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Abstract
In this paper, we consider the problem of user
modeling in online social networks, and propose
a social interaction activity based user vectoriza-
tion framework, called the time-varying user vec-
torization (Tuv), to infer and make use of impor-
tant user features. Tuv is designed based on a novel
combination of word2vec, negative sampling and a
smoothing technique for model training. It jointly
handles multi-format user data and computes user
representing vectors, by taking into consideration
user feature variation, self-similarity and pairwise
interactions among users. The framework enables
us to extract hidden user properties and to pro-
duce user vectors. We conduct extensive experi-
ments based on a real-world dataset, which show
that Tuv significantly outperforms several state-of-
the-art user vectorization methods.

1 Introduction
Due to the rapid recent development of Internet technologies,
online social networks are becoming more and more popu-
lar with users. Important information associated with users
can be inferred from online social networks, and various user-
centric applications have been developed based on informa-
tion from online social networks, including recommendations
and advertisements. As a result, how to efficiently retrieve
useful user information from online social networks has be-
come one central question for both industry and academia.

Among the important topics about online social networks,
in this paper, we focus on user modeling from an information
retrieval perspective. User modeling has been receiving in-
creasing attention in recent years, which aims at developing
a deeper understanding about users, so that better analysis
and prediction about online user behavior can be achieved.
There have been many prior works proposing different ap-
proaches for user modeling, for instance, [Amir et al., 2016;
Tang et al., 2015]. Different from these methods which are
based on user connectivity, we instead focus on utilizing so-
cial interaction activities for characterizing online users.

Social interaction activities are widely available and valu-
able information. People on social media publish messages
and photos describing events in life, exchanging ideas and

sharing news. From these activities, one can observe many
interesting properties of users. Compared to other informa-
tion, e.g., connectivity, social interaction activities provide
more detailed descriptions about users, and preserve time-
dependent features. Thus, mining interaction activities should
provide us with more accurate modeling for users.

However, efficiently utilizing social interaction data is
challenging. First, interaction activities often contain vari-
ous forms of data, e.g., connectivity and text, and one has to
provide a unifying approach to properly fuse different infor-
mation. Second, the proposed method should be computa-
tionally efficient and generate consistent results. Third, the
model should respect the self-similar nature of user activities
over time. This imposes additional constraints on the model-
ing solution and further increases the design complexity.

To tackle these challenges, in this work, we propose a novel
framework for user modeling based on social interaction ac-
tivities, called the Time-varying User Vectorization (Tuv). It
is based on a novel combination of word2vec [Mikolov et
al., 2013a], negative sampling and a smoothing technique for
model training. It jointly handles multi-format user data and
computes user vectors by taking into consideration user fea-
ture variation, self-similarity and pairwise interactions among
users. Tuv possesses unique advantages due to its vectoriza-
tion nature. (i) Vectorization facilitates various analytical op-
erations on users, e.g., similarity computation and clustering.
(ii) Time-varying vectors better track evolving user proper-
ties, and enable a better user behavior prediction. These fea-
tures can not only help develop a better understanding about
users, but also be used to improve performance of Internet
applications including recommendations and advertisements.

The method of user vectorization is not new, e.g., [Perozzi
et al., 2014; Tang et al., 2015; Fu et al., 2009]. Our work dis-
tinguishes itself from these works in two ways. First, while
most works carry out vectorization based on social graphs,
we instead focus on utilizing social interaction records, which
gives us stronger information about user interactions. We also
benefit from text data in interaction records, which contain
important information about users not contained in connec-
tivity data. Second, while most works focus on user model-
ing that is static in time, we handle the problem with time-
varying user vectorization, which focuses on modeling user
properties over different times. This way, we obtain a deeper
understanding about how user properties change in time.
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Our contributions are summarized as follows.

• We propose to utilize user interaction activities for time-
varying user vectorization in online social networks.
Different from most existing approaches, which often
rely on static user information, e.g., connectivity graph,
our idea enables a more detailed user characterization
that keeps track of the dynamic patterns of user features.
• We design a novel framework based on user interac-

tion activities called the Time-varying User Vectoriza-
tion (Tuv). Tuv jointly handles multi-format data, in-
cluding user labels, text messages and time informa-
tion. Moreover, it is able to take into consideration
self-similarity of user properties and time-varying rela-
tionships among users. Although Tuv is developed for
user modeling, it also applies to other tasks with multi-
sourced data processing and feature identification.
• We conduct extensive experiments based on a real-

world dataset to compare Tuv with several state-of-the-
art methods for user vectorization in three applications,
i.e., user attention evaluation, time-varying user similar-
ity estimation, and user occupation prediction. Our re-
sults show that Tuv is able to accurately capture hidden
user properties and outperform existing methods.

2 Related Work
There have been prior works on social network modeling and
user vectorization. [Ren et al., 2008] uses SVD for network
embedding to detect community structure. [Zhao et al., 2010;
2011] provides a technique to embed social graph nodes into
coordinate spaces to preserve node distances within graphs.
DeepWalk [Perozzi et al., 2014] generates random walk paths
to vectorize social network nodes with the SkipGram model
[Mikolov et al., 2013a]. LINE [Tang et al., 2015] defines
proximities within a network, and utilizes these metrics for
node vectorization. [Tu et al., 2016; Grover and Leskovec,
2016; Liu et al., 2016] are also node vectorization models.
Different from our work which uses social interaction activi-
ties, all aforementioned works rely on social graphs.

Besides results on social graphs, there are also works uti-
lizing other user information. [Zhang et al., 2017] com-
bines social graphs and user profile information. There are
also vectorization models utilizing text information [Amir
et al., 2016; Yang et al., 2016]. [Nallapati et al., 2008;
Cho et al., 2016] combine network structures with text mod-
els, but the texts are associated to local network nodes instead
of interaction among nodes. There have also been works on
dynamic networks [Fu et al., 2009; Rossi et al., 2013], but
most of them focus on network structures instead of social
interaction records with multiple forms of data.

To jointly handle text information, we use the word2vec
framework from [Mikolov et al., 2013a; 2013b], which is an
effective language model for word vectorization.

3 Problem Statement
In this section, we describe the setting of social interaction
activities, and formally define the problem of time-varying
user vectorization.

3.1 Representing Social Network Data
We describe how we represent social network data, including
users and activities, in order to carry out our investigation.

(i) User: We denote the set of users in consideration by
U = {u1, u2, · · · , un}, where n is the total number of users.

(ii) Activity: We focus on two social interactions, pub-
lishing and forwarding. (a) Publishing is the activity that
an author publishes a new message. We denote it as a tu-
ple A = 〈u, t,m〉, where u is the author, t is the timestamp,
and m is the text information. (b) Forwarding is the activity
that a user reposts a message from another user. We denote
it as a tuple A = 〈u, t,m, ua, ta, uf , tf 〉. The notations u, t
and m are similar to a publishing activity. ua and ta denote
the author and timestamp of the original message. uf is the
user from whom the message is forwarded, and tf is uf ’s for-
warding time. If the message is forwarded from the original
author, we set uf to be a null user u∅, and tf to be a null time
t∅. Finally, we denote the set of all activities by A.

3.2 Time-varying User Vectorization
Our objective is to find, for each user u ∈ U , a vector repre-
sentation, which can capture important characteristics of the
user and can be used to analyze his relationship with others.

Specifically, we define the active time of a user to be the
time period from his first activity to the last. Denote the start
time of user u’s activities to be Tu, and the end time to be
T̃u. Since user behavior does not change very frequently, in
order to simplify analysis and computation, we divide time
into discrete timeslots of size ∆t. For each timeslot t, we
define a vector ~vu(t) for user u at time t. Our goal is to find
vectors {~vu(t)}u,t that satisfy the following requirements:
• The resulting vectors can reflect certain personal prop-

erties of users, such as occupations. Users with similar
properties shall have similar vector representations.
• Relations among different user vectors can reflect rela-

tionship (e.g., closeness or similarity) among users.
• The vectors of a user should also not vary too much dur-

ing consecutive time slots.
Prior works on user vectorization, e.g., [Perozzi et al.,

2014; Tang et al., 2015; Ren et al., 2008] often assume that
each user vector ~vu is a constant vector obtained from struc-
ture information of the social networks, e.g., connectivity. We
instead focus on the problem of time-varying user vectoriza-
tion based on user interaction activities, and aim to find a vec-
tor function ~vu(t) whose value characterizes the time-varying
nature of user properties. This problem is challenging, be-
cause social interaction is a complicated system with various
data types, such as pairwise interactions, text messages and
timestamps, and a unified framework needs to be designed in
order to fuse multi-format data. In our work, we propose a
novel framework which takes multi-format data into consid-
eration, and captures the time-varying properties accurately.

4 Method for Vectorization
In this section, we present our time-varying user vectorization
(Tuv) method. We start by describing the text data vectoriza-
tion. Then, we define our objective function and present the
algorithm for computing user vectors.
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4.1 Vectorization for Text Messages
As we have described, there is a text message m in each ac-
tivity record, which contains rich valuable information. Since
text messages are often not in numerical form and cannot be
directly used in vectorization algorithms, we first preprocess
them and convert them into vectors.

For a text message m, we use the sum of word2vec vec-
tors [Mikolov et al., 2013a; 2013b] of the words in it to
construct its vector representation ~v(m). This method has
also been adopted in prior works, e.g., [Yu et al., 2015;
Arora et al., 2015], and can often produce accurate results for
short messages [Adi et al., 2017]. Compared to more com-
plicated models, e.g., [Le and Mikolov, 2014], it is computa-
tionally efficient for handling large-scale text messages.

4.2 Objective Function and Optimization
In this section, we explain the design and meaning of user
vectors, and present our objective as well as how to solve the
Tuv problem. Different from existing works based on graphs,
e.g., [Perozzi et al., 2014; Tang et al., 2015], we focus on user
interaction activities, since doing so enables the characteriza-
tion of users’ time-varying properties. This is a challenging
task as it requires fusing multiple information types including
user connectivity, text messages and timestamps.

Recall that we have two types of interactions: publishing
A = 〈u, t,m〉 and forwarding A = 〈u, t,m, ua, ta, uf , tf 〉.
In order to jointly handle them, we unify both representations
by changing 〈u, t,m〉 to 〈u, t,m, u, t, u∅, t∅〉, where u∅ is
the null user and t∅ is the null time. Below, we regard every
activity to be in this form.

As discussed above, for each user u, our goal is to find a
vector ~vu(t) for the user at each time t, which can reflect his
properties. Below, one will see that the pattern of messages
that a user usually publishes or forwards has a strong relation-
ship with the properties of the user. Thus, we will make full
use of the text messages when computing our user vectors.

To this end, we define the “likelihood” that a user u will
publish or forward a message m at time t to be a function:

Lm(u,m, t) = S(~vu(t) · ~v(m)).

Here ~vu(t) is the vector for user u at time t, ~v(m) is the vector
for text message m, and S(x) = 1

1+e−x is the sigmoid func-
tion. We use the dot product ~vu(t) · ~v(m) because we want
the user vector to be closer to the text message vectors they
often publish or forward. The use of S(x) ensures that the
value of Lm(u,m, t) is in the range (0, 1). With this defini-
tion, Lm(u,m, t) has a positive correlation with the probabil-
ity that user u will publish or forward messagem at time t, so
that ~vu(t) can reflect user properties related to text messages.

In addition to the user-message relationship, pairwise user
relationship is also important. To utilize pairwise user rela-
tionship to obtain a more integrated model, we introduce two
more vectors ~ru(t) and ~su(t) for each user u at time t to de-
scribe the pairwise relationship among users. Based on these
vectors, for user u in activity A, we define the following like-
lihoods to describe the relationship between pairs of users.

• Original author: The likelihood that user u at time t will
forward a message authored by ua at time ta is defined

Social interaction activity 𝐴
target user 
𝑢

activity 
time 𝑡

text 
message 𝑚

original 
author 𝑢𝑎

publishing 
time 𝑡𝑎

last 
forwarder 
𝑢𝑓

last 
forwarding 
time 𝑡𝑓

Ԧ𝑣𝑢(𝑡) Ԧ𝑣(𝑚) Ԧ𝑟𝑢𝑎(𝑡𝑎) Ԧ𝑠𝑢𝑓(𝑡𝑓)

𝐿𝑚(𝑢,𝑚, 𝑡) 𝐿𝑎(𝑢, 𝑢𝑎 , 𝑡, 𝑡𝑎) 𝐿𝑓(𝑢, 𝑢𝑓, 𝑡, 𝑡𝑓)

𝐿(𝐴)

Figure 1: The procedure for generating the likelihood L(A) from an
activity record A. At first, for activity A, compute the partial like-
lihoods Lm(u,m, t), La(u, ua, t, ta) and Lf (u, uf , t, tf ). Then,
multiply all above likelihoods to get the final output L(A).

as a function:

La(u, ua, t, ta) = S(~vu(t) · ~rua(ta))

• Last forwarder: The likelihood that user u at time t will
forward a message last forwarded by uf at time tf is:

Lf (u, uf , t, tf ) = S(~vu(t) · ~suf (tf )).

Intuitively, La denotes the likelihood that a user forward a
particular user’s original post, and Lf denotes the likelihood
that a user forwards a friend’s post. The reason to use ~ru(t)
and ~su(t) instead of ~vu(t) is to allow the likelihood to be
asymmetric. For a publishing activity, we similarly define the
likelihoods as we have extended it to a forwarding one.

Based on the above definitions, we define the overall like-
lihood for user u to perform an activity A to be their product:

L(A) = Lm(u,m, t) · La(u, ua, t, ta) · Lf (u, uf , t, tf )

= S(~vu(t) · ~v(m)) · S(~vu(t) · ~rua(ta)) · S(~vu(t) · ~suf (tf ))

Here we remove the S(~vu(t) · ~suf (tf )) term if uf = u∅ and
tf = t∅. Figure 1 provides a graphical demonstration of this
procedure for generating the likelihood function L(A).

It remains to find appropriate vectors ~vu(t), ~ru(t) and
~su(t), so that the likelihood values best fit our dataset. To
do so, we adopt the technique of negative sampling proposed
in [Mikolov et al., 2013b], which works as follows. For an
activity A = 〈u, t,m, ua, ta, uf , tf 〉, in addition to user u,
we randomly choose a negative sample ũ 6= u, following the
empirical distribution of users in the activity set A. With the
negative sample ũ, we define the negative likelihood L̃(Ã):

L̃(Ã) = (1− S(~vũ(t) · ~v(m))) · (1− S(~vũ(t) · ~rua(ta)))

· (1− S(~vũ(t) · ~suf (tf )))

where Ã is attained by replacing user uwith ũ inA. Similarly
we remove the (1 − S(~vũ(t) · ~suf (tf ))) term if uf = u∅
and tf = t∅. Then, given all activities A ∈ A, our target
likelihood function is given by:

L(A) =
∏
A∈A

(
L(A) · L̃(Ã)

)
Next, we want to also take into account the time-varying

and self-similar property of users in the overall objective
function. To do so, we assume that for each user u, the vec-
tor ~vu(t+ ∆t) follows a Gaussian distribution, with its mean
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Algorithm 1 Building the task list

Input: The set of user activities, A, the set of all users, U
Output: The task list T

1: Initialise T with empty list
2: for A ∈ A do
3: Generate negative sample Ã, and add 〈A, Ã〉 to T
4: for u ∈ U do
5: for t ∈ {Tu, Tu + ∆t, · · · , T̃u −∆t} do
6: Add 〈u, t, t+ ∆t〉 to T
7: return T

being the vector ~vu(t) in the last time slot, and the variance
being σ2. Then the probability distribution is given by:

f(~vu(t+ ∆t) | ~vu(t)) = 1√
2πσ2

exp(− |~vu(t+∆t)−~vu(t)|2
2σ2 )

This ensures that for the same user, his vectors in adjacent
time slots are close to each other. The benefit of the Gaussian
distribution is that we can obtain a quadratic term after taking
a logarithm, making it suitable for a regularizer. Random pro-
cesses with similar distributions have also been used in other
models [Coulom, 2008; Wilson et al., 2016].

Taking all above factors into account, our overall objective
function is given by:

L(~v, ~r, ~s) =
∏
A∈A

(
L(A) · L̃(Ã)

)

·
∏
u∈U

T̃u−∆t∏
t=Tu

exp(−|~vu(t+ ∆t)− ~vu(t)|2

2σ2
)

Our goal is to find appropriate vectors ~vu(t), ~ru(t) and ~su(t),
to maximize L(~v, ~r, ~s). Taking a logarithm of it, we obtain

logL(~v, ~r, ~s) =
∑
A∈A

(
logL(A) + log L̃(Ã)

)

−
∑
u∈U

T̃u−∆t∑
t=Tu

|~vu(t+ ∆t)− ~vu(t)|2

2σ2

Similar to the optimization method in word2vec [Mikolov
et al., 2013a], we use stochastic gradient descent (SGD) [Bot-
tou, 1991] to carry out the optimization. The main reason for
this choice is that the global gradient of the objective function
takes a long time to compute, especially for tens of millions
of activity records. It is more practical to use the SGD algo-
rithm to compute the gradient in an incremental way.

Our framework includes two steps. In the first step, we
build a task list to contain data for our training. For each in-
teraction record, we generate its negative sample, and add that
to the task list. This is shown in Algorithm 1. In the second
step, for each task in the list, we use SGD to update the vec-
tors. We repeat this process for several iterations, decreasing
the learning rate after each iteration. The detailed algorithm is
shown in Algorithms 1 and 2 (the parameters imax, η0, ηmin,
λ will be specified later). The output vectors ~vu(t), ~ru(t) and
~su(t) are the desired results.

Algorithm 2 Optimization of the object function

Input: The task list, T
Output: The vectors, ~vu(t), ~ru(t), ~su(t)

1: Initialize ~ru(t), ~su(t) for all u, t with random vectors
2: η = η0, ~vu(t) = ~0 for all u, t
3: for each iteration i ≤ imax do
4: Sort T with a uniform random order
5: for each task in T do
6: if the task is 〈A, Ã〉 then
7: ~e = ~0
8: for a ∈ {A, Ã} do

. a = 〈id, u, t,m, ida, ua, ta, uf , tf 〉
9: ge = η(1(a = A)− S(~vu(t) · ~rua(ta)))

10: ~e = ~e+ ge~vu(t)
11: ~vu(t) = ~vu(t) + ge~rua(ta)

12: ~rua(ta) = ~rua(ta) + ~e
13: Update ~vu(t) and ~suf (tf ) similar to line 7-12
14: for a ∈ {A, Ã} do
15: gm = η(1(a = A)− S(~vu(t) · ~v(m)))
16: ~vu(t) = ~vu(t) + gm~v(m)

17: else if the task is 〈u, t, t+ ∆t〉 then
18: (~vm, ~vd) = 1

2 (~vu(t+ ∆t)± ~vu(t))

19: (~vu(t+ ∆t), ~vu(t)) = ~vm ± e−
2η

σ2 ~vd

20: η = max(λη, ηmin)

21: return ~vu(t), ~ru(t), ~su(t)

5 Experiments and Applications
In this section, we describe experimental results of our Tuv
model, obtained based on real-world social network data. We
present three applications of our method and show that Tuv
outperforms existing methods.

5.1 Data and Settings
We collect data from Sina Weibo (http://weibo.com/),
a Chinese social media with over 100 million active users
every day. We first identify and fix the user set, and then
crawl their interaction records with Python scripts. We col-
lected data for 7, 370 verified users (with IDs being verified
by Sina Weibo) as our user set, with 252, 560 directed fol-
lowing edges among them. For interaction activities, there
are 17, 387, 066 records in total, including 9, 829, 429 pub-
lishing records and 7, 557, 637 forwarding records. The time
duration is from August 2009 to June 2017.

After data collection, we begin to implement our frame-
work. As described in Section 4.1, we compute the vectors of
all the text messages in advance. Since most messages in Sina
Weibo are in Chinese, we first use the THULAC tool [Sun et
al., 2016] to split the messages into words. After that, we
compute the vector ~v(m) for each message m following Sec-
tion 4.1. After obtaining the sentence vectors, following the
algorithms in Section 4.2, we compute the vector representa-
tions ~vu(t) and user relationship vectors ~ru(t) and ~su(t). The
detailed parameters for ∆t being one year long are 100 di-
mensions for vectors, imax = 30, η0 = 0.1, ηmin = 1×10−5,
λ = 0.518, σ2 = 0.09. For ∆t being one season long, we re-
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place them with λ = 0.527, σ2 = 0.00225. Based on our
experiments, the performance of our model is not very sen-
sitive to the parameters, and the performance stays similar
within a reasonable range of values. These values are chosen
in this range to optimize the performance of the evaluation.

In the following, we present three applications of the re-
sulting user vectors computed above, and compare them with
other results obtained using other methods. We will see that
Tuv achieves better performance.

5.2 User Attention Evaluation
Our first application is user attention evaluation, which is
used to describe the level at which a user pays attention to
another user. In an online social network, when user u1 pays
attention to user u2, u1 has a larger probability of reading and
forwarding u2’s messages. User attention evaluation is an im-
portant problem and has a lot of applications including friend
recommendation and message ranking.

To evaluate user attention, we conduct experiments on pre-
dicting whether a user will forward a message from another
user at certain time. We use 80% of data to train the Tuv
model and compute pairwise similarities for all users. Then,
from the remaining 20% of data, we randomly choose 8000
records to generate 4000 positive samples and 4000 negative
ones. Then we use 4000 samples among them to train an
SVM [Cortes and Vapnik, 1995] (with input from Tuv model
and output to be +/− labels generated) and use 4000 samples
to test. We then use the SVM accuracy to evaluate our model.

The positive and negative samples are generated in this
way. For each record A = 〈u, t,m, ua, ta, uf , tf 〉, we gen-
erate a positive sample (+1, (u, t, ua, ta)), meaning that the
message is forwarded by u. Then, we randomly select another
user ũ 6= u to generate a negative sample (−1, (ũ, t, ua, ta)),
meaning that the message is not forwarded by ũ.

We use the LIBSVM library [Chang and Lin, 2011] to
do the classification. Each input vector contains I1 =
{~vu(t), ~ru(t), ~su(t)}, I2 = {~vua(ta), ~rua(ta), ~sua(ta)}, to-
gether with the pairwise cosine similarities between vectors
from these two sets I3 = {cos〈~v1, ~v2〉|~v1 ∈ I1, ~v2 ∈ I2}.

For comparison, we select several existing user vectoriza-
tion methods. The input vectors are also user embedding vec-
tors and their cosine similarities. The baselines include:
• DeepWalk [Perozzi et al., 2014]: A method generating

node vector representation from a social graph with ran-
dom walks.
• LINE [Tang et al., 2015]: A large-scale information net-

work embedding scheme based on social graph.
• Weighted LINE with user activities (LINE-w): Instead

of the social graph, use the social interaction records as
the input to the LINE framework, and the edge weights
are social interaction frequencies.
• LINE-w-time: Regard each user at each time slot as a

node, and apply LINE-w.
We use accuracy, precision and recall as the metrics, and

the results are shown in Table 1. We see that social interac-
tion based methods outperform graph structure based meth-
ods. Among social interaction methods, the accuracy of Tuv-
year outperforms than all other methods. For precision and

Method attention (%) similarities
acc. pre. rec. RMSE R2

DeepWalk 72.6 78.2 62.7 0.0591 0.341
LINE 74.0 78.2 70.6 0.0567 0.393

LINE-w 83.4 87.5 78.0 0.0494 0.539
LINE-w-season 77.0 75.4 80.1 0.0649 0.206
LINE-w-year 82.8 81.9 84.4 0.0573 0.381
Tuv-season 82.3 80.8 84.7 0.0588 0.349
Tuv-year 85.0 82.5 88.9 0.0563 0.402

Table 1: Prediction result of user attention and user similarities.
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Figure 2: Similarities with fbb0916 for five users over seasons.

recall, there is only one exception that static LINE-w has a
better precision, but it has a much lower recall. The results
demonstrate that Tuv achieves a good performance in user
attention evaluation.

5.3 Time-varying User Similarities
Our second application is computing similarities between
users. To carry out our evaluation, we use the cosine simi-
larity of user vectors to denote the similarity between users.
For u1 and u2 at time t, the similarity level is computed as:

sim(u1, u2, t) = cos〈~vu1
(t), ~vu2

(t)〉.

Note that this is a feature not possessed by other methods
without a time component, e.g., connectivity based similarity
[Perozzi et al., 2014; Tang et al., 2015; Liu et al., 2016].

With the user vectors we computed, for each user u at time
t, we identify its closest neighbors with the largest similarity
values. According to our observation, these neighbors are
usually close friends, users who have deep working relations
with the user, or users who have similar properties.

Take the blog ID fbb0916 (http://weibo.com/
fbb0916) for example. We select five neighbors and plot the
similarity values among them from 2014 to 2017 by seasons
in Figure 2. It shows that our vectorization for users can ef-
ficiently capture time-varying user properties, including their
relationship with other users in online social networks, and
the pattern changes over time.

In order to evaluate the accuracy of our user similarities,
we compute the message-based similarity among users as the
ground truth. Specifically, it is defined as the Jaccard similar-
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ity [Levandowsky and Winter, 1971], i.e.,

msim(u1, u2, t) =
|S(u1, t) ∩ S(u2, t)|
|S(u1, t) ∪ S(u2, t)|

,

where S(u1, t) and S(u2, t) is the set of messages that u1

and u2 published or forwarded at time t. We use 80% of all
messages to train our Tuv model, and the remaining 20% to
compute the Jaccard similarities. Then, we use linear regres-
sion to evaluate the correlation between the Tuv similarities
sim(u1, u2, t) and the ground-truth msim(u1, u2, t), since a
stronger correlation indicates a better accuracy of our Tuv
method. We use 4, 000 pairs of users to train the linear regres-
sion model, and use 4, 000 pairs to test it. We also compare
our method with the existing baselines.

The result is shown in Table 1. The metrics include the
root-mean-squared error (RMSE) and the coefficient of deter-
mination (R2). From the result, we see that except for LINE-
w, our method Tuv-year reaches the best performance. How-
ever, the method LINE-w does not capture the time-based
property. For the time-varying version of LINE-w, i.e., LINE-
w-time, our method Tuv shows better results than LINE-w-
time in both year-long and season-long timeslots.

5.4 Occupation Prediction
Our third application is occupation prediction. Occupations
are important information related to user status. For veri-
fied users on the website, there is verification information,
for instance, “music producer” and “writer”, which we use
to obtain their true occupations. Among the 7370 users, up to
5, 990 users take the eight most common occupations, such as
music, actor and business. We use 3, 990 of them as training
data, and the other 2, 000 as testing data. Assuming that vec-
tors for user u at different time slots are ~vu(T ), ~vu(T + ∆t),
· · · , ~vu(T + (k − 1)∆t), we compute the general user vector
~v∗u of the user as the average of all the above vectors.

Figure 3 shows the vector distribution of the users in three
most common occupations, obtained by projecting the 100-
dimension vectors onto a 2-d space by the PCA method [Pear-
son, 1901]. We can see that the user vectors for each occu-
pation concentrate around a particular area, showing that our
vectorization model captures hidden features of users.

After obtaining the average vector representation ~v∗u of the
users, we use SVM [Cortes and Vapnik, 1995] for training
and predicting. For each user u, the input is the average vector
~v∗u. For comparison, except for the above methods, we also
include the average text message vectors, i.e., the average of
all text message vectors published or forwarded by a user, to
represent the user. The prediction accuracies of Tuv and the
baselines are shown in Table 2. For every scheme evaluated,
we also created the “x+text” version of it, by concatenating
the average text message vectors with the resulting vectors.
Doing so leads to a better prediction accuracy for all schemes.

Note that the F1 scores [Yang, 1999] are common accuracy
measures for multi-class classification. In Table 2, “normal”
refers to the algorithm with input being vectors generated by
Tuv (or DeepWalk, LINE); “only text” refers to the case when
the input are average sentence vectors, and “x+text” refers to
the case when the input are vectors obtained by concatenating
the Tuv vectors and average sentence vectors.
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Figure 3: 2-d vector distribution of users in the three most common
occupations under Tuv. Here we set ∆t = 1 year.

Method normal x+text
F1-mic F1-mac F1-mic F1-mac

Only text - - 0.668 0.520
DeepWalk 0.616 0.391 0.655 0.493

LINE 0.631 0.400 0.660 0.466
LINE-w 0.619 0.402 0.659 0.465

Tuv-season 0.650 0.495 0.662 0.528
Tuv-year 0.668 0.517 0.681 0.543

Table 2: Prediction result of occupations in F1-micro and F1-macro.

We see that Tuv outperforms the methods of DeepWalk,
LINE and LINE-w for both the normal versions and the
“x+text” versions. It is interesting to see that all “x+text” ver-
sions perform better, showing that text message vectors con-
tain strong information for user occupations. It can also be
observed that Tuv achieves a significant improvement after
merging with the average text message vectors, while other
baseline methods do not provide an obvious improvement.

6 Conclusion
In this paper, we propose a novel framework, called time-
varying user vectorization (Tuv), for studying user relation-
ship in online social networks. Tuv is different from previous
works on user vectorization in that it focuses on utilizing user
interaction activities, and can reflect changes of user proper-
ties over time. Our model takes into account text messages for
all activities, original author and last forwarder for forward-
ing activities and time information. We have also considered
the time-varying effect of user vectors. Our experimental re-
sults show that our Tuv scheme is efficient in characterizing
user features and is suitable for various applications impor-
tant to Internet business, including user attention evaluation,
user similarity computing and occupation prediction.
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