
A Social Network Based Patching Scheme for
Worm Containment in Cellular Networks
Zhichao Zhu∗, Guohong Cao∗, Sencun Zhu∗, Supranamaya Ranjan† and Antonio Nucci†

∗Department of Computer Science and Engineering, The Pennsylvania State University, University Park, PA
†Narus Inc, Mountain View, CA

∗ {zzhu,gcao,szhu}@cse.psu.edu † {soups, anucci}@narus.com

Abstract—Recently, cellular phone networks have begun allow-
ing third-party applications to run over certain open-API phone
operating systems such as Windows Mobile, Iphone and Google’s
Android platform. However, with this increased openness, the
fear of rogue programs written to propagate from one phone to
another becomes ever more real. This paper proposes a counter-
mechanism to contain the propagation of a mobile worm at the
earliest stage by patching an optimal set of selected phones.
The counter-mechanism continually extracts a social relationship
graph between mobile phones via an analysis of the network
traffic. As people are more likely to open and download content
that they receive from friends, this social relationship graph is
representative of the most likely propagation path of a mobile
worm. The counter mechanism partitions the social relationship
graph via two different algorithms, balanced and clustered par-
titioning and selects an optimal set of phones to be patched first
as those which have the capability to infect the most number of
other phones. The performance of these partitioning algorithms
is compared against a benchmark random partitioning scheme.
Through extensive trace-driven experiments using real IP packet
traces from one of the largest cellular networks in the US, we
demonstrate the efficacy of our proposed counter-mechanism in
containing a mobile worm.

I. INTRODUCTION

Cellular phone networks are increasingly receptive to open-
API operating systems such as Windows Mobile, Iphone and
Google’s Android running over mobile phones in the networks.
While this openness would allow richer applications to run
over mobile phones, it also makes it easier for hackers to write
malicious software that can take control of a mobile device by
exploiting its vulnerabilities or that of the applications running
on top of it. In this regards, cellular networks may witness
a similar evolution of worms as has been seen in the wired
world. Further, mobile worms could impose unwarranted
bandwidth charges to customers, deterioration in quality of
service, and ultimately loss of revenue for service providers.

The usual ways for mobile worms to propagate include
Bluetooth [13] interface and Multimedia Messaging Service
(MMS) [19] interface. One Bluetooth based mobile worm
is Cabir [9], which can spread through Bluetooth connec-
tion to other Bluetooth-enabled devices it can find. As its
name suggests, MMS messages are intended to contain media
content such as photos, audios or videos, but they can also
contain infected malicious codes. One noteworthy example is
Commwarrior [10], which is the first worm that can propagate
via MMS. It searches through a user’s local address book for
phone numbers and sends MMS messages containing infected
files to other users in the address book.

The increasing popularity and unique property of MMS
worms draws our focus on dealing with MMS worms in this
paper. MMS worms could be sent out in just one click and
travel to any mobiles all over the world with a larger chance
of success in propagation, thus are potentially more virulent in
terms of speed and area of propagation than Bluetooth worms.
Note that worms that exploit plain-text Short Message Service
(SMS) can not carry malicious payload, and hence usually
only carry a URL in the message, from where the victim is
lured to download the payload, e.g., the worm Symbos/Feak
[8]. We consider worms that exploit SMS as similar to MMS
in the way they spread (via address books or call records) and
hence our methodology developed here would be applicable
to both techniques.

Due to characteristics of slow start and exponential propa-
gation exhibited by mobile worms, it is challenging to detect a
worm outbreak at the early stage while it is hard to mitigate it
at a later stage. However, even if network operators are unable
to detect a worm propagation during the earliest stage, they
still have a window of opportunity to react before the worm
spreads to a larger population. This is especially true in mobile
worm in which user interactions are required to download
and install the malicious files on mobile devices. Therefore,
unlike automatic Internet worms [22] which only take hours
to infect millions of users, it usually takes much longer for
mobile worms to spread to a severe level. In this paper, we
focus on the methodology by which a mobile network operator
would distribute a patch to arrest a worm’s propagation before
it causes complete network infection.

Patch propagation techniques have been developed for de-
livering worm signatures in the wired Internet [25]. However,
such solutions are not directly applicable to mobile networks
which have a unique constraint of lower data rates. In such
a bandwidth-constrained environment, patches can not be
propagated by a network operator to all devices at the same
time. Moreover, the patch would have to compete with the
bandwidth already being consumed by a propagating worm.
Existing work on modeling and containment of worms in a
mobile network [21] [3] [1] [11], do not take into account
the unique capability of mobile worms to spread by using the
social network of users by exploiting their address book or
recent call records. In lieu of above observations, we take a
hierarchical approach towards patching mobile devices such
that those devices which act as a ‘bridge’ between social
clusters within the network are patched first. The intuition
being that such devices once infected have the ability to infect
entire social clusters and hence they must be patched first.

In this paper, we propose a new approach to contain
MMS worms within a limited range at the earliest stage. We
divide the mobiles in cellular networks into multiple partitions
based on the social relationships between mobiles retrieved
from a real cellular network trace. Mobiles in each partition
closely interact with each other while mobiles across different
partitions are less related. Security patches are distributed to
key nodes that separate individual partitions to block the worm
propagation from one partition to another. More specifically,
the contributions of this paper are three-fold:

• We construct a social relationship graph of mobile devices
by extracting their communication patterns based on a
network trace. This graph describes the social relation-
ships between mobile phones which are usually exploited
by mobile worms for spreading.

• We propose a new containment strategy for MMS worms
by partitioning the mobiles appropriately based on the
social relationship graph. Two partitioning algorithms:
balanced partitioning and clustered partitioning are
proposed and their performance is evaluated.

• We experimentally compare our targeted patching al-
gorithms (balanced and clustered) against a benchmark
uniformly random patching strategy. Our experiments
show the efficiency of targeted patching: both balanced
and clustered patching algorithms achieve a lower in-
fection rate than the random strategy while patching a
significantly smaller number of nodes.

The rest of this paper is organized as follows. Section
II presents motivations behind the trace-driven partitioning
approach. Section III describes how this social relationship
graph can be built by using a network traffic trace. Section IV
introduces the graph partitioning theory and two corresponding
patching schemes. Section V evaluates the performance of our
worm containment strategy. Finally, Section VI concludes the
paper and provides future research directions.

II. MOTIVATION

Mobile worms that spread using MMS [10] or SMS [8]
typically exploit the social network of users to propagate from
one mobile device to another. These worms search through a
user’s local address book and recent call records for phone
numbers and send messages to other users. Note that randomly
scanning does not work on mobile worm environment, as any
malicious message from an untrusted stranger would not be
opened and activated. In the case of MMS, the message itself
could be the malicious payload, while in the case of SMS, the
user would be lured to download the payload from a URL. A
victim mobile receiving this message will most likely open and
download the message since he believes it comes from some-
one he knows and trusts. Thus, an effective worm containment
approach must take in to account the social relationship graph
between mobile devices in a cellular network. By figuring
out the social interactions between mobile devices, i.e. which
devices are more likely to exchange messages with each other,
we can predict the propagation path of such mobile worms.
In this way the vulnerable mobiles or connections could be
marked and be protected.

Given that there has not been any instance of mobile worm
that has propagated far and wide across a cellular network
‘in the wild’ as yet, there is limited knowledge of propagation
paths of mobile worms. In this regards, we make the following
assumption, that the propagation path of a mobile worm can be
approximated by the social network of mobile devices. Given
that a user Joe has a higher probability to open and download
a message from Jane with whom he periodically exchanges
messages, this pair of users, Joe-Jane would be considered
more vulnerable. In contrast, if Joe doesn’t exchange messages
with Mary, he is unlikely to be infected by a worm sent by
Mary and hence the pair of users, Joe-Mary is considered
less likely to be included in the worm’s propagation path. In
summary, we use the amount of traffic exchanged between
two mobile devices as an indicator of whether this pair of
devices would be present in a worm’s propagation path. This
propagation model would be reflective of worms that spread
by exploiting the call records of infected hosts. Such a social
relationship graph can be accurately built by a mobile network
operator by looking at the call and messaging records at
which the operator stores for billing purposes. Even for mobile
worms which spread by using the address book of an infected
host, the social relationship graph built by using the call and
messaging records would be reflective of the propagation path
of the worm, which is similar for worms which spread by
randomly generating a hit list of potential devices. This is on
account of the fact that humans are much more likely to open
and download a message from someone with whom they have
communicated in the past.

Our worm containment strategy would be implemented
at a mobile service provider’s messaging gateways or base-
station controllers. Service providers typically store records
of all traffic generated by a user per session for billing and
accounting purposes. We use an anonymized trace from one of
the largest cellular network providers over a two week period
in April 2008. The trace summarizes the total amount of traffic
generated by every user for a variety of applications such as
SMS, MMS, SIP based VoIP, Push-To-Talk and so on. We use
all traffic exchanged between a pair of devices regardless of
application types, as an indicator of their likelihood to infect
each other.

We use the social relationship graph to decide on an
effective patch distribution strategy. A mobile that receives
a patch becomes immune to the worm and could then be used
to propagate the patch further. However, as we will discuss
in Section IV, disseminating patches to all mobiles may not
be a practical method due to the time and bandwidth limits.
Thus, a faster way of patch dissemination, or an appropriate
order of patch distribution is needed. Intuitively, the one
with the highest risk to be infected or the one with the
highest probability to infect others should have the highest
priority for security upgrades. Under our partitioning based
approach, security patches need not reach all the mobiles if the
worm could be contained in each small partition. Therefore,
only those key nodes that separate the graph into individual
partitions should be patched in the first place. We next discuss
how to determine this set of key nodes.

III. TRACE-DRIVEN SOCIAL RELATIONSHIP GRAPH

In this section, we describe how a service provider can
construct a social relationship graph by using an example
traffic trace collected at the network layer at one of the largest
mobile phone networks in the US. The endpoints present in
the trace were anonymized while preserving the uniqueness
of the identifiers of ip-addresses and phone numbers involved.
The trace provides a session-level information for traffic (bytes
and packets) exchanged between two endpoints per application
over a two week period in April 2008. The trace contains in-
formation about 2 million users across 65000 base station cells
all over the US. According to this trace, about 35% of users
in this network exchange about 0.4 million MMS messages
every day. Besides MMS, the trace also contains traffic volume
information for SIP based VoIP sessions exchanged between
users, SIP based Push-To-Talk and SMS.

Definition 1 (Cellular-Social Relationship Graph): An
undirected weighted graph G = (V,E) consists of a set of
vertices V and a set of edges E, such that each vertex u ∈ V
denotes a mobile in the cellular network, while each edge
e(u, v) denotes that at least one traffic flow was exchanged
between mobile u and v. Let du denote the degree of vertex
u, u ∈ V (the number of mobiles or vertices having a link
with u). Let m(u, v) denote the amount of traffic initiated
from u to v. If there are functions f and g that map each
vertex u ∈ V and each edge (u, v) ∈ E to a real number,
then the graph is considered to be weighted with f and g
determining the vertex-wights and edge-weights, respectively.
The weight-mapping functions are as following:

f(u) = du (1)

g(u, v) = m(u, v) + m(v, u) (2)

An example social relationship graph is shown in Table
I. We use the number of sessions exchanged between two
mobiles u and v over one week as our weights m(u, v).
Alternatively, the total number of bytes or packets exchanged
between two mobiles could also be used as the weights. For
the sake of generalization, we count all sessions exchanged
between two mobiles regardless of the application type, as
all types contribute to the worm propagation patterns. Each
entry in the table shows how many times any two mobiles
communicated with each other every week on an average.
We note this metric as WAT (weekly averaged traffic). If we
abstract each mobile as a vertex and normalize WAT between
any two mobiles by dividing the maximum WAT over the
week, we get a relationship graph as Figure 1.

TABLE I
COMMUNICATION TRAFFIC RECORDS

Between Phones WAT Between Phones WAT
A and B 1 A and G 3
A and H 3 B and C 2
B and H 1 B and I 1
C and D 10 C and I 1
D and E 1.5 D and I 1.5
E and F 5 F and G 1
F and I 5 G and H 2
G and I 1

The weights of vertices and edges together contribute to
a significance level which represents the chance of being

G

A

F

ED

C

B

H

I

0.1
0.3

0.3

0.2
0.1

0.1

0.1

0.15

0.15

0.1

0.5

0.5

0.1

0.2

1

Fig. 1. Cellular Social Relationship Graph

infected by worms. As can be seen from Equation (1), the
weights of vertices depend on the node degrees. Intuitively,
the mobile with the highest risk to be infected or infect others
is the key node that a worm can use to spread and thus has the
highest priority for containment. For MMS worms, a mobile
with a higher in-degree means that it is more likely to be
infected while a mobile with a higher out-degree is more
likely to infect other mobiles. Therefore, those high-degree
mobiles, either in-degree or out-degree, should be assigned
a higher vertex weight and get higher priority for patching
consideration. The in-degree and out-degree of a mobile are
not necessarily dependent, but may be correlated. The phone
number of the mobile that has large address book tends to
appear in the address books of many others.

The social interactions [5] between mobiles can be used
to explain Equation (2). Whenever there is a traffic record
between two mobiles, they have a chance to be friends and
therefore a larger probability to open and activate a worm
message received from each other. This social relationship
graph gives us an overview of how mobiles are related with
each other and how worms might use these social relationships
to propagate themselves.

We use weekly averaged traffic (WAT) to measure the
relationship between two mobiles. According to what we have
observed from the trace, although the number of interactions
between two individuals behaves differently for weekday and
weekend, the number of interactions across the two weeks
remains similar. This result which is also confirmed by [5]
shows that people’s interaction rates are predictable on a
weekly basis. Therefore, it is reasonable to use a weekly
averaged traffic information to represent the interaction rate
through a long period.

IV. CONTAINING WORMS BY GRAPH THEORY

A. Uniform Patch and Targeted Patch

Most security patch providers such as F-Secure [7] use
push-based strategy for patch distribution, that is, as soon as a
new security patch is available, the notification of updates is
sent to all subscribed users. Upon receiving the notification,
users authenticate and verify the message, and then connect to
a centralized database to download the patch updates promptly.
This can be achieved by short messages through control
channels. However, the time to disseminate patches to entire
cellular networks could be in the order of hours or days, which
is much longer than the worm propagation speed. Moreover,

4

3

3

23

3

4

3

5

0.1
0.3

0.3

0.2
0.1

0.1

0.1

0.15

0.15

0.1

0.5

0.5

0.1

0.2

1

Edge-cut: 2.5
Node weights: 10/10/10

Edge weights: 0.3/0.3/0.3

(a) Balanced Graph Partitioning

4

3

3

23

3

4

3

5

0.1
0.3

0.3

0.2
0.1

0.1

0.1

0.15

0.15

0.1

0.5

0.5

0.1

0.2

1

Edge-cut: 0.9
Node weights: 14/6/10

Edge weights: 1.0/1.0/1.0

(b) Clustered Graph Partitioning

Fig. 2. Examples of Two Different Graph Partitioning Schemes

the bandwidth bottleneck of the control channel prevents all
the mobiles from reaching the system and downloading the
patches at the same time. According to [4], the total number
of messages per second needed to saturate the cellular network
capacity for a metropolitan area such as Washington D.C. is
240 msgs/sec and for the entire United States is 525, 325
msgs/sec. Therefore, any larger traffic volume would cause
congestion or even crash the network.

Therefore, an appropriate order or scheduling of patch
distribution is needed. Intuitively, the one with the highest
risk to be infected or the one with the highest probability
to infect others should have the highest priority for security
patches. Our goal is to find a small set of nodes with the
highest priority for patching, while keeping the infection rate
as low as possible. We call it targeted patching. Under the
partition based scenario, security patches do not have to reach
all the mobiles if the worm could be contained in each small
partition. A small set of nodes which separate all the nodes
into multiple partitions is enough for our targeted patching.

With knowledge of the network topology, we partition the
graph into as many separate pieces as possible and contain the
worm propagation within each partition. These partitions are
separated by a minimum set of key nodes called separators.
The separators are chosen and patched by the network with
the highest priority. As a result, the worm propagation can be
blocked since an infected node inside its partition has to go
through a separator to reach other partitions. Then, the worm
containment problem becomes a graph problem and we can
use graph-partition techniques to solve it. Now the question is
what criteria should be used to partition the graph.

Based on the following two different partitioning strategies,
there are two kinds of targeted patching: balanced patching
and clustered patching (unbalanced patching).

B. Balanced Graph Partitioning

Intuitively, the significance level of each partition should
be similar so that the worm damage to each partition can
be balanced. As mentioned before, vertex weight and edge
weight can be viewed as metrics for significance level. The
vertex degree denotes how many victims an infected mobile is
able to reach while the edge weight represents the probability
that worms can propagate through this link successfully. Due
to different ways of balancing these two metrics, we define
balanced graph partitioning as follows.

Definition 2 (Balanced Graph Partitioning): Given an
undirected weighted graph G = (V,E), with weight f(i) for
each vertex i ∈ V and g(u, v) for each edge (u, v) ∈ E,
a partition P cuts the vertices set V into k(k > 1) subsets
V1, V2, . . . , Vk such that Vi∩Vj = φ for i �= j, and ∪iVi = V ,
with the following two constraints satisfied:

• the total weights of vertices in each subset Vi are bal-
anced.

• the total weights of all edges crossing any two subsets
are minimized.

The first constraint in the definition requires the ver-
tex weights for each partition to be balanced. Let
LoadImbalance(P) denote the ratio of the highest par-
tition weight over the average partition weight, i.e.,
maxi(f(Vi))/(f(V)/k). The first constraint minimizes
LoadImbalance(P). It tries to keep the significance level in
each partition balanced, so that the damage to each partition
is balanced and limited. The second constraint keeps the edge
weights between partitions minimized so that partitions are
less related to each other. Let Edge-Cut(P) denote the total
weights of all edges crossing any two partitions. Then, the
second constraint minimizes Edge-Cut(P).

Next, we try to find an appropriate theory to solve the
above problem. Existing graph partitioning solutions [14], [24]
are developed for high-performance parallel computing, circuit
placement and other disciplines. All these solutions partition
the vertices of the graph into equally weighted sets so that
the weight of the edges crossing between sets is minimized.
A new class of partitioning algorithms based on the multilevel
paradigm [15], [26] has been developed and is considered to
be the state-of-the-art as they provide extremely high-quality
partitions. These algorithms are very fast, and can scale to
graphs containing millions of vertices. The basic idea behind
the multilevel approach is to first coarse down the graph G to a
few hundred vertices or less. Then, some standard partitioning
algorithm is used to partition the graph. Since the size of the
graph is quite small, simple algorithms such as Kernighan-
Lin(KL) [17] performs well. The final step is to project this
partition back towards the original finer graph G. Some of
these algorithms have also been incorporated into well-known
software packages such as METIS [16].

These existing graph partitioning algorithms were originally
designed for parallel computing, whose goal is to evenly
distribute the computations over k processors by partitioning
the vertices into k equally weighted sets while minimizing
inter-processor communication represented by edges crossing
between partitions. These two objectives exactly match the
two constraints in our definition. Therefore, balanced graph
partitioning can be easily solved by existing graph partitioning
algorithms, for example, the multilevel KL algorithm.

C. Clustered Graph Partitioning

Balanced graph partitioning tries to maintain the signifi-
cance level in each partition balanced, so that the damage to
each partition is balanced and limited. However, it does not
give high priority to minimize the edge-cut, therefore does not
guarantee that worms can always be successfully contained
within individual partitions. For example, if the weights of

the edges across two partitions are very large, the probability
of worm propagation through this edge will be very high.
Then, the worms may have already propagated across the two
partitions before patches are distributed. Therefore, rather than
partitioning the graph into balanced parts, we want to partition
the graph according to the trusted social relations. This method
is referred to as clustered partitioning where edges within each
partition have higher weights compared to the edges between
the two partitions.

With clustered partitioning, we keep the mobiles that are
socially close to each other in the same partition, and divide
nodes that are not close into different partitions. This is be-
cause closer nodes are more likely to infect each other quickly
as soon as the worms breakout. We cannot do too much
about it as the infection may have already happened before
patching so we prefer leaving them in the same partition. On
the other hand, two nodes with a low weight link may have not
communicated with each other and there is a low probability
for a worm to spread across the link. Therefore, keeping them
in two different partitions can effectively prevent the worm in
one partition from infecting the other. Note that if there is no
edge between the two nodes, they will be divided into two
different partitions.

Definition 3 (Clustered Graph Partitioning): Given an
undirected weighted graph G = (V,E), with weight f(i) for
each vertex i ∈ V and g(u, v) for each edge (u, v) ∈ E,
a partition P cuts the vertice set V into k(k > 1) subsets
V1, V2, . . . , Vk such that Vi∩Vj = φ for i �= j, and ∪iVi = V ,
with the following two constraints satisfied:

• the averaged edge weights (i.e., the total edge weights
divided by the number of nodes) in each subset Vi are
maximized: max(

∑
m∈Vi,n∈Vi

g(m,n))/|Vi|
• the total weights of all edges crossing subsets are mini-

mized.
Figure 2 shows the node weights and edge weights for

each partition by the two partitioning schemes on the social
relationship graph shown in Figure 1. We can see clearly from
the example that balanced partitioning has an edge-cut of 2.5
while the clustered partitioning achieves an edge-cut of 0.9. As
a result, it takes longer time for worms to propagate between
partitions under clustered partitioning, which leaves itself more
response time.

Unfortunately, this problem is NP-hard and these two con-
straints cannot be achieved at the same time. Thus, we can only
apply heuristics to generate approximate solutions. We define
a new concept called Connectivity and propose a recursive
clustered partitioning algorithm based on this definition.

Definition 4 (Connectivity): We define the connectivity C
recursively as follows:
Connectivity between two nodes: If i and j are two nodes
and the edge between them has a weight of w(i, j), then the
connectivity between node i and j is C(i, j) = w(i, j). If
there is no edge between i and j, C(i, j) = 0.
Connectivity between a node and a set: S is a set with more
than one node in it, and i is a node outside of S. Then the con-
nectivity between node i and set S is C(i, S) =

∑
j∈S C(i, j).

Connectivity between two sets: S1 and S2 are two sets in the
graph, the connectivity between set S1 and S2 is C(S1, S2) =

∑
i∈S1

C(i, S2).
Connectivity of a set: The connectivity of set S is defined
as the expected connectivity of any node i in the set S to
the set S i, S i is the set S excluding node i. Then C(S) =∑

i∈S C(i,S i)

n , where n is the number of nodes in S.
The connectivity C denotes the connectivity level or close-

ness between two objects. For example, consider the closeness
between a node i and a set S. Node i has one or more edges
connected to set S, with weight p1, p2, · · · pk respectively. As
each edge weight pi denotes the probability that a message is
successfully delivered from i to S through that particular edge
i, the probability that a message is successfully delivered from
i to S can be computed by 1− (1− p1)(1− p2) · · · (1− pk).
After ignoring the product items, it can be simplified as
p1 + p2 + · · ·+ pk, which is the connectivity C(i, S) between
i and S.

Consider the connectivity of a set S. According to the
definition of C(S), each edge weight in S would be counted
twice. Therefore, the connectivity of S can also be presented
as C(S) =

∑
i∈S,j∈S 2w(i,j)

n . Without losing generality, we

can rewrite it as C(S) =
∑

i∈S,j∈S w(i,j)

n , which is exactly
the same as our fist constraint. Therefore, to satisfy the first
constraint of clustered partitioning, we just need to maximize
the connectivity C for each partition. Based on the definition
of connectivity, we propose a heuristic algorithm to separate
a graph into no more than k clustered partitions. k is a pre-
defined threshold for the number of partitions.

The basic idea behind this algorithm is to enlarge each parti-
tion from individual nodes based on the metric of connectivity;
i.e., a new node which has the largest connectivity with the
current partition is chosen and added to the partition. This
process stops until any node’s joining could not increase the
connectivity for the partition. Then another partition expanding
process is started from a remaining node. When there is no
more partition growing, the graph has been partitioned to
clusters, which is called a round. If the number of partitions is
still larger than k, a new round is started, where each partition
is contracted to a node and the partition expanding process
is performed on the updated graph. The detailed algorithm
includes the following three stages:

1) Expanding Stage
• Sort all edges in graph G by their weight w. Pick

the edge with the largest weight and put its two end
nodes into one partition P .

• Partition P grows as follows: for all neighboring
nodes of this partition, choose node i which has the
largest connectivity with partition P and add node
i to form a new partition P ′. Update C(P ′). Repeat
the above step on the new partition P ′ until there
is no neighboring node that can achieve C(P ′′) ≥
C(P ′).

• Pick the edge with the largest weight from the rest of
the edges and perform the above expanding process.
The expanding stage stops when every node has
been added to a partition.

2) Contracting Stage
• Based on the resulting partitions from the expanding

i jW(i,j)

(a) C(i, j) = w(i, j)

i

j

W(i,j)

n

m
S

W(i,n)

W(i,m)

(b) C(i, S) = w(i, j) + w(i, m) + w(i, n)

i

j

W(i,j)

n

m
S2

W(k,n)

W(i,m)

k
W(k,m)

S1

(c) C(S1, S2) = w(i, j) + w(i, m) + w(k, m) + w(k, n)

Fig. 3. Examples of Connectivity

stage, contract G to a condensed graph G′ such
that each partition Pi in G becomes a node i
in G′ and all the interconnection edges between
two partitions Pi and Pj become an edge e(i,j)
between the two corresponding nodes i and j in
G′. w(i, j) = C(Pi, Pj).

• Recursively apply the Expanding stage and the
Contracting stage on graph G′. It stops when the
number of partitions falls below the specified value
k.

3) Restoring Stage

• Restore the original graph G by replacing each
condensed node in each partition with its original
nodes in the corresponding partition created in the
contracting stage. Then, graph G is cut into less
than k partitions.

Figure 4 illustrates how this algorithm works on a clustered
graph. The distance between any two nodes denotes the
closeness relationship between these two nodes. Thus, two
nodes that are closer to each other in the plane would have
higher connectivity and should be partitioned together.

The time complexity of this algorithm can be easily an-
alyzed. At the beginning, there are n nodes in the graph
which can be viewed as n individual partitions. In the end,
the number of partitions is lower than k. As each partition
expanding adds at least one node or one subset to a partition,
there are at most n−k times of partition expanding. For each
partition expanding, a node with the largest connectivity to
the partition is searched. This takes time O(np ∗C), where np

is the number of nodes in the current partition and C is the
average degree of each node. In the worst case, the partition
is as large as the entire graph and np becomes n. Therefore
the total time for the algorithm is O(n2).

D. Worm Containment and Patching

In this section, we propose a systematic method to contain
worms within different partitions. There are four steps to
achieve it:

1) build an undirected weighted graph G representing the
mobiles’ social relationship in the cellular network from
a real trace.

2) apply either balanced partitioning or clustered partition-
ing algorithm to graph G to obtain a partitioning and
the corresponding cut edges.

3) use the Minimum vertex Separator Algorithm shown in
Algorithm 1 to compute a minimum vertex separator
from the set of cut edges.

4) send the security patches to separator nodes to block the
worm propagation between partitions. These separator
nodes could be responsible for forwarding the patches
to other nodes in the same partition.

Algorithm 1 Minimum Vertex Separator Algorithm

Input: EC : the set of cut edges;

1: VS ← φ
2: while EC �= φ do
3: Select v ∈ V ′ which is shared by the most number of

cut edges in EC

4: Add v to VS

5: Remove from EC any cut edge whose end point is v
6: end while

Output: VS : the set of vertex separators;

To obtain a set of separator nodes from the set of cut
edges has been shown to be NP-complete [12]. We propose
Algorithm 1 to approximately solve this problem by the
Greedy paradigm, in which the next vertex selected for the
Minimum Separator Set is the vertex that covers the most
uncovered elements.

V. PERFORMANCE EVALUATIONS

In this section, we evaluate and compare three different
patching strategies, random patching, balanced patching and
clustered patching based on the worm infection rate and the
number of separator (patched) nodes.

A. Simulation Setup

Our experiments are based on the social relationship graph
generated from a real network traffic trace from one of the
largest cellular networks in the US. Compared to related works
that are based on cellular network traces, our trace analysis
includes not only MMS and SMS messaging service, but also
other popular services such as SIP based voice services as
all of these services and interactions are equally likely to be
exploited by worms.

As far as we know, there does not exist any realistic models
for worm propagation using SMS/MMS services in cellular
network. Although the work by Fleizach et al [11] models the
mobile worm propagation, it is only based on US census data
and estimated address book degree distribution. We construct

(a) original graph (b) partitioned graph (c) contracted graph (d) restored graph

Fig. 4. An example of the clustered partitioning algorithm. (a) to (b) shows the partition expanding process. (b) to (c) shows contracted and partitioned
graph. (d) restores to the original graph with 10 partitions.

a MMS worm propagation model as follows. We assume
worms are able to exploit the social relationship information
for propagating. We model the probability that a mobile will
activate a worm received from another mobile as directly
proportional to the connectivity level between them and model
the time taken for the worm code to propagate from one mobile
to another as inversely proportional to the connectivity level.
This time includes the latency for worm transmission as well
as the delay from the time the receiver receives the worm and
activates it. Once the worm has infected a new mobile, it starts
to propagate to its neighbors after t time units.

We choose a number of (0.02%) nodes in the network by
uniform distribution as the seed set of worm sources to initiate
the infection process at the very beginning. This would provide
the most pessimistic scenario as under a uniform distribution
worm sources are more likely to be distributed across different
clusters. We use a Patching Threshold α to control when the
patching procedure starts. It is measured as the percentage of
infected users in the network. This parameter represents the
time delay since the worm starts propagating till it is detected
by the network and a patch is generated. Once the percentage
of infected users reaches this threshold α, the network would
start to distribute patches to the chosen separator nodes. Each
run of the simulation lasts for 2000 time units.

B. Effects of the Patching Threshold

We assume that some kind of systematic detection system
is deployed across the network to observe the abnormal
traffic and detect any worm outbreak. The time when to
start the patching procedure depends on the strength of the
detection system. Obviously, early detection can achieve better
effects on worm containment but consumes more resources on
monitoring and computation, while later detection, though less
resource intensive in terms of monitoring could significantly
delay worm containment. We use the parameter of patching
threshold, α to simulate the time delay for worm detection and
patch generation. Once the infection rate reaches this prede-
fined threshold α, the network would start to distribute patches.
Figure 5 compares the performance of three patching schemes:
random patching, balanced patching, clustered patching under
various α. As expected, the longer we wait to begin patching
(higher patching threshold), the more number of nodes need

to be patched for balanced or clustered patching to achieve
the same infection rate. Interestingly, for random patching, the
infection rate does not change irrespective of when to start the
patching. Moreover, balanced patching has similar infection
rate as random patching when patched nodes are under 2% in
Figure 5(b) and 2.6% in Figure 5(c) due to the lack of enough
separator nodes for effective partitioning.

As shown in Figure 5, clustered patching requires much
less patched nodes than balanced patching to achieve a cer-
tain infection rate in most cases. This is because clustered
partitioning always cuts the graph from the least connected
part, which results in less separator nodes, whereas balanced
partitioning sometimes has to separate a strongly connected
cluster apart and thus results in more separator nodes. Even
in Figure 5(a), to achieve a low infection rate such as lower
than 0.2, clustered patching requires much less patched nodes
than balanced patching.

C. Infection Rate vs. Time

Figure 6 shows how infection rate changes over time under
different patching strategies. Clustered patching achieves the
best performance as it limits the infection rate within a certain
bound much faster than the other two Also, the infection
rate can be bounded to a much lower value if the patching
threshold is lower, i.e. patching is started earlier. We can
observe from the figure if the operator were to begin patching
the network after 2% of mobile devices had already been
infected, then clustered partitioning bounds the infection rate
to 0.025 within 30 time units. Balanced partitioning is only
able to bound the infection rate to 0.1 with a longer 450 time
units. However, both schemes perform significantly better than
random patching, which leads to 0.9 of nodes getting infected
after 900 time units.

D. Effect of Dynamic Graph Topology

The trace we collected for social interaction analysis may
not always be up to date unless it is frequently updated. To
avoid the update overhead, there will be a gap between the time
when the social relationship graph is generated and the time
of worm breakout. For example, a few new users may register
and join the network, and start to build their social relationship.
This may result in inaccuracies in our patching schemes.
Figure 7 shows the effect of dynamic topology change on the

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of patched nodes

In
fe

c
ti
o

n
 r

a
te

clustered patch
balanced patch
random patch

(a) α = 2%

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of patched nodes

In
fe

c
ti
o

n
 r

a
te

clustered patch
balanced patch
random patch

(b) α = 10%

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of patched nodes

In
fe

c
ti
o

n
 r

a
te

clustered patch
balanced patch
random patch

(c) α = 20%

Fig. 5. Effect of patching threshold α

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time unit

In
fe

c
ti
o

n
 r

a
te

random patch
balanced patch
clustered patch

(a) α = 2%

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time unit

In
fe

c
ti
o

n
 r

a
te

random patch
balanced patch
clustered patch

(b) α = 10%

Fig. 6. Infection rate vs. time (percentage of patched nodes = 4%)

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time unit

In
fe

c
ti
o

n
 r

a
te

No disturbance
n=0.02%, e=5
n=0.02%, e=10
n=0.04%, e=5
n=0.04%, e=10

(a) Effect on balanced patch

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time unit

In
fe

c
ti
o

n
 r

a
te

No disburbance
n=0.02%, e=5
n=0.02%, e=10
n=0.04%, e=5
n=0.04%, e=10

(b) Effect on clustered patch

Fig. 7. Effect of dynamic topology under various disturbance levels
(percentage of patched nodes = 4%, α = 2%)

two patching schemes under various disturbance levels, where
n denotes the percentage of new users joining the network and
e denotes the number of edges for each new user connecting
to other users. Notice that we cannot differentiate the curve of
no disturbance and curve of n = 0.02%, e = 5 for clustered
patching because they behave the same. From the figure we
can see that clustered patching is always behaving robuster to
network disturbance than balanced patching. This is because
new users usually join a certain cluster and only communicate
with users in this cluster. Therefore, clustered patching can
tolerate this disturbance more effectively.

VI. DISCUSSION

Our worm containment strategy assumes the presence of a
detection system to detect and generate an alert for a newly

propagating worm. There are several works for detecting mo-
bile worms at the network-level such as SmartSiren [3] and at
the host-level using behavior anomaly detection [2] or energy
anomaly detection [18]. These mobile worm detection systems
can detect a worm within a reasonable latency and hence could
serve as the initial trigger for our worm containment via patch
distribution mechanism. Moreover, as a game between the
worm designer and the patch system designer, a deterministic
solution between balanced and clustered patching is required
for a worm designer to circumvent.

Service providers usually take a multi-pronged strategy
towards containing a zero-day worm - they start rate-limiting
or filtering outbound traffic from hosts that are infected and
also start extracting the signature for the worm so that the
uninfected hosts can be protected. Developing a patch typically
takes a substantial amount of time and manual effort. The time
scale required to generate security patches or signatures is up
to 2 hours [6]. Regardless of whether the service provider is
able to develop the patch within hours of a worm outbreak,
our proposed mechanism could also be used for rate-limiting
in the following way. Once the service provider has identified
the set of key nodes via our partitioning algorithms, he can
generate stricter filtering or rate-limiting rules for outbound
traffic from these nodes so that the damage due to the worm
can be contained more effectively.

An effective patch distribution strategy needs to make sure
that the patches do not compete for the scarce bandwidth
resources [27]. In this regards, our patch distribution mecha-
nisms take a hierarchical approach and instead of flooding out
the patch to all nodes, we determine an optimal set of nodes
to which the patch must be sent to obtain a bounded infection
rate. These patches involve nothing about broadcasting and
only bring limited traffic into the network.

As discussed above, it is up to the network operator to
decide which approach to use to distribute the patches: push,
pull or traffic controlling. In the case of pull, some mobile
users may refuse to install the patch since they may not trust
the source of the patch. An efficient way is needed for the
network operator to have the patch messages authenticated.
Fortunately, many mobile operators have some ’Wake Up’
mechanism to directly distribute software or patches to devices

without any intervention from the users to make patches
activated.

Cellular network bandwidth usually places constraints on
worm propagation and patch dissemination. However, we can
skip this influence in our simulation since once our patching
strategy is deployed, the worms should have been contained
and stopped at the very early stage before saturating the net-
work capacity. For patch distribution, as only a limited number
of mobiles are patched while no broadcasting is introduced,
the limited patching traffic is far away from saturating the
cellular network bandwidth.

VII. RELATED WORK

Defense techniques against Internet worms include rate
limiting [28] or filtering [23]. Vojnovic et al [25] studied the
efficacy of automatic patching countermeasure in protecting
the Internet against scanning worms. Zou et al [31] used a
Kalman filter to detect Internet worm’s propagation at its early
stage in real-time. However, these techniques are not directly
applicable to the mobile network scenario.

There is limited work on mobile viruses/worms modeling
and containment in literature. Yang et al [29] applied a
software diversity approach to deal with worm attacks in
wireless sensor networks. Mickens and Noble [21] proposed a
probabilistic queuing framework to model the propagation of
mobile viruses over short-range wireless interfaces. Fleizach
et al [11] evaluated the effects of malware propagating using
communication services like VOIP and MMS in mobile phone
networks. However, they do not use real traffic data in their
worm propagation model. Bose and Shin [1] applied two
commonly used mechanisms: rate limiting and quarantine to
the dynamically generated list of vulnerable clients in the
mobile messaging network. Miklas et al [5] used a trace-
driven simulator to study the interactions between Bluetooth
devices. They conclude that Bluetooth based worms would
spread more widely by exploiting contacts between ‘strangers’
instead of ‘friends’. While our focus here is on worms which
spread via MMS or SMS, the hypothesis driving our work
is analogous - that to contain a worm, we must first detect
and patch the devices which bridge social clusters. Meng et
al [20] investigated the reliability of SMS by analyzing traces
collected from a nationwide cellular network over a period
of three weeks. Here, we exploit the social relationship graph
from a real cellular network trace that includes a variety of
services and use it to develop a worm containment mechanism.
Other security issues such as DoS attacks in the 3G network
scenario are also studied in [4], [30].

VIII. CONCLUSIONS AND FUTURE WORK

This paper proposed a methodology for effectively limiting
the spread of MMS and SMS based worms via a graph parti-
tioning approach. In our solution, mobile devices are divided
into multiple partitions based on the social relationships among
them. Two patching schemes, namely balanced and clustered
patching are designed and their performance is evaluated
using simulations based on data collected from real cellular
networks. Through extensive evaluations, we demonstrate that
our partitioning strategy can effectively contain worms.

Further research in this area includes dealing with hybrid
worms which can make use of both cellular network interface
and Bluetooth interface to propagate, and looking into worms
and users roaming between cellular networks operated by
different service providers.

REFERENCES

[1] K.G. Shin A. Bose. Proactive security for mobile messaging networks.
In Proceedings of the 5th ACM workshop on Wireless security, 2006.

[2] Abhijit Bose, Xin Hu, Kang G. Shin, and Taejoon Park. Behavioral
detection of malware on mobile handsets. In MobiSys, 2008.

[3] J. Cheng, S.H.Y. Wong, H. Yang, and S. Lu. SmartSiren: virus detection
and alert for smartphones. MobiSys, 2007.

[4] W. Enck, P. Traynor, P. McDaniel, and T. La Porta. Exploiting open
functionality in SMS-capable cellular networks. CCS, 2005.

[5] A. Miklas et al. Exploiting social interactions in mobile systems. In
UbiComp 2007: Ubiquitous Computing, 2007.

[6] F-SECURE. Close the zero-hour gap: Protection from emerging virus
threats, http://www.f-secure.com/f-secure/marketing/white papers.

[7] F-SECURE. F-secure deepguard - a proactive response
to the evolving threat scenario, http://www.f-secure.com/f-
secure/marketing/white papers.

[8] F-SECURE. F-secure malware information pages: Sms-
worm:symbos/feak, http://www.f-secure.com/v-descs/sms-
worm symbos feak.shtml.

[9] F-SECURE. F-secure virus information pages: Cabir, http://www.f-
secure.com/v-descs/cabir.shtml.

[10] F-SECURE. F-secure virus information pages: Commwarrior,
http://www.f-secure.com/v-descs/commwarrior.shtml.

[11] C. Fleizach, M. Liljenstam, P. Johansson, G.M. Voelker, and A. Mehes.
Can you infect me now?: malware propagation in mobile phone net-
works. Proceedings of the 2007 ACM workshop on Recurring malcode.

[12] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. WH Freeman & Co., 1979.

[13] JC Haartsen, E.R.S. BV, and N. Emmen. The Bluetooth radio system.
IEEE Wireless Communications, 2000.

[14] B. Hendrickson and T.G. Kolda. Graph partitioning models for parallel
computing. Parallel Computing, 26(12):1519–1534, 2000.

[15] G. Karypis and V. Kumar. A Fast and High Quality Multilevel Scheme
for Partitioning Irregular Graphs. SIAM, 1999.

[16] G. Karypis, K. Schloegel, and V. Kumar. ParMeTiS: Parallel Graph
Partitioning and Sparse Matrix Ordering Library, Version 3.0. 2002.

[17] B.W. Kernighan and S. Lin. An efficient heuristic procedure for
partitioning graphs. Bell System Technical Journal, 1970.

[18] Hahnsang Kim, Joshua Smith, and Kang G. Shin. Detecting energy-
greedy anomalies and mobile malware variants. In MobiSys, 2008.

[19] S. Keshav M. Ghaderi. Multimedia messaging service: System descrip-
tion and performance analysis. In Proceedings of the First International
Conference on Wireless Internet, 2005.

[20] X. Meng, P. Zerfos, V. Samanta, S.H.Y. Wong, and S. Lu. Analysis
of the Reliability of a Nationwide Short Message Service. INFOCOM
2007.

[21] J.W. Mickens and B.D. Noble. Modeling epidemic spreading in mobile
environments. The 4th ACM workshop on Wireless security, 2005.

[22] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and
N. Weaver. The Spread of the Sapphire/Slammer Worm, 2003.

[23] D. Moore, C. Shannon, GM Voelker, and S. Savage. Internet quarantine:
requirements for containing self-propagating code. INFOCOM 2003.

[24] K. Schloegel, G. Karypis, and V. Kumar. Graph Partitioning for High
Performance Scientific Simulations. Computing Reviews, 2004.

[25] M. VojnoviĆ and A. Ganesh. On the effectiveness of automatic patching.
Proceedings of the 2005 ACM workshop on Rapid malcode, 2005.

[26] C. Walshaw and M. Cross. Parallel optimisation algorithms for multi-
level mesh partitioning. Parallel Computing, 26(12):1635–1660, 2000.

[27] Nicholas Weaver and Dan Ellis. White Worms Don’t Work. USENIX.
[28] C. Wong, S. Bielski, A. Studer, and C. Wang. Empirical Analysis of

Rate Limiting Mechanisms. RAID 2005.
[29] Y. Yang, S. Zhu, and G. Cao. Improving sensor network immunity under

worm attacks: A software diversity approach. ACM mobihoc, 2008.
[30] B. Zhao, C. Chi, W. Gao, S. Zhu, and G. Cao. A Chain Reaction DoS

Attack on 3G Networks: Analysis and Defenses. IEEE INFOCOM 2009.
[31] C.C. Zou, L. Gao, W. Gong, and D. Towsley. Monitoring and early

warning for internet worms. CCS 2003.

