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A soft artificial muscle driven robot 
with reinforcement learning
Tao Yang2, Youhua Xiao4, Zhen Zhang2, Yiming Liang2, Guorui Li2, Mingqi Zhang2, Shijian Li5, 

Tuck-Whye Wong6, Yong Wang1,2,3, Tiefeng Li1,2,3 & Zhilong Huang1,2,3

Soft robots driven by stimuli-responsive materials have their own unique advantages over traditional 
rigid robots such as large actuation, light weight, good flexibility and biocompatibility. However, the 
large actuation of soft robots inherently co-exists with difficulty in control with high precision. This article 
presents a soft artificial muscle driven robot mimicking cuttlefish with a fully integrated on-board system 
including power supply and wireless communication system. Without any motors, the movements of 
the cuttlefish robot are solely actuated by dielectric elastomer which exhibits muscle-like properties 
including large deformation and high energy density. Reinforcement learning is used to optimize the 
control strategy of the cuttlefish robot instead of manual adjustment. From scratch, the swimming speed 
of the robot is enhanced by 91% with reinforcement learning, reaching to 21 mm/s (0.38 body length per 
second). The design principle behind the structure and the control of the robot can be potentially useful 
in guiding device designs for demanding applications such as flexible devices and soft robots.

Conventional robots are made of rigid components to provide large output force, high precision, and ease of 
controllability. When operating in complex environments, bio-inspired so� robots possess unique advantages1–4. 
Natural creatures are adaptive and resilient to environment. Fabricated with so� and deformable polymers, 
bio-inspired robots that mimic natural creatures have drawn a growing interest in recent years. Ultimately, so� 
robots can perform various tasks beyond the limits of conventional robots, achieving instinctive characteristics 
in terms of safe for humans1, geometric adaptation4, and tunable camou�age5.

Unmanned underwater vehicles play a signi�cant role in engineering machines which can execute various 
missions, such as the study of marine life, investigation of underwater creatures, and exploration of the sea6. 
However, conventional unmanned underwater vehicles are less adaptive to environments, and they also cre-
ate unwanted noise during the mission. �ese shortcomings undoubtedly reduce their utility. Here, so� robots 
based undersea vehicles are potential substitutes to work in the complex ocean environment. Various kinds of 
so� stimuli-responsive materials have been used to drive so� aquatic robots, such as dielectric elastomer, shape 
memory alloy7, ionic polymer metal composites8, and ionic conducting polymer �lms9. Among them, dielectric 
elastomer (DE) has stood out due to its exceptional fast response and large actuation10–13. Utilizing DE as base 
structure, a jelly�sh14, a Manta-ray15, and a so� swim-bladder robot16 have been designed recently.

Currently, the most widely used approaches to control the robot are assuming the mechanical structure as rigid 
body, but those approaches are not applicable on so� robots. In general, the actuation of so� robot itself is di�cult to 
be modelled17. Even for a simple task, it usually requires complicated mechanical analysis18,19. To-date, there are sig-
ni�cant contributions by experts of arti�cial intelligence (AI) and robotics in trying to surmount the modeling and 
learn to perform speci�c tasks for so� gripper based on imitating and reinforcement learning20,21. Reinforcement 
learning (RL) is an adaptive control strategy that serves as a potential solution to the control of so� robots.

Unlike �shes that acquire thrust most o�en by wave-like movements of the �sh’s body, �ns and tail, cuttle�sh and 
jelly�sh move by jet propulsion. In detail, these cephalopods draw water into their body, then expel the jet of water 
from a rear ori�ce to generate a series of vortex rings and hence thrust. �is mechanism has been studied in-depth 
by researchers22,23. Inspired by the structure and propulsion mechanism of cuttle�sh, we have designed a biomimetic 
cuttle�sh robot with DE membranes (3 M VHB) as the arti�cial muscles. �e cuttle�sh robot uses surrounding open 
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water as the electric ground15, which makes it more robust when faced with the insurmountable challenge of high 
voltage to actuate the arti�cial muscle (DE membrane). To make the cuttle�sh robot more compact, a highly com-
pact electric system (Epod) is selected for both remote control and voltage boosting. Other than design of the overall 
on-board system, reinforcement learning is implemented to optimize the strategy toward the actuation of the cuttle-
�sh. Finally, the cuttle�sh robot reaches to a swimming speed of 21 mm/s, much better than the one without learning.

Figure 1 shows the detailed fabrication process of the jet-actuator of the robot. �e arti�cial muscle laminate 
consists of a thin circular layer of carbon grease sandwiched between two pre-stretched DE membranes, along 
with a small piece of thin foil as the electric feeding line. �e chamber is made of acrylic with diameter of 95 mm 
and height of 30 mm. �ere is an ori�ce with diameter of 20 mm at the bottom of the acrylic chamber. �e arch 
with height of 25 mm is used to place the permanent magnet (PM) made of Neodymium, so it can provide the 
attractive force and the pre-stretched muscle will bend into a cone-like shape. �e hard stop is used to prevent 
excessive attractive force of magnets. �e height of body is 55 mm. In consideration of the weight of high voltage 
(HV) supply and wireless communication system, the total weight of onboard system is still relatively light which 
is only 126 g. Bolt holes are used for plastic screws to tune the initial distance d3 between the magnets, which is 
found to have a signi�cant in�uence on the overall performance of the cuttle�sh robot.

Figure 2 shows the actuation mechanism of the cuttle�sh robot. DE based �exible capacitor can reduce its 
thickness with the application of high voltage. �e thickness reduction is caused by Maxwell stress when positive 
and negative charges respectively accumulated on each sides of the DE membranes. Due to the incompress-
ibility of DE material, the surface area of the capacitor will expand (Fig. 2A,B). For the jet-actuator, magnets 
based mechanical biasing mechanism is used to enlarge the displacement24. When no voltage is applied on the 
pre-stretched DE membrane (rest state), the initial displacement d1 due to the attractive force of the magnets is 
relatively small (Fig. 2C). When high voltage is applied, the pre-stretched DE membrane is relaxed, decreasing 
its sti�ness in the axial direction of the jet-actuator. A�er the relaxation, the displacement d2 is much larger than 
initial displacement d1 (Fig. 2D). �e actuation of the DE membrane induces the volume change of the chamber, 
resulting in the jet-re�ll cycle of the cuttle�sh body, and generating propulsion to drives the robot. To further 
investigate the actuation of DE membrane, we simulate the structural deformation through �nite element analysis 
(FEA). In the analysis process, the dimensionless voltage represents the voltage applied on the jet-actuator where 
Φ is the applied voltage, µ is the shear modulus of the material, ε is the permittivity and H is the initial thickness. 
Besides the applied voltage, dimensionless displacement load is also imposed in FEA, where R is the radius of the 
membrane and d is the axial displacement. A material model from a previous study25 was embedded into Abaqus 
with the user-de�ned subroutine UMAT. As a result, the von Mises stress distribution corresponding to the rest 
and actuated state are shown (Fig. 2E,F). �e stress distribution reveals the inhomogeneous deformation of the 
actuator, indicating the use of the material is not e�cient26. Some regions of the membrane are near to the failure 
whereas others are still far below the limit. We foresee that ine�cient use of the material can be solved by variable 
thickness of the membrane which demand further research.

Results
We aim to design an untethered cuttle�sh robot with onboard system providing power and control. �e initial 
distance d3 between magnets is 15 mm and the initial displacement d1 of the jet-actuator is set at 2 mm (Fig. 3A). 
When applying a voltage of 6.8 kV (charged), the recorded displacement d2 is 17 mm and water is drawn into 
the chamber (Fig. 3B). As soon as it is discharged, the water is expelled out through ori�ce. With such reversible 

Figure 1. Fabricating the jet-actuator of the robot. (A) Fabrication of muscle laminate: A DE membrane (VHB 
membrane with initial thickness of 1 mm) was biaxially pre-stretched (3 × 3). Carbon grease was sandwiched with 
the shape of rings (inner diameter 25 mm, outer diameter 75 mm) by two pre-stretched membranes. (B) Two circular 
magnets with diameter of 20 mm was put on the center of both sides of muscle laminate. (C) Muscle laminate was 
assembled on the chamber. (D) An arch was assembled with a magnet on the top of the acrylic chamber.
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motion of the arti�cial muscle, thrust is thus generated to propel the cuttle�sh. Accordingly, the simple in-plane 
DE actuation is transformed into periodical volume change of the chamber, similar to the working principle of 
motor transmission system but in a more compact form. Figure 3C shows the system of the robot, including the 
compact high voltage source, the battery and the jet-actuator. �e red area is the tracking mark, indicating the 
location of the robot in real time. Movement of the robot is voltage dependent as it is very much depending on the 
jet of water7,14. RL is used to optimize the actuation pattern in order to enhance the performance of our robots, 

Figure 2. Operating mechanism of the cuttle�sh robot. (A) DE membrane serves as �exible capacitors with 
stretchable electrodes on both sides of the DE membrane. (B) When a high voltage is applied on one side of 
the DE membrane (another side is served as electric ground), Maxwell stress will start to act on the electrodes 
and cause the reduction in the thickness of the DE membrane, resulting the expansion of area due to the 
incompressibility of DE. (C) Rest state of jet-actuator with initial displacement d1 due to the attractive force of 
magnets. (D) Actuated state of the jet-actuator with displacement d2 (surrounding water as electric ground). 
�e expansion of area due to the application of high voltage on the muscle laminates results in relaxing the 
pre-stretched membrane and then the reduction of the sti�ness parallel to thickness. (E) Tilted view of the FEA 
simulation for the reset state of the cuttle�sh robot with no voltage. (F) Tilted view of the FEA simulation of the 
actuated state of the cuttle�sh robot with dimensionless voltage of 0.2.

Figure 3. (A) �e rest state of the jet-actuator. (B) �e actuated state of the jet-actuator. (C) �e schematic of 
the cuttle�sh robot.
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and the details will be addressed in later section. �e Epod (powered by a 3.7 V lithium-ion battery) is sealed in 
an acrylic tube to provide enough buoyancy for the cuttle�sh. It is controlled by an eight-pin microcontroller unit 
(MCU) and the output voltage amplitude (0 V to 10 kV) is adjusted by pulse-width modulation duty cycle. 2.4 G 
ZigBee is attached on the Epod which enables wireless control with a computer. More details of the Epod can be 
found in our previous works15,16. �e length of the tube is 110 mm with diameter of 35 mm.

Previous works have been reported to compare the displacement achieved by di�erent kinds of biasing mech-
anisms such as hanging masses, springs, permanent magnets, etc.24. Inspired by those works, experiment has 
been performed to evaluate the in�uence of initial distance d3 on the performance of actuator (Fig. 4). Force 
and displacement curves of the jet-actuator actuated with 6.8 kV and 0 kV (without magnets) are recorded and 
plotted for comparison. Besides, Magnetic force (the biasing force) and displacement curve are also recorded. 
�e in�uence is justi�ed by investigating the intersection of the biasing force-displacement curve with DE curves. 
Generally, when applying a voltage of 6.8 kV (charged), the DE curve shi�s indicating the decrement in sti�ness. 
In Fig. 4, the point marked with “A” is the equilibrium point when no voltage is applied, while the point marked 
with “B” is equilibrium point under high voltage. �e maximal force of attraction that the magnets could provide 
is constant for various d3 since the length of the hard stop is set constant. �e initial distance d3 is set as 6 mm 
in Fig. 4A. Due to the higher force of magnets, the DE curves of 6.8 kV will be attracted to the hard stop (corre-
sponds to stage B). When the voltage is cut-o�, the DE curves of 0 kV is lower than magnetic force curve at stage 
B (means the actuator remains at stage B). In this condition, stable reversible motion can’t be achieved, so we 
infer that initial distance of magnets should not be too small. �e initial distance d3 is set as 15 mm in Fig. 4B. 
It shows that the DE curves of 0 kV is above magnetic force curve at stage B and thus stable reversible motion 
can be achieved. In this case, actuator can be pulled back from stage B to stage A where the recorded reversible 
stroke is 15 mm. When the initial distance d3 is set as 24 mm, the reversible motion can be observed and the 
recorded displacement between stage A and B is relatively small, just 3 mm (Fig. 4C). It results in small volume 
change of chamber. �e three initial distances of magnets correspond to three typical behaviors. However, the 
quasi-static modeling discussed above doesn’t fully re�ect the actual in�uence of the discharge rate of Epod and 
actuation frequency on the performance of the cuttle�sh robot. Besides, slight variation in d3 signi�cantly a�ects 
the generation of reversible motion. As a result, adaptive control method is required to enhance the actuation 
of DE membrane and the propulsion of the robot. In order to generate relatively large volume jet of water and 
reversible motion, the initial distance d3 is �xed at 15 mm, which corresponds to force-displacement relation of 
the jet-actuator in Fig. 4B.

Traditional actuators27, such as electric motors or pumps, are in the mainstream of robots controlling research 
in comparison with DE actuators. As part of the objective in this study, actuation patterns are crucial to the 
robot in order to swim fast. For so� actuator-based robots (SARs), researchers usually tune the frequency and 
amplitude of actuation manually7,15. Currently, there is no reliable method to enhance the locomotion of SARs, 
i.e. moving velocity of the robot. In this work, we propose the use of reinforcement learning to address this prob-
lem. Generally, RL enables a robot to autonomously discover an optimal policy to maximize cumulative reward 
through trial-and-error interaction with its environment28. RL tends to solve the problem based on the assump-
tion of Markov decision processes (MDPs) which consist of a set of states S, a set of actions A, the rewards R, and 
transitions T. �erefore, how to choose states that can re�ect the actual characteristics of the SARs is quite chal-
lenging. At �rst, trade-o� must be considered. Continuous states and actions could fully explore the potential of 
SARs, but they will make state the space and action space too large to be solved. Since we use the voltage to actuate 
the robot, discretization can be e�ective for low dimensional problem27, thus we discretize the action, i.e. only 
two kinds of voltage amplitude (0 kV and 6.8 kV) within unit time are used in our experiments. Undeniably, states 

Figure 4. �e relation of the force and displacement for various initial distance d3 measured by uniaxial tensile 
machine. (A) d3 = 6 mm. (B) d3 = 15 mm. (C) d3 = 24 mm
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which include the nature of the robot and hydrodynamics is extraordinarily complicated. To make RL algorithm 
easier to be implemented, we choose the several actions (k times) as the state.
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According to the experiments, such simpli�cation can enhance the performance of the robot. �e reward 
function depends on the task that we are trying to complete for RL tends to maximize the cumulative rewards. To 
maximize the velocity, we de�ne the reward function rt as:

= + −r displacement t displacement t( 1) ( ) (1)t

Second, in terms of RL algorithm, we use the Q-learning29 with an experience replay mechanism in which we 
store the agent’s experiences at each time-step, et = (st, at, rt, st+1) in a data-set D = e1, …, eN, pooled over many 
episodes into a replay memory. Details of the algorithm are shown below. �e displacement data is acquired by 
processing the image from a camera. �e reward can be calculated from eq. (1) using the displacement data. And 
action generated from the RL algorithm is the voltage signal which transfers from the computer to the cuttle�sh 
robot via ZigBee. �e experiment setup for the cuttle�sh robot is illustrated in Fig. 5. Due to the limitation of 
camera processing rate, we can only sample 20 frames per second. We chose unit time as 0.2 s for RL to generate 
an action of 0 kV or 6.8 kV through the computer. k = 6 is a relatively suitable choice for the RL, since jet-actuator 
can perform a full jet-re�ll cycle within 6 unit time.

Figure 5. Schematic diagram of the experiment setup for the cuttle�sh robot.

Algorithm. Q-learning with Experience Replay.
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The algorithm. Table Q, state-action value table, is the guidance to give an action. At �rst, we initialize it with 
zeros. A�er each unit time, we will get a transition (st, at, rt, st + 1), and we will append it in D. We use equation (2), 
also called backward induction30, to update table Q with a mini-batch of transitions uniformly sampled from D, 
which is the core of the algorithm. �is is based on the following intuition that the optimal strategy is to select 
the action at maximizing the expected value of rt + γQ(st+1,at+1). α, the learning rate, determines to what extent 
newly acquired information overrides old information. �e discount factor γ determines the importance of future 
rewards, and ensures that the state-action value be �nite when updating table Q. when the robot is in state st, the 
algorithm chooses to give action randomly with probability ε, or it will give action which has maximal Q value at 
st. To ensure the results are comparable, number of actions N is �xed as 80 during each episode. Besides, there is 
a threshod size u of D which guarantees the diversity of the experience before leaning. u, α and γ are set as 200, 
0.1 and 0.9 respectively. As soon as an episode completed, cuttle�sh is placed static at the start point before we 
proceed the next episode. With decreasing ε, we rely more on the value table Q to choose actions, which indicates 
experience gradually been exploited. �e results are shown in Fig. 6.

In total 25 episodes of the RL process, the swimming performance of the cuttle�sh robot constantly rises with 
�uctuation (Fig. 6A). Figure 6A(I) shows that the robot swims with the distance of 176 mm in 16 seconds. �e 
average speed of the cuttle�sh robot in the 1st episode is 11 mm/s (0.2 body length per second). Figure 6A(II) 
shows that the robot swims with the distance of 336 mm in 16 seconds. �e average speed of the cuttle�sh robot 
in the 23rd episode is 21 mm/s (0.38 body length per second), which is 91% faster than that of the 1st episode (see 
Supplementary Movie). �e sequence of driving voltage of the 1st episode is relatively chaotic (Fig. 6B). With the 
process of RL, the sequence of driving voltage gradually converges with periodic pattern (Fig. 6C). �e experi-
mental results demonstrate that the robot can autonomously actuate DE membranes with optimized control by 
RL, enhancing the swimming performance.

Discussion
In summary, we have designed a cuttle�sh robot with DE as the jet-actuator. �e surrounding water functions 
as the highly robust electrode of the ground end. We have showed that the high voltage required DE system is 
compatible with the aqueous operating environment. �e chamber and magnets are interacted with the actuating 
DE membrane to function as jet-actuator that converts the in-plane actuation of DE membrane into the pro-
pulsion with the jet-re�ll cycles. �e excellent actuation of the DE membrane, when combined with integrated 
compact electronics for power and remote control, results in successful operation of an untethered cuttle�sh 
robot. Furthermore, we have investigated the in�uence of initial distance between magnets on the deformation 
of the jet-actuator. RL is used to optimize the actuation strategy, enhancing the swimming performance of the 
robot. �e swimming speed of the robot is enhanced by 91% with reinforcement learning, reaching to 21 mm/s 
(0.38 body length per second). Although the swimming behaviors of the robotic cuttle�sh �uctuates due to the 
complexity of the RL process, actuation motion and the hydrodynamic drag, the average speed of the robot 
keeps rising. �e experimental results validate that the optimized control by RL can enhance the actuation per-
formance of DE driven so� actuator-based robots. �e robot can’t change its direction at present, but we foresee 
that the direction could be changed by using another so� actuator to adjust direction of the jet. Overall, all these 
performance features are highly desirable for so� robots driven by various types of so� arti�cial muscle. And the 
mechanical structure and RL strategy design principle of our robot can be potentially useful in guiding device 
designs for demanding applications such as �exible devices and so� robots.

Figure 6. (A)�e total displacement within 16 seconds for each episode. (I) Snapshot of the cuttle�sh robot 
of the 1st episode. (II) Snapshot of the cuttle�sh robot of the 23rd episode. (B) Sequence of actions of the 1st 
episode. (C) Sequence of actions of the 23rdst episode.
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Methods
�e DE membranes (initial thickness, 1 mm) was made from 3M VHB4910 membrane. Silicone adhesive glue 
(Dow Corning 734) was used to seal the intersection of the feed line. �e �nite element analysis was using 
Abaqus 6.13. Hybrid, reduced integration elements (CAX4RH) were used in the simulation. Tacking of the cut-
tle�sh robot was based on OpenCV31 library with a Logitech camera C270. �e permanent magnet was made of 
Neodymium.

Data and Materials Availability
All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Ma-
terials. Additional data related to this paper may be requested from the authors.
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