sequence diagrams could be used to create
testbenches; state diagrams model object behavior over
several use cases.
 The approach of defining UML profiles can be repeated
for other languages (JHDL [2], SystemVerilog [14], etc.)
currently used in the SoC design. The availability of such
profiles and the definition of suitable PSM bridges – as
conceived by the Model Driven Architecture (MDA)
initiative [7] – may allow to move from the description of a
system (or just a part of it) in a given language to the
description of the same system (or part of it) in another
language at the same level of abstraction or lower. In this
way, UML enables to establish new development processes,
easily adoptable by EDA companies, which allow
interchange and reuse of design practices and IP solutions.

3. A UML 2.0 profile for SystemC

 A UML profile is a group of extensions - stereotypes,
constraints, and tagged values - that add domain-specific
information to the UML modeling elements (or a subset of
them), possibly altering the notation (by means of icons)
and the associated semantics. A UML profile can be
intended as a new dialect of the UML for a particular
platform or a particular application domain such as
banking, telecommunications, aerospace, real time
applications, testing, etc.
 This section introduces a UML profile for the SystemC
language based on the UML 2.0 specification [9] and on the
SystemC 2.0 specification [16]. A UML profile give a new
graphical dimension to SystemC, enforcing the designer to
describe systems at “modeling level” rather than designing
at a lower level by means of “coding”.
 The complete UML profile definition for SystemC can be
found in [10]; in Fig. 3 we report the most significant
stereotypes elements of the proposed profile.
 The figure is split in two parts: the first part specifies the
stereotypes that can be used in various UML structural
diagrams (like class diagrams and composite structure
diagrams) for representing the structural building blocks of

SystemC; the second part defines stereotypes that can be
used in various UML behavioral diagrams (such as UML
method state machines) for modeling the functionality
expressed by processes and channels in a given SystemC
specification.

Fig. 3: UML notation for SystemC concepts

 In the following subsection, we show how to model a
system using our profile.

3.1 A simple communication modeling example

 Here, the UML 2.0 profile for SystemC is used to model
the SystemC specification of a custom FIFO channel taken
from [17] and also available in the SystemC 2.0
distribution. A user-defined FIFO channel permits to store
characters by means of “blocking” read and write
interfaces, such that characters are always reliably
delivered. Two processes, the “producer” and the
“consumer”, respectively feed and read the FIFO. The
producer module writes data through its port into the FIFO
by a write_if interface, the consumer module reads data
from the FIFO through its port by the read_if interface.
These two interfaces are implemented by the FIFO channel.
 Fig. 4 shows the UML classes of the read_if and
write_if interfaces of the given example. According to
the UML 2.0 profile for SystemC, interfaces are modelled
as classes with the «sc_interface» stereotype. The read
interface specifies two public methods: read(char&) to
read a character from the FIFO, and num_available()
to return the number of characters available for reading in
the FIFO channel. The write interface specifies two public

methods: write(char) to write a char into the FIFO,
and reset() to set the FIFO to an initial state. The
corresponding SystemC code (the header file
read_write_if.h) follows.

class write_if : virtual public sc_interface {
 public:
 virtual void write(char) = 0;
 virtual void reset() = 0; };

class read_if : virtual public sc_interface {
 public:
 virtual void read(char &) = 0;
 virtual int num_available() = 0; };

Fig. 4: read_if and write_if interfaces

 The producer module (see Fig. 5) is modelled by a
class with the stereotype «sc_module» and has a thread
process main and a port out requiring the write_if
interface. Note that all modules containing thread
processes are considered “active”, and are represented by
an UML active class, graphically a box with an additional
vertical bar on either sides.

Fig. 5: Producer module

 The corresponding SystemC code (the header file
producer.h) is reported below. It contains the
declaration of the producer class together with the
declaration of the thread process.

#include "read_write_if.h"
class producer: public sc_module {
 public:
 sc_port<write_if> out;
 void main();
 SC_HAS_PROCESS(producer);
 producer(sc_module_name mn): sc_module(mn)
 { SC_THREAD(main); } };

 After resetting the FIFO channel, the thread process
writes all the characters from a string variable to the out
port using the write operation of the write_if
interface. The actual implementation of the main thread
process (the producer.cpp file) is the following.

#include "producer.h"

void producer::main() {
 const char *c = "Visit www.systemc.org\n";
 out->reset();
 while (*c)
 out->write(*c++); }

 According to the UML 2.0 profile for SystemC, the
behavior of the main thread process of the producer
module may be described by a UML method state machine
as shown in Fig. 6. Note that, there is no check that the
FIFO channel is not full when the write operation is
performed by a process; in that case, the writing thread
process is automatically suspended inside the hosting FIFO
object (see FIFO channel behavior below).

Fig. 6: Producer behavior

 Similarly, the consumer module and its reading thread
process may be modelled by a class and a state machine.
 The class representing the hierarchical FIFO channel is
reported in Fig. 7. In this example, the FIFO channel
provides the actual implementation to the read_if and
write_if interfaces. It also contains the data members
max, data, num_elements and first, and two events
named respectively write_event and read_event
declared as private (since they are visible only to the read
and write interface methods).

Fig. 7: FIFO channel

 The behavior of the FIFO class providing the actual
implementation of the read_if and of the write_if
interfaces is modelled by the set of UML method state
machines shown in Fig. 8. These state machines are
activated by “call events” generated by “call actions” made
on ports connected to the FIFO channel. Note that,
according to the UML 2.0 profile for SystemC, states with
the stereotype «wait» dynamically suspend the calling
process until a read_event or write_event
(depending on the kind of process) is notified by another
process within the scope of the FIFO channel.

Fig. 8 FIFO behavior

 The corresponding SystemC code for the FIFO channel
(the fifo.h and fifo.cpp files) is listed below.

// file fifo.h
#include "read_write_if.h"
class fifo : public sc_channel, public write_if,
public read_if {
 public:
 fifo(sc_module_name mn): sc_channel(mn) {
 num_elements = first = 0; }
 void write(char);
 void read(char&);
 void reset();
int num_available();
private:
 enum e { max = 10 };
 char data[max];
 int num_elements, first;
 sc_event write_event, read_event;
};

// file fifo.cpp
#include "fifo.h"
void fifo::write(char c) {
 if(num_elements == max)
 wait(read_event);
 data[(first+num_elements)%max] = c;
 ++ num_elements;
 write_event.notify(); }
void fifo::read(char& c){
 if(num_elements == 0)

 wait(write_event);
 c = data[first];
 -- num_elements;
 first = (first + 1) % max;
 read_event.notify(); }
void fifo::reset() { num_elements = first = 0; }
int fifo::num_available() { return num_elements;}

 Finally, in order to complete the communication example,
a top composite module is defined to contain an instance
part of the consumer module, an instance part of the
producer module and a FIFO channel part (see Fig. 9
and Fig. 10).

Fig. 9: Top module

Fig. 10: Top composite structure diagram

 The composite structure diagram in Fig. 10 shows the
internal structure of the top class module as a
collaboration structure of interconnected parts and ports.
Note that, the dashed notation used for the parts indicates
that the top class is responsible for the construction of the
inner modules by “dynamic allocation”. The top module is
implemented in SystemC as follows (file top.cpp).

class top: public sc_module
{
 public:
 fifo * fifo_inst; //a fifo instance
 producer * producer_inst; //a producer instance
 consumer * consumer_inst; //a consumer instance
 top(sc_module_name mn):sc_module(mn) {
 fifo_inst = new fifo("Fifo1");
 producer_inst= new producer("Producer1");
 consumer_inst= new consumer("Consumer1");
 producer_inst->out(*fifo_inst);
 consumer_inst->in(*fifo_inst);
 }
};

4. Related work

 In cooperation with industrial partners, UML has been
deployed in real application scenarios which provided
extensive experiences on how to use UML effectively
within a system development process. The possibility to use
UML 1.x for system design [4,5] started already at Cadence
Design Systems in 1999. However, the general opinion was
that UML (before version 2.0) was not mature enough as a

system design language, in particular if compared to other
emerging system design environments.
 The work in [6] provides a broad overview of the process
and methodology developed and applied internally to the
OWL project for OFDM Wireless LAN, for the development
of a Wireless LAN chipset based on a modulation technique
known as Orthogonal Frequency Division Multiplexing
(OFDM). The paper records the experiences of the project
team in applying SystemC language as an integral part of
the design process for SoC development in conjunction
with the UML - using UML stereotypes to represent
important structural aspects and SystemC concepts - and the
RUP (Rational Unified Process) process to provide visual,
structured models and documentation of the architecture
design. Considerable synergy was demonstrated between
these modeling techniques and the use of SystemC
executable models.
 Fujitsu [18] has developed a new SoC (System-on-a-
Chip) design methodology that employs UML and
C/C++/SystemC programming languages. The methodology
differs significantly from the conventional System LSI
design methodology in two points: (a) the use of the UML
to describe the specification; (b) the introduction of UML
and C++/SystemC for the phases from the system partition
into hardware and software components.
 All of the above experiences based on the use of
C/C++/SystemC languages have in common the use of
UML stereotypes for SystemC constructs, but it seems that
these are not included in an appropriate and standardized
language of something like “UML profile for SystemC”. In
this sense, it is appreciable the research work in [3] in
attempting to define a truthful UML profile for SystemC;
but, as all the above proposals, no code generation
capabilities for behavioral information are considered. The
use of UML state machines for modules’ behavior
description and channels’ protocols specification are
underestimate or postponed as future work. Moreover, all
of these proposals are based on the old versions of UML
(the so called UML 1.x) [8], making difficult and little
scalable the structural representation of systems without the
architectural constructs offered by the UML in its new
version 2.0 [9].
 The SysML Partners [13] are customizing UML 2.0 to
define a modeling language, Systems Modeling Language
(SysML), for systems engineering applications (including
the specification, analysis and verification of complex
systems with both hardware and software components,
personnel, procedures, etc.). Although SysML reuses the
second generation of UML, it has to be intended as a
general-purpose modeling language – a Platform
Independent Modeling (PIM) language, as conceived by the
MDA [7] vision –. So it is in agreement with our SystemC
UML profile which is a Platform Specific Modeling (PSM)
Language. Moreover, since SysML preserves the basic
semantics of UML 2.0 diagrams, our SystemC UML profile

can be thought (and effectively made) a customization of
SysML rather than UML.

5. Concluding remarks

 In this paper, we show how UML and UML profiles can
be effectively used within a wider scope of application
domains such as the SoC design area. UML profiles
provide a standardized visual representation easy to learn
and supported by a number of tools to design, implementing
and document systems. Benefits provided by a standardized
UML extension for SystemC may contribute to increase the
success of UML and SystemC as IP delivery media.

References

[1] P. Alexander, R. Kamath and D. Barton. System

Specification in Rosetta. In Proc. of IEEE Engineering of
Computer Based Systems Symposium 2000.

[2] P. Bellows and B. Hutchings. JHDL – An HDL for
Reconfigurable Systems. In Proc. of IEEE Symposium on
FPGAs for Custom Computing Machines 1998.

[3] F. Bruschi, D. Sciuto. A SystemC based Design Flow
starting from UML Model. In Proc. of ESCUG’02.

[4] G. Martin. UML and VCC. Cadence Design Systems, Inc.,
White Paper, December 1999.

[5] G. Martin, L. Lavagno, J. L. Guerin. Embedded UML: a
merger of real-time UML and co-design. In Proc. of
CODES’01.

[6] T. Moore, Y. Vanderperren, G. Sonck, P. van Oostende, M.
Pauwels, W. Dehaene. A Design Methodology for the
Development of a Complex System-On-Chip using UML and
Executable System Models. In Proc. of ECSL’02.

[7] OMG. The Model Driven Architecture (MDA).
http://www.omg.org/mda/.

[8] OMG. The Unified Modeling Language, version 1.5.
Document formal/01-09-67.

[9] OMG, UML 2.0 Superstructure Final Adopted specification.
Doc. ptc/03-08-02. http://www.uml.org/.

[10] E. Riccobene, P. Scandurra, A. Rosti and S. Bocchio. A
UML 2.0 Profile for SystemC. STMicroelectronics Technical
Report, 2004.

[11] R. Roth and D. Ramanathan. A High-Level Hardware Design
Methodology Using C++. In Proc. of the 4th High Level
Design Validation and Test Workshop 1999.

[12] Simulink. http://www.mathworks.com.
[13] SysML Partners web site. http://www.sysml.org/.
[14] SystemVerilog. http://www.systemverilog.org.
[15] SystemC website: www.systemc.org.
[16] SystemC 2.0.1 Language Reference Manual Revision 1.0

Copyright © 2003 Open SystemC Initiative.
[17] S. Swan. An Introduction to System Level Modeling in

SystemC 2.0. Open SystemC Iniziative (OSCI). White paper,
Cadence Design Systems, Inc. May 2001.

[18] Q. Zhu, R. Oishi, T. Hasegawa, T. Nakata. System on Chip
Validation using UML and CWL. In Proc. of CODES ’04.

