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Abstract

In this paper we propose a social capital measure for individuals belonging
to a social network. To do this, we use a game theoretical approach and so
we suppose that these individuals are also involved in a cooperative TU-game
modelling the economic or social interests that motivate their interactions. We
propose as a measure of individual social capital the difference between the
Myerson and the Shapley values of actors in the social network and explore the
properties of such a measure. This definition is close to our previous measure of
centrality (Gómez et al., 2003) and so in this paper we also study the relation
between social capital and centrality, finding that this social capital measure can
be considered as a vector magnitude with two additive components: centrality
and positional externalities. Finally, several real political examples are used to
show the agreement of our conclusions with the reality in these situations.
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1 Introduction

During last two decades the concept of social capital has been actively popularized
by scholars, especially economists, sociologists and political scientists. This notion
initially appeared to highlight the importance of social network relations as a valu-
able resource for social and economic affairs. However, the current meaning of social
capital is wider and nowadays it is usually assumed that social capital describes cir-
cumstances in which individuals can use membership in groups and networks to
secure benefits. This formulation treats social capital as a resource available to
individuals (as economic capital or human capital) that cannot be evaluated with-
out knowledge of the society in which they operate and that has value modifying
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individual and collective productivity. The term social capital is introduced in Salis-
bury (1969). Bourdieu (1972) gives a more precise definition and Putnam(2000) and
Putnam and Feldstein (2003) popularized it. Today the concept of social capital is
widely used to explain or to understand the form in which social networks produce
returns in different environments. Knack and Keefer (1997), Burt (1997), Portes
(1998), Dasgupta and Serageldin (2000), Flap (2001) and Van Emmerik (2006) are
contributions in this direction, to name only a few. How to measure social capital is
a point of controversy that affects even to its denomination. Some scholars doubt on
the appropriateness of the term when we have problems to measure it in a quanti-
tative manner. The oldest method to measure social capital is the Name/Generator
Interpreter (McCallister and Fischer, 1978). Later, Lin and Dumin (1986) and Lin
et al. (2001) introduced the Position Generator method. Snijders (1999) and Van
der Gaag and Snijders (2005) proposed the so called Resource Generator method
trying to avoid the disadvantages of previous ones. Our main concern in this paper
is to introduce a numerical measure of individual social capital for a society com-
posed by a finite set of individuals. We will use a game theoretical point of view
and thus we will assume that interests of individuals (players) are represented by
means of a cooperative game with transferable utility and players’ personal bilateral
relations (social network) are introduced via a graph.

Given a cooperative game and a social network among players we define an index
of a player’s individual social capital as an excess of the Myerson value over the
Shapley value of the player which, in turn, equals to the Shapley value of the player
in the game being the difference between Myerson restricted game and the given
game itself. The consideration of the difference between the Myerson and Shapley
values of a player provides a tool for revealing the influence of the player’s social
network relations to the outcome of the game. Remark that the so defined social
capital index is conceptually close to the centrality measure introduced in Gómez et
al. (2003). But while in the above mentioned paper the authors define the centrality
measure only for evaluation of a player’s positional importance in a graph avoiding
a priori differences among players and thus using a symmetric game, we define the
social capital index as an index of player’s relational importance admitting that they
possibly have different cooperative abilities. Moretti et al. (2010) use a very related
approach to measure centrality and power of genes in biological networks.

In the paper we study general properties of the social capital index and reveal
its upper and lower bounds. We show that, given a game and a communication
graph, the social capital of a player reaches its maximum when the communication
graph is a star and the player is the hub of this star, while the social capital of a
player is minimal when the player is an isolated point in a communication graph.
Being these results not surprising we try to analyze the impact that can the net-
work have in powering players with poor expectations in the game and also the
possibility that a peripheral or isolated position in the graph destroys most of the
advantages of being the more powerful player in the game. Another aim of this
paper is to relate the proposed social capital measure with the centrality measures
defined in Gómez et al. (2003). We prove that social capital of each player can
be viewed as a two dimensional vector, one of the dimensions being the centrality
of his position in the network and the other the externalities he obtains because of
being in such a position. The computations done for two real-life examples: (i) 2009
Basque Country Parliament elections, when the Basque Nationalist Party winning

2



the maximal number of seats finally was not included in to the majority due to its
weak communication ability on the political spectrum, and (ii) 1983 Italian Parlia-
ment elections, when Bettino Craxi from the Italian Socialist Party, which got in
the Lower Chamber only 73 seats from the total amount of 630 but had very strong
central position, became the Prime Minister, clearly show the coincidence of our
theoretical predictions to the historical facts in these two situations.

The structure of the paper is as follows: basic definitions and notation are given
in Sect. 2; in Sect. 3 we introduce and study the social capital index for general
case. Sect. 4 uncovers the relation between the introduced social capital index and
centrality measures studied in Gómez et al. (2003). Discussion of practical examples
is presented in Sect. 5. A final section includes conclusions and some possible future
research.

2 Preliminaries

A cooperative game with transferable utility (TU game) is a pair 〈N, v〉, where N =
{1, . . . , n} is a finite set of n ≥ 2 players and v : 2N → IR is a characteristic function,
defined on the power set of N , satisfying v(∅) = 0. A subset S ⊆ N (or S ∈ 2N )
of s players is called a coalition, and the associated real number v(S) presents the
worth of S. The set of all games with fixed N we denote by GN . For simplicity of
notation and if no ambiguity appears, we write v instead of 〈N, v〉 when refer to a
game. A value is a mapping ξ : GN → IRn that assigns to every v ∈ GN a vector
ξ(v) ∈ IRn; the real number ξi(v) represents the payoff to player i in v. A subgame
of v with a player set T ⊆ N , T 6= ∅, is a game v|T defined as v|T (S) = v(S), for
all S ⊆ T . A game v is symmetric, if the worth of each coalition depends only on
its cardinality. A game v is nonnegative, if v(S) ≥ 0 for all S ⊆ N . A game v is
monotonic, if v(S) ≤ v(T ) for all S ⊆ T ⊆ N . It is easy to see that every monotonic
game is nonnegative. A game v is superadditive, if v(S ∪ T ) ≥ v(S) + v(T ) for all
S, T ⊆ N , such that S∩T = ∅. A player i ∈ N is a null-player in game v ∈ GN , if he
adds nothing when he joins any coalition not containing him, i.e., v(S ∪{i}) = v(S)
for all S ⊂ N \ {i}. A player i is a veto-player in the game v ∈ GN , if v(S) = 0,
for every S ⊆ N \ {i}. A game v ∈ GN is a veto-rich game, if it has at least
one veto-player. For any game v ∈ GN , by v0 we denote its 0-normalization, i.e.,
v0(S) = v(S)−

∑
i∈S

v({i}) for all S ⊆ N . The cardinality of a given set A we denote

by |A| along with lower case letters like n = |N |, m = |M |, nk = |Nk|, and so on.
It is well known (Shapley, 1953) that unanimity games {uT }T⊆N

T 6=∅
, defined as

uT (S) = 1 if T ⊆ S, and uT (S) = 0 otherwise, create a basis in GN , i.e., every
v ∈ GN can be uniquely presented in the linear form v =

∑
T⊆N,T 6=∅

λvT uT , where

λvT =
∑
S⊆T

(−1)t−s v(S), for all T ⊆ N , T 6= ∅. Following Harsanyi (1959) the

coefficient λvT is referred to as a dividend of coalition T in game v.
The Shapley value (Shapley, 1953) of a game v ∈ GN can be given by

Shi(v) =
∑

S⊆N\{i}

s! (n− s− 1)!

n!
(v(S ∪ {i})− v(S)), for all i ∈ N.
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In what follows, for simplicity, we will use notation ps =
s! (n− s− 1)!

n!
.

In this paper we study cooperative games among the players that belong to some
social network represented via an undirected graph, i.e., we consider cooperative
games with limited cooperation possibilities given in terms of undirected graphs
as introduced in Myerson (1977). An undirected graph (N, γ) is a collection of
unordered pairs of nodes/players γ ⊆ γcN , where γcN = { {i, j} | i, j ∈ N, i 6= j}
is the complete undirected graph without loops on N and an unordered pair {i, j}
represents a link between i, j ∈ N . A pair 〈v, γ〉 of a game v ∈ GN and a social
network (a graph) γ on N composes a game with cooperation (graph) structure, or
simply a Γ-game. The set of all Γ-games with fixed N we denote GΓ

N . A Γ-value is
a mapping ξ : GΓ

N → IRn that assigns to every 〈v, γ〉 ∈ GΓ
N a vector ξ(v, γ) ∈ IRn.

For any social network γ on N and any coalition S ⊆ N , the graph γ restricted
to S is (S, γ|S), where γ|S = {{i, j} ∈ γ | i, j ∈ S}. A sequence of different nodes
{i1, . . . , ik} ⊆ N is a path in a graph γ, if {ih, ih+1} ∈ γ, for all h = 1, . . . , k−1. Two
nodes i, j ∈ N are connected in γ, if there exists a path {i1, . . . , ik} in γ with i1 = i
and ik = j. A social network is connected if any two actors in it are connected.
Given a graph γ, a coalition S ⊆ N is said to be connected if (S, γ|S) is connected.
For a given social network γ and a coalition S ⊆ N , denote by S/γ the set of all
components (maximally connected subcoalitions) of S. Notice that S/γ provides a
partition of S.

Following Myerson (1977), we assume that for a given 〈v, γ〉 ∈ GΓ
N , cooperation

is possible only among connected players and consider a restricted game vγ ∈ GN
defined as

vγ(S) =
∑
C∈S/γ

v(C), for all S ⊆ N.

The Myerson value (Myerson, 1977) is defined for any 〈v, γ〉 ∈ GΓ
N with arbitrary

undirected graph γ as the Shapley value of the restricted game vγ :

µi(v, γ) = Shi(v
γ), for all i ∈ N.

3 An index of social capital

For every Γ-game 〈v, γ〉 ∈ GΓ
N we define a social capital index of a player i ∈ N as

SCi(v, γ) = µi(v, γ)− Shi(v) = Shi(v
γ − v). (1)

Due to its definition via the Shapley and Myerson values, the social capital index
satisfies

(i) Linearity : for any two Γ-games 〈v, γ〉, 〈v′, γ〉 ∈ GΓ
N with the same graph γ and

all α, β ∈ IR it holds that for every i ∈ N

SCi(α v + β v′, γ) = αSCi(v, γ) + β SCi(v
′, γ);

(ii) Fairness: for any 〈v, γ〉 ∈ GΓ
N , for any link {i, j} ∈ γ, i, j ∈ N , it holds that

SCi(v, γ)− SCi(v, γ\{i, j}) = SCj(v, γ)− SCj(v, γ\{i, j}).
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(iii) Balanced Contributions: for any 〈v, γ〉 ∈ GΓ
N and for any pair of players i, j ∈

N , we have

SCi(v, γ)− SCi(v, γ−j) = SCj(v, γ)− SCj(v, γ−i),

γ−k being the set of links of γ not incident in a given player k ∈ N , i.e.:
γ−k = γ\{{k, l}|{k, l} ∈ γ}. Notice that k becomes an isolated actor in γ−k.

Proposition 1 For any Γ-game 〈v, γ〉 ∈ GΓ
N the SC-index meets the following prop-

erties:

(i) Shift Independence: SC(v, γ) = SC(v0, γ);

(ii) Non-Positivity in Total for superadditive games: if v is superadditive, then∑
i∈N

SCi(v, γ) ≤ 0;

(iii) Neutrality for connected graphs: if graph γ is connected, then∑
i∈N

SCi(v, γ) = 0;

(iv) Link Monotonicity for superadditive games: if v is superadditive, then for any
link {i, j} ∈ γ, i, j ∈ N , it holds

SCi(v, γ) ≥ SCi(v, γ\{i, j}).

Proof.
(i) It is enough to show that vγ0 − v0 = vγ − v. Indeed, for all S ⊆ N it holds that

(vγ0 − v0)(S) = vγ0 (S)− v0(S) = vγ(S)−
∑
i∈S

vγ({i})− [v(S)−
∑
i∈S

v({i})] =

= vγ(S)−v(S) = (vγ−v)(S).

(ii)
∑
i∈N

SCi(v, γ) =
∑
i∈N

µi(v, γ)−
∑
i∈N

Shi(v) =
∑

Ck∈N/γ
v(Ck)− v(N) ≤ 0.

The last inequality is due to the superadditivity of v.

(iii) If γ is connected then N/γ={N} and
∑

Ck∈N/γ
v(Ck) = v(N). Whence repeating

the same arguments as in (ii) we obtain the desirable equality.

(iv) SCi(v, γ)− SCi(v, γ\{i, j}) = µi(v, γ)− µi(v, γ\{i, j}) =

=
∑

S⊆N\{i}

ps[v
γ(S ∪ {i})− vγ(S)]−

∑
S⊆N\{i}

ps[v
γ\{i,j}(S ∪ {i})− vγ\{i,j}(S)] =

=
∑

S⊆N\{i,j}

ps+1[vγ(S ∪ {i} ∪ {j})− vγ(S ∪ {j})]−
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−
∑

S⊆N\{i,j}

ps+1[vγ\{i,j}(S ∪ {i} ∪ {j})− vγ\{i,j}(S ∪ {j})] =

=
∑

S⊆N\{i,j}

ps+1[vγ(S ∪ {i} ∪ {j})− vγ\{i,j}(S ∪ {i} ∪ {j})].

The first of two latter equalities follows from the fact that for all S ⊆ N \ {i, j},
it holds that vγ(S) = vγ\{i,j}(S) whereas the second one holds true because for all
S ⊆ N \ {i, j}, vγ(S ∪ {j}) = vγ\{i,j}(S ∪ {j}). Therefore,

SCi(v, γ)− SCi(v, γ\{i, j}) =

=
∑

S⊆N\{i,j}

ps+1

 ∑
T∈(S∪{i}∪{j})/γ

v(T )−
∑

T∈(S∪{i}∪{j})/(γ\{i,j})

v(T )

 .
To complete the proof, notice that the last expression is nonnegative because of
superadditivity of v and due to the fact that for each S ⊆ N \ {i, j}, the partition
of (S ∪ {i} ∪ {j}) done by γ\{i, j} is finer than that done by γ.

The following theorem shows that in a monotonic game with a star structure
social network, the player in the hub of the star possesses the highest value of social
capital among the other players.

Theorem 1 For any monotonic Γ-game 〈v, σi〉 ∈ GΓ
N with graph σi on N being the

star with the hub at i ∈ N , it holds that

SCi(v, σ
i) ≥ SCj(v, σi), for all j ∈ N \ {i}.

Proof. Due to the shift independence of SC-index and also because 0-normalization
v0 inherits monotonicity from v, without loss of generality we may assume game v
to be 0-normalized. Then for any S ⊆ N \{i}, it holds that vσ

i
(S∪{i})=v(S∪{i})

and vσ
i
(S) =

∑
j∈S

v({j}) = 0. Whence it follows that for the hub i of the star σi it

holds that

SCi(v, σ
i) = Shi(v

σi
)−Shi(v) =

=
∑

S⊆N\{i}

ps(v(S∪{i})−vσi
(S))−

∑
S⊆N\{i}

ps(v(S∪{i})−v(S)) =
∑

S⊆N\{i}

psv(S), (2)

and for every satellite j ∈ N \ {i} in σi we have

SCj(v, σ
i)=

∑
S⊆N\{i,j}

[ps(v
σi

(S∪{j})−vσi
(S))+ps+1(vσ

i
(S∪{i, j})−vσi

(S∪{i}))]−

−
∑

S⊆N\{i,j}

[ps((S ∪ {i, j})− v(S)) + ps+1(v(S ∪ {i, j})− v(S ∪ {i}))]=

=−
∑

S⊆N\{i,j}

ps(v(S ∪ {j})− v(S)).

Since every monotonic game is nonnegative, for all j ∈ N \ {i} it holds that∑
S⊆N\{i}

psv(S) ≥ 0 ≥ −
∑

S⊆N\{i,j}

ps(v(S ∪ {j})− v(S)).
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Remark 1 From shift independence property of the social capital index, since every
nonnegative superadditive game is monotonic and every 0-normalized superadditive
game is nonnegative, Theorem 1 holds true for every superadditive game.

While the previous theorem compares the social capital of different players in
monotonic games with star shaped social networks, the next one compares the social
capital of the same player in different social networks. It shows that in a superad-
ditive game the best position for a player (in terms of social capital) is to take
the central position among the others, i.e., the social capital of a player reaches its
maximum when the network contains only the links connecting him with all the
others.

Theorem 2 For any two Γ-games 〈v, γ〉, 〈v, σi〉 ∈ GΓ
N with the same superadditive

game v and graph σi on N being the star with the hub at i ∈ N , it holds that

SCi(v, σ
i) ≥ SCi(v, γ).

Proof. Due to the shift independence of SC-index and also because 0-normalization
v0 inherits superadditivity from v, without loss of generality we may assume game
v to be 0-normalized, and therefore, equality (2) holds true.

On the other hand, given any graph γ on N from superaddiivity of vit follows
that for all S ⊆ N \ {i}, vγ(S ∪ {i}) ≤ v(S ∪ {i}). Wherefrom we obtain that

SCi(v, γ) =
∑

S⊆N\{i}

ps(v
γ(S∪{i})−vγ(S))−

∑
S⊆N\{i}

ps(v(S∪{i})−v(S)) ≤

≤
∑

S⊆N\{i}

ps(v(S)− vγ(S)).

Since vγ inherits properties of superadditivity and 0-normalization from v, we have
that for all S ⊆ N , vγ(S) ≥ 0. Whence it follows that

SCi(v, γ) ≤
∑

S⊆N\{i}

ps(v(S))
(2)
= SCi(v, σ

i).

The meaning of Theorem 3 is that playing a superadditive game for any player
the worst option is to be isolated.

Theorem 3 For any two Γ-games 〈v, γ〉, 〈v, γi〉 ∈ GΓ
N with the same superadditive

game v and graph γi on N in which i ∈ N is an isolated node, it holds that

SCi(v, γ
i) ≤ SCi(v, γ).

Proof. Similarly as in the proof of Theorem 2, without loss of generality we
may assume game v to be 0-normalized. Therefore, for any graph γ on N , vγ is
superadditive and 0-normalized as well. Hence,

Shj(v
γ) ≥ 0, for all j ∈ N, (3)
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and in particular, Shi(v
γ) ≥ 0. The assumption that i is an isolated node in γi,

involves that
SCi(v, γ

i) = Shi(v
γi)− Shi(v) = −Shi(v). (4)

Then from (3) and (4) we obtain

SCi(v, γ
i) ≤ Shi(vγ)− Shi(v) = SCi(v, γ).

The next corollary provides upper and lower bounds of the SC-index for super-
additive games.

Corollary 1 For any Γ-game 〈v, γ〉 ∈ GΓ
N ,with a superadditive game v, it holds

that
−Shi(v) ≤ SCi(v, γ) ≤

∑
S⊆N\{i}

ps v(S), for all i ∈ N.

Proof. Due to Theorem 2, for any i ∈ N ,

SCi(v, γ) ≤ SCi(v, σi)
(2)
=

∑
S⊆N\{i}

psv(S).

Next, from superadditivity of v and because, again without loss of generality we
may assume v to be 0-normalized, the inequality (3) holds true, and therefore, for
all i ∈ N ,

SCi(v, γ) = µi(v, γ)− Shi(v) = Shi(v
γ)− Shi(v)

(3)

≥ −Shi(v).

It is already proved above that in a monotonic game with a star shaped social
network the player located at the hub of the star has at least the same social capital
as the others. Besides, in a superadditive game a particular player has maximal
social capital with respect to the full range of all possible social networks in the star
shaped social in which he is the hub. Now we show that in superadditive games
the player with minimal marginal contributions in the star shaped social network
in which he is in the hub possesses the maximal social capital among all the players
with respect to all possible networks. This theorem establishes a very important
fact: that even being in a weak position in the game, a player can possess the highest
possible value of social capital using his emotional-social intelligence to create a good
set of relations (specifically, if he has relations with all the others and these are all
the existing links).

Theorem 4 For any two Γ-games 〈v, γ〉, 〈v, σi〉 ∈ GΓ
N with the same superadditive

game v and graph σi on N being the star with the hub at i ∈ N , if marginal con-
tributions of any j ∈ N , j 6= i, to all coalitions S ⊆ N\{i, j} are not less than
marginal contributions of i, i.e.,

v(S ∪ {j}) ≥ v(S ∪ {i}), for all S ⊆ N\{i, j},

then
SCi(v, σ

i) ≥ SCj(v, γ).
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Proof. Similarly as in the proof of Theorem 2, without loss of generality we may
assume v to be 0-normalized. Consider a star σj on N with the hub at j ∈ N , j 6= i.
Since (2) holds true we obtain that

SCi(v, σ
i)−SCj(v, σj)

(2)
=

∑
S⊆N\{i}

psv(S)−
∑

S⊆N\{j}

psv(S) =

=
∑

S⊆N\{i,j}

psv(S)+
∑

S⊆N\{i,j}

ps+1v(S∪{j})−
∑

S⊆N\{i,j}

psv(S)−
∑

S⊆N\{i,j}

ps+1v(S∪{i})=

=
∑

S⊆N\{i,j}

ps+1[v(S ∪ {j})− v(S ∪ {i})].

By hypothesis the latter expression is nonnegative. Wherefrom and also using The-
orem 2 we obtain that for any graph γ on N , for all j ∈ N , j 6= i, it holds that

SCi(v, σ
i) ≥ SCj(v, σj) ≥ SCj(v, γ).

The next theorem proves that a veto-player in a superadditive game being iso-
lated in a network is able to obtain at most the lowest value of the social capital
among all other players with respect to all possible social networks. In a sense, this
theorem is a reverse to the previous one stating that even a veto-player possesses a
poor social capital being disconnected with all other players.

Theorem 5 For any two Γ-games 〈v, γ〉, 〈v, γi〉 ∈ GΓ
N with the same super-additive

veto-rich game v with player i ∈ N being a veto-player and graph γi on N , in which
i is an isolated node, it holds that

SCi(v, γ
i) ≤ SCj(v, γ), for all j ∈ N.

Proof. Every veto-player in any veto-rich game appears to be a veto-player in the
0-normalization of this game as well. Then similarly as in the proof of Theorem 2,
without loss of generality we may assume v to be 0-normalized. Whence it follows
that Shi(v) ≥ Shj(v) for all j ∈ N , j 6= i. Indeed,

Shi(v)− Shj(v) =
∑

S⊆N\{i}

ps[v(S ∪ {i})− v(S)]−
∑

S⊆N\{j}

ps[v(S ∪ {j})− v(S)] =

=
∑

S⊆N\{i,j}

ps[v(S ∪ {i})− v(S)] +
∑

S⊆N\{i,j}

ps+1[v(S ∪ {i} ∪ {j})− v(S ∪ {j})]−

−
∑

S⊆N\{i,j}

ps[v(S ∪ {j})− v(S)]−
∑

S⊆N\{i,j}

ps+1[v(S ∪ {i} ∪ {j})− v(S ∪ {i})] =

=
∑

S⊆N\{i,j}

(ps+ps+1)(v(S∪{i})−v(S∪{j})) ≥ 0.

The last inequality holding because v(S ∪ {j}) = 0 for all S ⊂ N \ {i, j}, as i is a
veto-player in v. (Notice that, in a 0-normalized and superadditive game v, v(S) ≥ 0
for all S ⊂ N).
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Since the hypothesis of the theorem is stronger than the hypothesis of Theorem 3,
inequality (3) and equality (4) hold true. Therefore, for any j ∈ N we obtain that
for any graph γ on N it holds that

SCi(v, γ
i) = −Shi(v) = −max

k∈N
Shk(v) ≤ Shj(vγ)− Shj(v) = SCj(v, γ).

4 Social capital versus centrality

The social capital index defined above has close affinities with the centrality mea-
sure of a node in an undirected communication graph as introduced in Gómez et al.
(2003). However, in the model of centrality the only main entity is a communication
graph and the main goal is the definition of a numerical value of a node due to its
positional importance in the graph. The centrality of a node is defined as the differ-
ence between the Myerson and Shapley values in an a priori chosen symmetric game
with respect to the given communication graph. In this case a symmetric game
treating players symmetrically brings no additional information concerning the in-
dividual feathers of the participants but only plays an instrumental role serving as
a tool for the definition. In fact Gómez et al. (2003) define not one but a family of
centrality measures with respect to the subclass of symmetric games because differ-
ent symmetric games may cause different rankings of nodes in the graph. Different
to the model of centrality, in our model of social capital there are two main enti-
ties: a game representing cooperative abilities of the players and a social network
representing the relations among them. The next proposition shows that every TU
game can be decomposed into a sum of a symmetric game and its orthogonal com-
plement. Then while a given game in combination with a given graph respond for
the value of social capital index, its symmetric component together with the same
graph are responsible for the corresponding value of centrality. The example below
gives insight into the difference between the social capital index determined by a
given game and the corresponding centrality measure determined by the symmetric
component of this game.

Since for every game v ∈ GN , v(∅) = 0, the space GN of all TU games with
the fixed player set N can be naturally identified with the usual Euclidean space
IR2n−1 of vectors v, v = {v(T )}T⊂N

T 6=∅
. Denote by SN the subset of symmetric games

in GN , SN = {v ∈ GN | v(T ) = v(T ′), for all, T, T ′ ⊆ N, t = t′}. SN is a linear
subspace in GN of dimension n and therefore, GN = SN

⊕
S⊥N , where S⊥N = {v ∈

GN | v⊥w for allw ∈ SN} is the orthogonal complement to SN in GN with respect
to Euclidean inner product.

Proposition 2 Every game v ∈ GN can be uniquely presented as a sum

v = vS + v⊥S ,

with

vS(T ) = vS(t) =
1(n
t

) ∑
R⊆N
r=t

v(R), for all T ⊆ N,

10



and ∑
T⊆N
t=k

v⊥S (T ) = 0, for all k = 1, ...n,

where vS ∈ SN is the symmetric component of v and v⊥S ∈ S⊥N is the orthogonal
complement to vS with respect to the inner product of R2n−1.

Proof. It is not difficult to see that the games vk =
∑
t=k

uT , k = 1, ..., n, are

symmetric and linear independent. The dimension of SN is equal to n, and therefore,
games vk, k = 1, ..., n, create a (nonorthogonal) basis in SN . S⊥N = {v ∈ GN |
v⊥w, ∀w ∈ SN}. In particular, v ∈ S⊥N , if and only if 〈v, vk〉 = 0 for all k = 1, ...n.

〈v, vk〉 =
∑
T⊆N

[
v(T )

∑
r=k

uR(T )
]

=

n∑
r=k

( r
k

) ∑
T⊆N
t=r

v(T ).

Whence it follows that v ∈ S⊥N , if and only if for all k = 1, ...n,

n∑
r=k

( r
k

) ∑
T⊆N
t=r

v(T ) = 0. (5)

For k = n, (5) reduces to
v(N) = 0.

For k = n− 1, (5) reduces to

n ·
∑
T⊆N
t=n−1

v(T ) + v(N) = 0,

wherefrom together with latter equality it follows that∑
T⊆N
t=n−1

v(T ) = 0.

Repeating the same procedure for all k = n− 2, ..., 1, we obtain that v ∈ S⊥N , if and
only if ∑

T⊆N
t=k

v(T ) = 0, for all k = 1, ...n. (6)

Since GN = SN
⊕
S⊥N , every game v ∈ GN can be uniquely decomposed as

v = vS + v⊥S ,

where vS ∈ SN and v⊥S ∈ S⊥N . Whence, v−vS ∈ S⊥N , and therefore, for all k = 1, ...n,∑
T⊆N
t=k

(v − vS)(T )
(6)
= 0.

Since for every symmetric game the worth of each coalition depends only on its size,
for all T ⊆ N , we obtain that

vS(T ) =
1(n
t

) ∑
R⊆N
r=t

v(R), for all T ⊆ N.
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Remark 2 As a consequence of previous proposition and using the linearity of our
social capital measure we have, for each i ∈ N :

SCi(v, γ) = SCi(vS + v
⊥
S , γ) = SCi(vS , γ) + SCi(v

⊥
S , γ)

Being vS ∈ SN , SCi(vS , γ) coincides with the centrality measure defined by Gómez
et al. (2003), κ(vS , γ), for nodes in γ and using in this case the game vS , derived

from v erasing the a priori differences among players. On the other hand, SCi(v
⊥
S , γ)

represents the externalities obtained by player i when his network of relations is γ
and the played game is the one that offers to each coalition S the discrepancy
between its v-value and the mean of the v-values of all coalitions with the same
cardinality that S. So, we will call SCi(v

⊥
S , γ) the positional externalities, PEi(v, γ)

of player i and thus social capital of each actor it is assumed to be a vectorial
magnitude with two components: one of them is the centrality of his position in the
social network to which he belongs and the other corresponds to the the externalities
that this position produces to him.

Example 1 Consider the following situation when two persons, seller 1 (S1) and
seller 2 (S2), are going to sell their houses and there is another person, a buyer
(B), who is ready to buy any one of these houses. The buyer prefers to buy more
expensive and better house of seller 2, if he has a choice. The problem of this
particular market situation is that in a big city without a mediator (M , a real estate
agency) both sides cannot meet each other to start negotiations. This situation can
be modelled as a 4-person TU game with the player set N = {S1, S2,M,B} and
the characteristic function

v(T ) =


1, if {S1, B} ⊆ T and S2 /∈ T,
2, if {S2, B} ⊆ T,
0, otherwise.

The graph representing communication abilities of the players is given by Figure 1.

S1

B

M

S2

Figure 1

It is not difficult to see that M is a null-player in game v, and in case when there
is no restrictions on communication, the Shapley value assigns to M nothing and
shares the profits of the game among other participants,

Sh(v) =
(1

6
,
4

6
, 0,

7

6

)
.
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In case of limited communication represented by the given graph we obtain the
following values of the players social capital

SC =
(
− 1

12
,− 3

12
,

9

12
,− 5

12

)
.

Then, if we separate the symmetric component vS of v, 1

vS = {0, 0, 1

2
,
5

4
, 2}.

we obtain also the corresponding to v centralities of the players in graph γ,

κ =
(
− 1

16
,− 1

16
,

3

16
,− 1

16

)
,

whereas restricting us to the difference game v − vS we obtain the positional exter-
nalities

PE =
(
− 1

48
,− 9

48
,
27

48
,−17

48

)
.

As we can see, the mediator M , simultaneously being a null-player in v but the hub
of the star presenting given relations’ network, is the only one whose social capital
and centrality are positive due to his extreme importance in the communication
structure.

Besides, it is necessary to emphasize that, while the centrality assigns equal
values to all other players, S1, S2 and B, which have symmetric positions in the
communication graph being the satellites of the hub M , the social capital index takes
care over these players’ importance in the game as well. Namely, the social capital
of the second seller S2 who provides the highest value to the market is the highest
among the rest of the players. Moreover, it is worth noticing that the social capital
index, that takes into account the asymmetry of the players in the game, increases
the value of the social capital of the mediator M in comparison to his centrality
value. Looking to positional externalities, we can see that, in this case, among the
three players with symmetric positions in the graph, the better is the power (the
Shapley value) of a player in the game, the worse is his positional externality.

Remark 3 It can be thought that the positional externalities, PE, are in fact a
measure of social capital by themselves. Nevertheless, the monotonicity and super-
additivity of game v, needed to guarantee some particular properties to the social
capital measure, are not, in general, inherited by game v

⊥
S . Thus, PE does not

serve as a measure of social capital. In the following example, an actor can have
maximal social capital but minimal externalities. Let us consider the game (N, v)
with N = {1, 2, 3}, v({1, 2}) = 1, v({2, 3}) = 1, v({1, 3}) = 0, v(N) = 2, and the
graph γ = {{1, 2}, {2, 3}}, the star with hub at node 2. Then:

PE =
2

3

(
1

6
,−1

3
,
1

6

)
SC = (0, 0, 0)

and thus, the positional externalities are not maximal in the hub of the star.

1Since in vS the worth of each coalition depends only on its size, we write vS =
{vS(0), vS(1), vS(2), vS(3), vS(4)}
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5 Examples

5.1 Basque Country Parliament 2009

The Basque Country (Euskadi) is one of the Spain seventeen autonomous commu-
nities. Its Parliament is constituted by 75 members. Following last elections, in
March 2009, the composition of this Parliament is as appears in Table 1:

Party Seats

1 PNV (Basque Nationalist Party) 30

2 PSE (Euskadi’s Socialist Party) 25

3 PP (Popular Party) 13

4 ARALAR 4

5 EA (Euzko Alkartasuna) 1

6 EB-B (Ezker Batua-Berdeak) 1

7 UPD (Union, Progress and Democracy) 1

Table 1: Basque Country Parliament 2009

Taking into account the alignment of these parties in the political spectrum
(given mainly by the left-right and the nationalist-not nationalist axis) and the
history of its relations in the most recent years, the affinities among these parties
can plausibly be represented by the graph γ (Fig 2). The existence of a possible
link between PSE and EB parties was, at that time, a controversial issue but, as we
will see, it is irrelevant for our purposes.

PP (13) PSE(25) PNV (30) EA(1)

UPD(1) ARALAR(4)

EB(1)

Figure 2: Basque Country Parliament 2009

To form a government, any party or coalition must obtain the vote of, at least,
38 parliamentarians.

We can consider that the situation (the government formation) is well repre-
sented by the weighted majority game:
{q; p1, p2, . . . , p7}, with: q = 38; p1 = 30, p2 = 25, p3 = 13,....

and: v(S) =

{
1
∑

i∈S pi ≥ 38
0 otherwise.

The minimal winning coalitions in this game are: {1, 2} (or PNV-PSE), {1, 3}
(or PNV-PP), and {2, 3} (or PSE-PP). Because of the parliamentary arithmetic,
the remaining four parties are dummies in the described game.
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We can then write the game v as: v = u{1,2} + u{1,3} + u{2,3} − 2u{1,2,3}, and we
will obtain:

Sh(v) =

(
1

3
,
1

3
,
1

3
, 0, 0, 0, 0

)
.

Given the graph γ of the relations, we obtain the graph-restricted game:

vγ = u{1,2} + u{2,3} − u{1,2,3},

as minimal winning coalition (in the original game) PNV-PP is not feasible in the
restricted one.

Therefore:

µ(v, γ) = Sh(vγ) =

(
1

6
,
2

3
,
1

6
, 0, 0, 0, 0

)
,

and:

SC(v, γ) = Sh(v − vγ) =

(
−1

6
,
1

3
,−1

6
, 0, 0, 0, 0

)
,

maximal Social Capital corresponding, obviously, to the PSE, due to its location in
the relations graph. So, model permits us to predict a crucial role in the government
formation for the socialist party PSE. In fact, PSE formed a minority govern with
the external support of PP and UPD parties, avoiding the most voted party, the
nationalist PNV, do it.

5.2 Italian Elections 1983

Another good example in which a small but central party that got not too many
seats in a parliament finally became the most important is italian elections of 1983.
Following these elections the Prime-Minister, Bettino Craxi, was chosen from Italian
Socialist Party (PSI) that got only 73 seats from a total amount of 630. But PSI
had a very strong bargaining power being between the two biggest parties, Christian
Democrats (DC), with 225 seats, and Italian Communist Party (PCI), with 198
seats. The complete data about 1983 elections are presented in Table 2.

The possible links between parties are given in Figure 3.

15



PCI (198)

PSI (73)

DC (225)

DP (7)

MSI-DN (42)

PR (11)

PSDI (23) PRI (29) PLI (16)

UV-UVP-DPop (1) SVP (3)

LV (1) PSA (1)

Figure 2

Party Seats Sh(v) Sh(vγ) SC(v, γ)

1 Democrazia Cristiana (DC) 225 0.3450 0.2369 -0.1081

2 Partito Comunista Italiano (PCI) 198 0.2436 0.0798 -0.1638

3 Partito Socialista Italiano (PSI) 73 0.1787 0.5202 0.3415

4 Movimiento Sociale It. (MSI-DN) 42 0.0689 0 -0.0689

5 Partito Repubblicano Italiano (PRI) 29 0.0517 0.0978 0.0281

6 Partito Socialista Dem. It. (PSDI) 23 0.0403 0.0443 0.0061

7 Partito Liberale Italiano (PLI) 16 0.0318 0.0107 -0.0211

8 Partito Radicale (PR) 11 0.0155 0.0131 -0.0024

9 Democrazia Proletaria (DP) 7 0.0130 0.0095 -0.0035

10 Sudtiroler Volkspartei (SVP) 3 0.0059 0.0036 -0.0023

11 Liga Veneta (LV) 1 0.0019 0 -0.0019

12 Partito Sardo d’Azione (PSA) 1 0.0019 0 -0.0019

13 UV-UVP-DPop 1 0.0019 0 -0.0019

Table 2: Social Capital in Italian Elections 1983

The total number of seats was 630. So the ruling coalitions should contain at least
316 members. Considering the corresponding weighted majority game represent-
ing the govern formation, minimal winning coalitions in the graph-restricted game,
vγ are: {DC,PCI, PSI}, {DC,PSI, PRI}, {DC,PSI, PSDI}, {PCI, PSI, PRI,
PSDI} and {PCI, PSI, PRI, PR,DP}.

Italian Socialist Party appear in all of them, whereas the two most voted par-
ties, Christian Democrats and Communists appear only in three of them. As a
consequence, PSI is a dictator in this restricted game: it is not possible to form
government ignoring it. Detailed computations give us results appearing in Table 1.

In spite of PSI had around half the power (measured in terms of Shapley value) in
the original game than the most voted party, DC, PSI had, by far, the greatest Social
Capital and, finally, Bettino Craxi, a PSI member, was chosen as Prime-Minister.

Our conclusions appear to be in a good agrement with historical facts. The tra-
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ditional ruling coalition, known as Pentapartito (five parties), was {DC,PLI, PSI,
PRI, PSDI} with 225+16+73+28+23 = 366 seats. But there was another possi-
ble winning coalition: {PCI, PSI,DP, PR, PSDI, PRI}, with 198 + 73 + 7 + 11 +
23 + 29 = 341 seats. The latter coalition never formed before on the country gov-
ernment level but it happened to be formed on the levels of local governments. This
fact provide PSI with very strong bargaining power and finally the prime-minister
Bettino Craxi, member of PSI, was chosen.

6 Conclusions

In this paper we introduce a measure of social capital for players involved in a
cooperative TU game that simultaneously belong to a social network. The game
represents the economic interests that motivate the interactions among actors and
the social network the existing relations among them. The proposed measure as-
sumes that the social capital is the difference between the Shapley value of the game
when considering the restrictions in the cooperation given by the network (Myerson
value) and the Shapley value of the game when the network is ignored. Some proper-
ties are proved to show the behavior of this measure and how the network influences
the outcome that players can obtain. In particular, upper and lower bounds for the
measure are obtained. Moreover, for a monotonic game, a player being the hub of
a star shaped network has always the greater social capital among all the others. If
the game is also superadditive this higher social value is even the maximum social
capital considering the game as fixed and the network as variable. On the other
hand, being isolated in the network generates the poorest social capital when the
game is superadditive.

The influence of the network can be so important that the player involved in a
superadditive game and having minimal marginal contributions in it becomes the
one that possesses the maximal social capital among all the players with respect to
all possible networks when he is able to create a set of relations around him such
that he is directly related with all people and the rest are only directly connected
with him (i.e., being the hub of a star). On the other hand, a very powerful player
(a veto player) in a superadditive game becomes the one with the poorest social
capital if all the others break their relations with him (isolating him).

In a previous paper (Gómez et al., 2003) we introduced a measure of centrality
for individuals in a social network from a game theoretical point of view. Another
aim of the present paper is to establish a possible relation between centrality and
social capital. The obtained results show that the defined centrality in Gómez et
al. (2003) can be considered as a component of the social capital, which can be
additively decomposed in that centrality plus positional externalities. Given the
game players are involved in, the centrality of the position of an actor in the social
network is the variation that this position produces in his outcome in the game
obtained from the initial one when deleting the a priori differences among players.
The positional externalities obtained because of the position are the variation (debt
to the restrictions in the communications imposed for the graph) of the Shapley
value in the game in which coalitions earn excess (positive or negative) with respect
to the egalitarian situation.

Finally, we think that it could be interesting to explore the existence of appealing

17



properties of the measure we have called positional externalities and also to explore
how previous ideas can be used to introduce a measure of social capital for directed
or weighted social networks. For example, the definition of centrality for nodes in
directed social networks introduced in Pozo et al. (2011) can be related, we think,
with an appropriate social capital measure.
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